CHEN Tao1,2, LAI Jingtao1, HU Meilin1, MA Xiancai1,2
Received:
2025-06-30
Revised:
2025-08-19
Published:
2025-08-20
Contact:
MA Xiancai
陈涛1,2, 赖锦涛1, 胡美林1, 马显才1,2
通讯作者:
马显才
作者简介:
基金资助:
CLC Number:
CHEN Tao, LAI Jingtao, HU Meilin, MA Xiancai. Revolution in vaccine development led by protein optimization design and de novo synthesis[J]. Synthetic Biology Journal, DOI: 10.12211/2096-8280.2025-068.
陈涛, 赖锦涛, 胡美林, 马显才. 蛋白质优化设计与从头合成引领的疫苗研发革命[J]. 合成生物学, DOI: 10.12211/2096-8280.2025-068.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2025-068
计算软件 | 开发时间 | 主要用途 | 核心特点 |
---|---|---|---|
MODELLER[ | 1993年 | 基于同源建模的蛋白质三维结构预测,优化侧链构象。 | 依赖已知同源模板,引入空间约束进行优化,适用于结构补全与局部优化。 |
Rosetta[ | 1998年 | 已知蛋白质稳定性增强、活性位点改造,全新结构蛋白的构建、功能位点设计。 | 基于物理力场与蒙特卡洛搜索,支持大规模构象采样,是蛋白质从头设计的里程碑式工具。 |
FoldX[ | 2005年 | 快速评估点突变对蛋白质稳定性、结合亲和力的影响。 | 经验力场结合机器学习,适用于高通量虚拟突变筛选。 |
D-I-TASSER[ | 2008年 | 基于模板的蛋白质结构预测与功能注释,间接支持优化设计。 | 整合多重线程算法和分子动力学优化,提供从结构到功能的综合分析。 |
AlphaFold[ | 2018年 | 高精度蛋白质结构预测。 | 首次将深度学习大规模应用于结构预测,显著提升精度。 |
AlphaFold 2[ | 2020年 | 革命性的高精度蛋白质单链及复合物结构预测。 | 基于注意力机制的端到端模型,预测精度接近实验水平,开源后推动结构生物学变革。 |
RoseTTAFold[ | 2021年 | 结构预测与部分设计功能,支持蛋白质-蛋白质复合物建模。 | 三轨神经网络(序列-结构-进化信息协同处理),计算效率高,可建模蛋白质-蛋白质相互作用。 |
ProteinMPNN[ | 2022年 | 蛋白质序列设计,根据目标结构生成最优氨基酸序列。 | 基于图神经网络,设计速度更高,支持对称性设计和功能位点约束。 |
RFdiffusion[ | 2023年 | 从头生成功能性蛋白质结构。 | 基于扩散模型生成三维结构,可直接融入功能约束,开创设计新范式。 |
AlphaFold3[ | 2024年 | 预测蛋白质与核酸、配体、修饰等的复合结构,支持更广泛的分子相互作用建模。 | 统一框架处理蛋白质+生物分子复合系统,显著提升配体结合位点预测准确性,推动药物设计发展。 |
Table 1 Overview of commonly-used software for computational design
计算软件 | 开发时间 | 主要用途 | 核心特点 |
---|---|---|---|
MODELLER[ | 1993年 | 基于同源建模的蛋白质三维结构预测,优化侧链构象。 | 依赖已知同源模板,引入空间约束进行优化,适用于结构补全与局部优化。 |
Rosetta[ | 1998年 | 已知蛋白质稳定性增强、活性位点改造,全新结构蛋白的构建、功能位点设计。 | 基于物理力场与蒙特卡洛搜索,支持大规模构象采样,是蛋白质从头设计的里程碑式工具。 |
FoldX[ | 2005年 | 快速评估点突变对蛋白质稳定性、结合亲和力的影响。 | 经验力场结合机器学习,适用于高通量虚拟突变筛选。 |
D-I-TASSER[ | 2008年 | 基于模板的蛋白质结构预测与功能注释,间接支持优化设计。 | 整合多重线程算法和分子动力学优化,提供从结构到功能的综合分析。 |
AlphaFold[ | 2018年 | 高精度蛋白质结构预测。 | 首次将深度学习大规模应用于结构预测,显著提升精度。 |
AlphaFold 2[ | 2020年 | 革命性的高精度蛋白质单链及复合物结构预测。 | 基于注意力机制的端到端模型,预测精度接近实验水平,开源后推动结构生物学变革。 |
RoseTTAFold[ | 2021年 | 结构预测与部分设计功能,支持蛋白质-蛋白质复合物建模。 | 三轨神经网络(序列-结构-进化信息协同处理),计算效率高,可建模蛋白质-蛋白质相互作用。 |
ProteinMPNN[ | 2022年 | 蛋白质序列设计,根据目标结构生成最优氨基酸序列。 | 基于图神经网络,设计速度更高,支持对称性设计和功能位点约束。 |
RFdiffusion[ | 2023年 | 从头生成功能性蛋白质结构。 | 基于扩散模型生成三维结构,可直接融入功能约束,开创设计新范式。 |
AlphaFold3[ | 2024年 | 预测蛋白质与核酸、配体、修饰等的复合结构,支持更广泛的分子相互作用建模。 | 统一框架处理蛋白质+生物分子复合系统,显著提升配体结合位点预测准确性,推动药物设计发展。 |
[1] | MORENS D M, TAUBENBERGER J K. Influenza Cataclysm, 1918 [J]. New England Journal of Medicine, 2018, 379(24): 2285-2287. |
[2] | DONNELLY C A, GHANI A C, LEUNG G M, et al. Epidemiological Determinants of Spread of Causal Agent of Severe Acute Respiratory Syndrome in Hong Kong [J]. The Lancet, 2003, 361(9371): 1761-1766. |
[3] | ARABI Y M, BALKHY H H, HAYDEN F G, et al. Middle East Respiratory Syndrome [J]. New England Journal of Medicine, 2017, 376(6): 584-594. |
[4] | MSEMBURI W, KARLINSKY A, KNUTSON V, et al. The WHO estimates of excess mortality associated with the COVID-19 pandemic[J]. Nature, 2023, 613(7942): 130-137. |
[5] | SCHUMACHER A E, KYU H H, AALI A, et al. Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021[J]. The Lancet, 2024, 403(10440): 1989-2056. |
[6] | MURA M, TRIGNOL A, LE DAULT E, et al. Lessons for medical countermeasure development from unforeseen outbreaks[J]. Emerging Microbes & Infections, 2025, 14(1): 2471035. |
[7] | IWASAKI A, OMER S B. Why and How Vaccines Work [J]. Cell, 2020, 183(2): 290-295. |
[8] | RAPPUOLI R, ALTER G, PULENDRAN B. Transforming Vaccinology [J]. Cell, 2024, 187(19): 5171-5194. |
[9] | FINE P E. Variation in Protection by BCG: Implications of and for Heterologous Immunity [J]. The Lancet, 1995, 346(8986): 1339-1345. |
[10] | FOURNIER J M. [The Current Status of Research on a Cholera Vaccine] [J]. Bulletin de la Société de Pathologie Exotique, 1998, 91(5 Pt 1-2): 412-415. |
[11] | GERBERDING J L, HAYNES B F. Vaccine Innovations - Past and Future [J]. New England Journal of Medicine, 2021, 384(5): 393-396. |
[12] | RAPPUOLI R. Reverse Vaccinology [J]. Current Opinion in Microbiology, 2000, 3(5): 445-450. |
[13] | PULENDRAN B, LI S, NAKAYA H I. Systems Vaccinology [J]. Immunity, 2010, 33(4): 516-529. |
[14] | WANG Y, XUE P, CAO M, et al. Directed Evolution: Methodologies and Applications [J]. Chemical Reviews, 2021, 121(20): 12384-12444. |
[15] | PEISAJOVICH S G, TAWFIK D S. Protein Engineers Turned Evolutionists [J]. Nature Methods, 2007, 4(12): 991-994. |
[16] | PACKER M S, LIU D R. Methods for the Directed Evolution of Proteins [J]. Nature Reviews Genetics, 2015, 16(7): 379-394. |
[17] | TOKURIKI N, JACKSON C J, AFRIAT-JURNOU L, et al. Diminishing Returns and Tradeoffs Constrain the Laboratory Optimization of an Enzyme [J]. Nature Communications, 2012, 3(1): 1257. |
[18] | DADONAITE B, AHN J J, ORT J T, et al. Deep Mutational Scanning of H5 Hemagglutinin to Inform Influenza Virus Surveillance [J]. bioRxiv, 2024. |
[19] | DADONAITE B, BROWN J, MCMAHON T E, et al. Spike Deep Mutational Scanning Helps Predict Success of SARS-CoV-2 Clades [J]. Nature, 2024, 631(8021): 617-626. |
[20] | CAO Y, JIAN F, WANG J, et al. Imprinted SARS-CoV-2 Humoral Immunity Induces Convergent Omicron RBD Evolution [J]. Nature, 2023, 614(7948): 521-529. |
[21] | WANG E, COHEN A A, CALDERA L F, et al. Designed Mosaic Nanoparticles Enhance Cross-reactive Immune Responses in Mice [J]. Cell, 2025, 188(4): 1036-1050.e11. |
[22] | LUTZ S. Beyond Directed Evolution - Semi-rational Protein Engineering and Design [J]. Current Opinion in Biotechnology, 2010, 21(6): 734-743. |
[23] | GOLDENZWEIG A, FLEISHMAN S J. Principles of Protein Stability and Their Application in Computational Design [J]. Annual Review of Biochemistry, 2018, 87: 105-129. |
[24] | TOKURIKI N, TAWFIK D S. Stability Effects of Mutations and Protein Evolvability [J]. Current Opinion in Structural Biology, 2009, 19(5): 596-604. |
[25] | LISTOV D, GOVERDE C A, CORREIA B E, et al. Opportunities and Challenges in Design and Optimization of Protein Function [J]. Nature Reviews Molecular Cell Biology, 2024, 25(8): 639-653. |
[26] | PING X, HU W, XIONG R, et al. Generation of a Broadly Reactive Influenza H1 Antigen Using a Consensus HA Sequence [J]. Vaccine, 2018, 36(32, Part B): 4837-4845. |
[27] | ZHAO Y, NI W, LIANG S, et al. Vaccination with S(pan), an Antigen Guided by SARS-CoV-2 S Protein Evolution, Protects Against Challenge with Viral Variants in Mice [J]. Science Translational Medicine, 2023, 15(677): eabo3332. |
[28] | YANG K K, WU Z, ARNOLD F H. Machine-learning-guided Directed Evolution for Protein Engineering [J]. Nature Methods, 2019, 16(8): 687-694. |
[29] | CHE Y, GRIBENKO A V, SONG X, et al. Rational Design of a Highly Immunogenic Prefusion-stabilized F Glycoprotein Antigen for a Respiratory Syncytial Virus Vaccine [J]. Science Translational Medicine, 2023, 15(693): eade6422. |
[30] | LIU G, CARTER B, BRICKEN T, et al. Computationally Optimized SARS-CoV-2 MHC Class I and II Vaccine Formulations Predicted to Target Human Haplotype Distributions [J]. Cell Systems, 2020, 11(2): 131-144.e6. |
[31] | XIONG W, LIU B, SHEN Y, et al. Protein Engineering Design from Directed Evolution to de Novo Synthesis [J]. Biochemical Engineering Journal, 2021, 174: 108096. |
[32] | ROMERO-RIVERA A, GARCIA-BORRàS M, OSUNA S. Computational Tools for the Evaluation of Laboratory-engineered Biocatalysts [J]. Chemical Communications, 2016, 53(2): 284-297. |
[33] | WINNIFRITH A, OUTEIRAL C, HIE B L. Generative Artificial Intelligence for de Novo Protein Design [J]. Current Opinion in Structural Biology, 2024, 86: 102794. |
[34] | DING W, NAKAI K, GONG H. Protein Design via Deep Learning [J]. Briefings in Bioinformatics, 2022, 23(3) : bbac102. |
[35] | ANAND N, EGUCHI R, MATHEWS I I, et al. Protein Sequence Design with a Learned Potential [J]. Nature Communications, 2022, 13(1): 746. |
[36] | WATSON J L, JUERGENS D, BENNETT N R, et al. De Novo Design of Protein Structure and Function with RFdiffusion [J]. Nature, 2023, 620(7976): 1089-1100. |
[37] | HUANG P-S, BOYKEN S E, BAKER D. The Coming of Age of de Novo Protein Design [J]. Nature, 2016, 537(7620): 320-327. |
[38] | KORENDOVYCH I V, DEGRADO W F. De Novo Protein Design, a Retrospective [J]. Quarterly Reviews of Biophysics, 2020, 53: e3. |
[39] | QUINN T P, TWEEDY N B, WILLIAMS R W, et al. Betadoublet: de Novo Design, Synthesis, and Characterization of a Beta-sandwich Protein [J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(19): 8747-8751. |
[40] | DEGRADO W F, REGAN L, HO S P. The Design of a Four-helix Bundle Protein [J]. Cold Spring Harbor Symposia on Quantitative Biology, 1987, 52: 521-526. |
[41] | REGAN L, DEGRADO W F. Characterization of a Helical Protein Designed from First Principles [J]. Science, 1988, 241(4868): 976-978. |
[42] | HANDEL T M, WILLIAMS S A, DEGRADO W F. Metal Ion-dependent Modulation of the Dynamics of a Designed Protein [J]. Science, 1993, 261(5123): 879-885. |
[43] | KUHLMAN B, DANTAS G, IRETON G C, et al. Design of a Novel Globular Protein Fold with Atomic-level Accuracy [J]. Science, 2003, 302(5649): 1364-1368. |
[44] | HAYES T, RAO R, AKIN H, et al. Simulating 500 Million Years of Evolution with a Language Model [J]. Science, 2025, 387(6736): 850-858. |
[45] | CAO L, GORESHNIK I, COVENTRY B, et al. De Novo Design of Picomolar SARS-CoV-2 Miniprotein Inhibitors [J]. Science, 2020, 370(6515): 426-431. |
[46] | CAO L, COVENTRY B, GORESHNIK I, et al. Design of Protein-binding Proteins from the Target Structure Alone [J]. Nature, 2022, 605(7910): 551-560. |
[47] | SESTERHENN F, YANG C, BONET J, et al. De Novo Protein Design Enables the Precise Induction of RSV-neutralizing Antibodies [J]. Science, 2020, 368(6492): eaay5051. |
[48] | AHMAD S, DEMNEH F M, REHMAN B, et al. In Silico Design of a Novel Multi-epitope Vaccine Against HCV Infection through Immunoinformatics Approaches [J]. International Journal of Biological Macromolecules, 2024, 267(Pt 2): 131517. |
[49] | SABZIAN-MOLAEI F, AHMADI M A, NIKFARJAM Z, et al. Inactivation of Cell-free HIV-1 by Designing Potent Peptides Based on Mutations in the CD4 Binding Site [J]. Medical & Biological Engineering & Computing, 2024, 62(2): 423-436. |
[50] | KOZAKOV D, HALL D R, XIA B, et al. The ClusPro Web Server for Protein–protein Docking [J]. Nature Protocols, 2017, 12(2): 255-278. |
[51] | FILIPOVIC J, VAVRA O, PLHAK J, et al. CaverDock: A Novel Method for the Fast Analysis of Ligand Transport [J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 17(5): 1625-1638. |
[52] | VREVEN T, VANGAVETI S, BORRMAN T M, et al. Performance of ZDOCK and IRAD in CAPRI Rounds 39-45 [J]. Proteins: Structure, Function, and Bioinformatics, 2020, 88(8): 1050-1054. |
[53] | HONORATO R V, TRELLET M E, JIMéNEZ-GARCíA B, et al. The HADDOCK2.4 Web Server for Integrative Modeling of Biomolecular Complexes [J]. Nature Protocols, 2024, 19(11): 3219-3241. |
[54] | ŠALI A, BLUNDELL T L. Comparative Protein Modelling by Satisfaction of Spatial Restraints [J]. Journal of Molecular Biology, 1993, 234(3): 779-815. |
[55] | WEBB B, SALI A. Comparative Protein Structure Modeling Using MODELLER [J]. Current Protocols in Bioinformatics, 2016, 54: 5.6.1-5.6.37. |
[56] | LEAVER-FAY A, TYKA M, LEWIS S M, et al. ROSETTA3: An Object-oriented Software Suite for the Simulation and Design of Macromolecules [J]. Methods in Enzymology, 2011, 487: 545-574. |
[57] | GUEROIS R, NIELSEN J E, SERRANO L. Predicting Changes in the Stability of Proteins and Protein Complexes: A Study of More Than 1000 Mutations [J]. Journal of Molecular Biology, 2002, 320(2): 369-387. |
[58] | ROY A, KUCUKURAL A, ZHANG Y. I-TASSER: A Unified Platform for Automated Protein Structure and Function Prediction [J]. Nature Protocols, 2010, 5(4): 725-738. |
[59] | ZHENG W, WUYUN Q, LI Y, et al. Deep-learning-based single-domain and multidomain protein structure prediction with D-I-TASSER [J]. Nature Biotechnology, 2025. |
[60] | JUMPER J, EVANS R, PRITZEL A, et al. Highly Accurate Protein Structure Prediction with AlphaFold [J]. Nature, 2021, 596(7873): 583-589. |
[61] | BAEK M, DIMAIO F, ANISHCHENKO I, et al. Accurate Prediction of Protein Structures and Interactions Using a Three-track Neural Network [J]. Science, 2021, 373(6557): 871-876. |
[62] | SUMIDA K H, NúñEZ-FRANCO R, KALVET I, et al. Improving Protein Expression, Stability, and Function with ProteinMPNN [J]. Journal of the American Chemical Society, 2024, 146(3): 2054-2061. |
[63] | ABRAMSON J, ADLER J, DUNGER J, et al. Accurate Structure Prediction of Biomolecular Interactions with AlphaFold 3 [J]. Nature, 2024, 630(8016): 493-500. |
[64] | SENIOR A W, EVANS R, JUMPER J, et al. Improved Protein Structure Prediction Using Potentials from Deep Learning [J]. Nature, 2020, 577: 706-710. |
[65] | ALFORD R F, et al. The Rosetta All-atom Energy Function for Macromolecular Modeling and Design [J]. Journal of Chemical Theory and Computation, 2017, 13: 3031-3048. |
[66] | ADOLF-BRYFOGLE J, KALYUZHNIY O, KUBITZ M, et al. RosettaAntibodyDesign (RAbD): A General Framework for Computational Antibody Design [J]. PLoS Computational Biology, 2018, 14(4): e1006112. |
[67] | BURTON D R. Antibodies, Viruses and Vaccines [J]. Nature Reviews Immunology, 2002, 2(9): 706-713. |
[68] | OSCHERWITZ J. The Promise and Challenge of Epitope-focused Vaccines [J]. Human Vaccines & Immunotherapeutics, 2016, 12(8): 2113-2116. |
[69] | DIAZ D, CARE A, SUNNA A. Bioengineering Strategies for Protein-based Nanoparticles [J]. Genes, 2018, 9(7) : 370. |
[70] | PATI R, SHEVTSOV M, SONAWANE A. Nanoparticle Vaccines Against Infectious Diseases [J]. Frontiers in Immunology, 2018, 9: 2224. |
[71] | WALLS A C, TORTORICI M A, SNIJDER J, et al. Tectonic Conformational Changes of a Coronavirus Spike Glycoprotein Promote Membrane Fusion [J]. Proceedings of the National Academy of Sciences of the United States of America. 2017, 114(42):11157-11162. |
[72] | WRAPP D, WANG N, CORBETT K S, et al. Cryo-EM Structure of the 2019-nCoV Spike in the Prefusion Conformation [J]. Science, 2020, 367(6483): 1260-1263. |
[73] | C-L HSIEH, GOLDSMITH J A, SCHAUB J M, et al. Structure-based Design of Prefusion-stabilized SARS-CoV-2 Spikes [J]. Science, 2020, 369(6510): 1501-1505. |
[74] | TAN C W, ZHU F, CHIA W N, et al. Distinctive Serotypes of SARS-related Coronaviruses Defined by Convalescent Sera from Unvaccinated Individuals [J]. Hlife, 2023, 1(1): 26-34. |
[75] | DU P, WU C, HU S, et al. The Omicron BA.2.86 Subvariant as a New Serotype of SARS-CoV-2 [J]. Lancet Microbe, 2024, 5(6): e516. |
[76] | DU P, LI J, KONG T, et al. Defining the Serotypes of SARS-CoV-2 Subvariants up to December, 2024 [J]. Lancet Microbe, 2025: 101124. |
[77] | SUN J, LI M, WANG Y, et al. Elaboration of Tetravalent Antibody Responses Against Dengue Viruses Using a Subunit Vaccine Comprised of a Single Consensus Dengue Envelope Sequence [J]. Vaccine, 2017, 35(46): 6308-6320. |
[78] | SLIEPEN K, HAN B W, BONTJER I, et al. Structure and Immunogenicity of a Stabilized HIV-1 Envelope Trimer Based on a Group-M Consensus Sequence [J]. Nature Communications, 2019, 10(1): 2355. |
[79] | REISS E I M M, VAN HAAREN M M, VAN SCHOOTEN J, et al. Fine-mapping the Immunodominant Antibody Epitopes on Consensus Sequence-based HIV-1 Envelope Trimer Vaccine Candidates [J]. npj Vaccines, 2022, 7(1): 152. |
[80] | RAHMAN M S, HOQUE M N, ISLAM M R, et al. Epitope-based Chimeric Peptide Vaccine Design Against S, M and E Proteins of SARS-CoV-2, the Etiologic Agent of COVID-19 Pandemic: An In Silico Approach [J]. PeerJ, 2020, 8: e9572. |
[81] | ABDELMAGEED M I, ABDELMONEIM A H, MUSTAFA M I, et al. Design of a Multiepitope-based Peptide Vaccine Against the E Protein of Human COVID-19: An Immunoinformatics Approach [J]. BioMed Research International, 2020, 2020: 2683286. |
[82] | FEDERICO L, MALONE B, TENNøE S, et al. Experimental Validation of Immunogenic SARS-CoV-2 T Cell Epitopes Identified by Artificial Intelligence [J]. Frontiers in Immunology, 2023, 14: 1265044. |
[83] | BRAVI B. Development and Use of Machine Learning Algorithms in Vaccine Target Selection [J]. npj Vaccines, 2024, 9(1): 15. |
[84] | MCLELLAN J S, CHEN M, JOYCE M G, et al. Structure-based Design of a Fusion Glycoprotein Vaccine for Respiratory Syncytial Virus [J]. Science, 2013, 342(6158): 592-598. |
[85] | GRAHAM B S. Vaccines Against Respiratory Syncytial Virus: The Time Has Finally Come [J]. Vaccine, 2016, 34(30): 3535-3541. |
[86] | CRANK M C, RUCKWARDT T J, CHEN M, et al. A Proof of Concept for Structure-based Vaccine Design Targeting RSV in Humans [J]. Science, 2019, 365(6452): 505-509. |
[87] | CHANG L A, PHUNG E, CRANK M C, et al. A Prefusion-stabilized RSV F Subunit Vaccine Elicits B Cell Responses with Greater Breadth and Potency than a Postfusion F Vaccine [J]. Science Translational Medicine, 2022, 14(676): eade0424. |
[88] | TORRENTS DE LA PEñA A, SANDERS R W. Stabilizing HIV-1 Envelope Glycoprotein Trimers to Induce Neutralizing Antibodies [J]. Retrovirology, 2018, 15(1): 63. |
[89] | SANDERS R W, DERKING R, CUPO A, et al. A Next-generation Cleaved, Soluble HIV-1 Env Trimer, BG505 SOSIP.664 gp140, Expresses Multiple Epitopes for Broadly Neutralizing but not Non-neutralizing Antibodies [J]. PLoS Pathogens, 2013, 9(9): e1003618. |
[90] | SHARMA S K, DE VAL N, BALE S, et al. Cleavage-independent HIV-1 Env Trimers Engineered as Soluble Native Spike Mimetics for Vaccine Design [J]. Cell Reports, 2015, 11(4): 539-550. |
[91] | KONG L, HE L, DE VAL N, et al. Uncleaved Prefusion-optimized gp140 Trimers Derived from Analysis of HIV-1 Envelope Metastability [J]. Nature Communications, 2016, 7: 12040. |
[92] | HENDERSON R, ANASTI K, MANNE K, et al. Engineering Immunogens that Select for Specific Mutations in HIV Broadly Neutralizing Antibodies [J]. Nature Communications, 2024, 15(1): 9503. |
[93] | DEJNIRATTISAI W, JUMNAINSONG A, ONSIRISAKUL N, et al. Cross-reacting Antibodies Enhance Dengue Virus Infection in Humans [J]. Science, 2010, 328(5979): 745-748. |
[94] | STETTLER K, BELTRAMELLO M, ESPINOSA D A, et al. Specificity, Cross-reactivity, and Function of Antibodies Elicited by Zika Virus Infection [J]. Science, 2016, 353(6301): 823-826. |
[95] | DEJNIRATTISAI W, SUPASA P, WONGWIWAT W, et al. Dengue Virus Sero-cross-reactivity Drives Antibody-dependent Enhancement of Infection with Zika Virus [J]. Nature Immunology, 2016, 17(9): 1102-1108. |
[96] | HASAN S S, MILLER A, SAPPARAPU G, et al. A Human Antibody against Zika Virus Crosslinks the E Protein to Prevent Infection [J]. Nature Communications, 2017, 8: 14722. |
[97] | LONG F, DOYLE M, FERNANDEZ E, et al. Structural Basis of a Potent Human Monoclonal Antibody against Zika Virus Targeting a Quaternary Epitope [J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(5): 1591-1596. |
[98] | SLON-CAMPOS J L, DEJNIRATTISAI W, JAGGER B W, et al. A Protective Zika Virus E-dimer-based Subunit Vaccine Engineered to Abrogate Antibody-dependent Enhancement of Dengue Infection [J]. Nature Immunology, 2019, 20(10): 1291-1298. |
[99] | DAI L, XU K, LI J, et al. Protective Zika Vaccines Engineered to Eliminate Enhancement of Dengue Infection via Immunodominance Switch [J]. Nature Immunology, 2021, 22(8): 958-968. |
[100] | SHARMA A, ZHANG X, DEJNIRATTISAI W, et al. The Epitope Arrangement on Flavivirus Particles Contributes to Mab C10's Extraordinary Neutralization Breadth across Zika and Dengue Viruses [J]. Cell, 2021, 184(25): 6052-6066.e18. |
[101] | CHENG N, LIU M, LI W, et al. Protein Post-translational Modification in SARS-CoV-2 and Host Interaction [J]. Frontiers in Immunology, 2022, 13: 1068449. |
[102] | SHAJAHAN A, PEPI L E, ROUHANI D S, et al. Glycosylation of SARS-CoV-2: Structural and Functional Insights [J]. Analytical and Bioanalytical Chemistry, 2021, 413(29): 7179-7193. |
[103] | RINGE R P, OZOROWSKI G, RANTALAINEN K, et al. Reducing V3 Antigenicity and Immunogenicity on Soluble, Native-like HIV-1 Env SOSIP Trimers [J]. Journal of Virology, 2017, 91(15). |
[104] | DUAN H, CHEN X, BOYINGTON J C, et al. Glycan Masking Focuses Immune Responses to the HIV-1 CD4-binding Site and Enhances Elicitation of VRC01-class Precursor Antibodies [J]. Immunity, 2018, 49(2): 301-311.e5. |
[105] | WEIDENBACHER P A, KIM P S. Protect, Modify, Deprotect (PMD): A Strategy for Creating Vaccines to Elicit Antibodies Targeting a Specific Epitope [J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(20): 9947-9952. |
[106] | MUSUNURI S, WEIDENBACHER P A B, KIM P S. Bringing Immunofocusing into Focus [J]. npj Vaccines, 2024, 9(1): 11. |
[107] | FANG Z, JIANG W, LIU P, et al. Targeting HIV-1 Immune Escape Mechanisms: Key Advances and Challenges in HIV-1 Vaccine Design [J]. Microbiological Research, 2025, 299: 128229. |
[108] | VAN GILS M J, SANDERS R W. Broadly Neutralizing Antibodies Against HIV-1: Templates for a Vaccine [J]. Virology, 2013, 435(1): 46-56. |
[109] | WEST A P, SCHARF L, SCHEID J F, et al. Structural Insights on the Role of Antibodies in HIV-1 Vaccine and Therapy [J]. Cell, 2014, 156(4): 633-648. |
[110] | NG'UNI T, CHASARA C, NDHLOVU Z M. Major Scientific Hurdles in HIV Vaccine Development: Historical Perspective and Future Directions [J]. Frontiers in Immunology, 2020, 11: 590780. |
[111] | LIU S, HU M, LIU X, CHEN T, ZHU Y, LIANG T, XIAO S, LI P, MA X. Nanoparticles and Antiviral Vaccines [J/OL]. Vaccines, 2023, 12(1): 30. |
[112] | WUERTZ K M, BARKEI E K, CHEN W-H, et al. A SARS-CoV-2 Spike Ferritin Nanoparticle Vaccine Protects Hamsters Against Alpha and Beta Virus Variant Challenge [J]. npj Vaccines, 2021, 6(1): 129. |
[113] | JOYCE M G, CHEN W-H, SANKHALA R S, et al. SARS-CoV-2 Ferritin Nanoparticle Vaccines Elicit Broad SARS Coronavirus Immunogenicity [J]. Cell Reports, 2021, 37(12): 110143. |
[114] | SONG J Y, CHOI W S, HEO J Y, et al. Safety and Immunogenicity of a SARS-CoV-2 Recombinant Protein Nanoparticle Vaccine (GBP510) Adjuvanted with AS03: A Randomised, Placebo-controlled, Observer-blinded Phase 1/2 Trial [J]. EClinicalMedicine, 2022, 51: 101569. |
[115] | LI Y, ZHANG Y, ZHOU Y, et al. An RBD Virus-like Particle Vaccine for SARS-CoV-2 Induces Cross-variant Antibody Responses in Mice and Macaques [J]. Signal Transduction and Targeted Therapy, 2023, 8(1): 173. |
[116] | NGUYEN B, TOLIA N H. Protein-based Antigen Presentation Platforms for Nanoparticle Vaccines [J]. npj Vaccines, 2021, 6(1): 70. |
[117] | LUA L H, CONNORS N K, SAINSBURY F, et al. Bioengineering Virus-like Particles as Vaccines [J]. Biotechnology and Bioengineering, 2014, 111(3): 425-440. |
[118] | LU Y, CHAN W, KO B Y, et al. Assessing Sequence Plasticity of a Virus-like Nanoparticle by Evolution Toward a Versatile Scaffold for Vaccines and Drug Delivery [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(40): 12360-12365. |
[119] | ZHANG X, MEINING W, FISCHER M, et al. X-ray Structure Analysis and Crystallographic Refinement of Lumazine Synthase from the Hyperthermophile Aquifex Aeolicus at 1.6 A Resolution: Determinants of Thermostability Revealed from Structural Comparisons [J]. Journal of Molecular Biology, 2001, 306(5): 1099-1114. |
[120] | PIOT P, LARSON H J, O'BRIEN K L, et al. Immunization: Vital Progress, Unfinished Agenda [J]. Nature, 2019, 575(7781): 119-129. |
[121] | BOYOGLU-BARNUM S, ELLIS D, GILLESPIE R A, et al. Quadrivalent Influenza Nanoparticle Vaccines Induce Broad Protection [J]. Nature, 2021, 592(7855): 623-628. |
[122] | CAO S, MA D, JI S, et al. Self-assembled Ferritin Nanoparticles for Delivery of Antigens and Development of Vaccines: From Structure and Property to Applications [J/OL]. Molecules, 2024, 29(17): 10.3390/molecules29174221. |
[123] | LADENSTEIN R, MORGUNOVA E. Second Career of a Biosynthetic Enzyme: Lumazine Synthase as a Virus-like Nanoparticle in Vaccine Development [J]. Biotechnology Reports, 2020, 27: e00494. |
[124] | REUTOVICH A A, SRIVASTAVA A K, AROSIO P, et al. Ferritin Nanocages as Efficient Nanocarriers and Promising Platforms for COVID-19 and Other Vaccines Development [J]. Biochimica et Biophysica Acta (BBA) - General Subjects, 2023, 1867(3): 130288. |
[125] | KANG Y F, SUN C, ZHUANG Z, et al. Rapid Development of SARS-CoV-2 Spike Protein Receptor-binding Domain Self-assembled Nanoparticle Vaccine Candidates [J]. ACS Nano, 2021, 15(2): 2738-2752. |
[126] | MARCANDALLI J, FIALA B, OLS S, et al. Induction of Potent Neutralizing Antibody Responses by a Designed Protein Nanoparticle Vaccine for Respiratory Syncytial Virus [J]. Cell, 2019, 176(6): 1420-1431.e17. |
[127] | TAI W, CHAI B, FENG S, et al. Development of a Ferritin-based Nanoparticle Vaccine Against the SARS-CoV-2 Omicron Variant [J]. Signal Transduction and Targeted Therapy, 2022, 7(1): 173. |
[128] | KANEKIYO M, JOYCE M G, GILLESPIE R A, et al. Mosaic Nanoparticle Display of Diverse Influenza Virus Hemagglutinins Elicits Broad B Cell Responses [J]. Nature Immunology, 2019, 20(3): 362-372. |
[129] | KANG Y F, SUN C, SUN J, et al. Quadrivalent Mosaic HexaPro-bearing Nanoparticle Vaccine Protects Against Infection of SARS-CoV-2 Variants [J]. Nature Communications, 2022, 13(1): 2674. |
[130] | BRINKKEMPER M, SLIEPEN K. Nanoparticle Vaccines for Inducing HIV-1 Neutralizing Antibodies [J]. Vaccines, 2019, 7(3): 105. |
[131] | STEPHENSON K E, WEGMANN F, TOMAKA F, et al. Comparison of Shortened Mosaic HIV-1 Vaccine Schedules: A Randomised, Double-blind, Placebo-controlled Phase 1 Trial (IPCAVD010/HPX1002) and a Preclinical Study in Rhesus Monkeys (NHP 17–22) [J]. The Lancet HIV, 2020, 7(6): e410-e421. |
[132] | HILLS R A, TAN T K, COHEN A A, et al. Proactive Vaccination Using Multiviral Quartet Nanocages to Elicit Broad Anti-coronavirus Responses [J]. Nature Nanotechnology, 2024, 19(8): 1216-1223. |
[133] | LENEIGHAN D B, MIURA K, TAYLOR I J, et al. Nanoassembly Routes Stimulate Conflicting Antibody Quantity and Quality for Transmission-blocking Malaria Vaccines [J]. Scientific Reports, 2017, 7(1): 3811. |
[134] | ZHANG Y N, PAYNTER J, SOU C, et al. Mechanism of a COVID-19 Nanoparticle Vaccine Candidate that Elicits a Broadly Neutralizing Antibody Response to SARS-CoV-2 Variants [J]. Science Advances, 2021, 7(43): eabj3107. |
[135] | MA X, ZOU F, YU F, et al. Nanoparticle Vaccines Based on the Receptor Binding Domain (RBD) and Heptad Repeat (HR) of SARS-CoV-2 Elicit Robust Protective Immune Responses [J]. Immunity, 2020, 53(6): 1315-1330.e9. |
[136] | LI L, FIERER J O, RAPOPORT T A, et al. Structural Analysis and Optimization of the Covalent Association between SpyCatcher and a Peptide Tag [J]. Journal of Molecular Biology, 2014, 426(2): 309-317. |
[137] | KEEBLE A H, BANERJEE A, FERLA M P, et al. Evolving Accelerated Amidation by SpyTag/SpyCatcher to Analyze Membrane Dynamics [J]. Angewandte Chemie International Edition, 2017, 56(52): 16521-16525. |
[138] | KEEBLE A H, TURKKI P, STOKES S, et al. Approaching Infinite Affinity through Engineering of Peptide-protein Interaction [J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(52): 26523-26533. |
[139] | FU D, WANG W, ZHANG Y, et al. Self-assembling Nanoparticle Engineered from the Ferritinophagy Complex as a Rabies Virus Vaccine Candidate [J]. Nature Communications, 2024, 15(1): 8601. |
[140] | CHOI A, BOUZYA B, CORTéS FRANCO K D, et al. Chimeric Hemagglutinin-based Influenza Virus Vaccines Induce Protective Stalk-specific Humoral Immunity and Cellular Responses in Mice [J]. Immunohorizons, 2019, 3(4): 133-148. |
[141] | ZHANG J, HAN Z B, LIANG Y, et al. A Mosaic-type Trimeric RBD-based COVID-19 Vaccine Candidate Induces Potent Neutralization Against Omicron and Other SARS-CoV-2 Variants [J]. eLife, 2022, 11: e75643. |
[142] | OLS S, LENART K, ARCOVERDE CERVEIRA R, et al. Multivalent Antigen Display on Nanoparticle Immunogens Increases B Cell Clonotype Diversity and Neutralization Breadth to Pneumoviruses [J]. Immunity, 2023, 56(10): 2425-2441.e14. |
[143] | LIU C, XU S, ZHENG Y, et al. Mosaic RBD Nanoparticle Elicits Immunodominant Antibody Responses Across Sarbecoviruses [J]. Cell Reports, 2024, 43(5): 114235. |
[144] | COHEN A A, YANG Z, GNANAPRAGASAM P N P, et al. Construction, Characterization, and Immunization of Nanoparticles that Display a Diverse Array of Influenza HA Trimers [J]. PLoS One, 2021, 16(3): e0247963. |
[145] | GEORGIEV I S, JOYCE M G, CHEN R E, et al. Two-component Ferritin Nanoparticles for Multimerization of Diverse Trimeric Antigens [J]. ACS Infectious Diseases, 2018, 4(5): 788-796. |
[146] | UEDA G, ANTANASIJEVIC A, FALLAS J A, et al. Tailored Design of Protein Nanoparticle Scaffolds for Multivalent Presentation of Viral Glycoprotein Antigens [J]. eLife, 2020, 9: e56789. |
[147] | BROUWER P J M, ANTANASIJEVIC A, BERNDSEN Z, et al. Enhancing and Shaping the Immunogenicity of Native-like HIV-1 Envelope Trimers with a Two-component Protein Nanoparticle [J]. Nature Communications, 2019, 10(1): 4272. |
[148] | LEE S, KIBLER R D, AHN G, et al. Four-component Protein Nanocages Designed by Programmed Symmetry Breaking [J]. Nature, 2025, 638(8050): 546-552. |
[149] | DOWLING Q M, Y-J PARK, FRIES C N, et al. Hierarchical Design of Pseudosymmetric Protein Nanocages [J]. Nature, 2025, 638(8050): 553-561. |
[150] | ZHAO T, CAI Y, JIANG Y, et al. Vaccine Adjuvants: Mechanisms and Platforms [J]. Signal Transduction and Targeted Therapy, 2023, 8(1): 283. |
[151] | MONI S S, ABDELWAHAB S I, JABEEN A, et al. Advancements in Vaccine Adjuvants: The Journey from Alum to Nano Formulations [J]. Vaccines, 2023, 11(11): 1323. |
[152] | STERTMAN L, PALM A E, ZARNEGAR B, et al. The Matrix-M™ Adjuvant: A Critical Component of Vaccines for the 21st Century [J]. Human Vaccines & Immunotherapeutics, 2023, 19(1): 2189885. |
[153] | SUNG H D, KIM N, LEE Y, et al. Protein-Based Nanoparticle Vaccines for SARS-CoV-2 [J]. International Journal of Molecular Sciences, 2021, 22(24): 13209. |
[154] | RODRIGUES K A, ZHANG Y J, LAM J, et al. Vaccines Combining Slow Release and Follicle Targeting of Antigens Increase Germinal Center B Cell Diversity and Clonal Expansion [J]. Science Translational Medicine, 2025, 17(803): eadw7499. |
[155] | CARTER N J. Multicomponent Meningococcal Serogroup B Vaccine (4CMenB; Bexsero®): A Review of Its Use in Primary and Booster Vaccination [J]. BioDrugs, 2013, 27(3): 263-274. |
[156] | SHIRLEY M, TAHA M K. MenB-FHbp Meningococcal Group B Vaccine (Trumenba®): A Review in Active Immunization in Individuals Aged ≥ 10 Years [J]. Drugs, 2018, 78(2): 257-268. |
[157] | DORMITZER P R, GRANDI G, RAPPUOLI R. Structural Vaccinology Starts to Deliver [J]. Nature Reviews Microbiology, 2012, 10(12): 807-813. |
[158] | RAPPUOLI R, BOTTOMLEY M J, D'ORO U, et al. Reverse Vaccinology 2.0: Human Immunology Instructs Vaccine Antigen Design [J]. Journal of Experimental Medicine, 2016, 213(4): 469-481. |
[159] | DORMITZER P R, ULMER J B, RAPPUOLI R. Structure-based Antigen Design: A Strategy for Next Generation Vaccines [J]. Trends in Biotechnology, 2008, 26(12): 659-667. |
[160] | STANFIELD R L, J-P JULIEN, PEJCHAL R, et al. Structure-based Design of a Protein Immunogen that Displays an HIV-1 gp41 Neutralizing Epitope [J]. Journal of Molecular Biology, 2011, 414(3): 460-476. |
[161] | MESHRAM R, KOLTE B, GACCHE R. Reverse Vaccinology Approach for Identification of Epitopes from E1 Protein as Peptide Vaccine Against HCV: A Proof of Concept [J]. Vaccine, 2024, 42(24): 126106. |
[162] | LAINŠČEK D, FINK T, FORSTNERIČ V, et al. A Nanoscaffolded Spike-RBD Vaccine Provides Protection Against SARS-CoV-2 with Minimal Anti-Scaffold Response [J]. Vaccines, 2021, 9(5): 431. |
[1] | YUAN Weifeng, ZHAO Yongliang, WU Zhixuan, XU Ke. Applications of synthetic biology in the development of SARS-CoV-2 broad-spectrum vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 369-384. |
[2] | LIU Zezhong, ZHOU Jie, ZHU Yun, LU Lu, JIANG Shibo. Applications of the recombinant human collagen type Ⅲ-based trimerization motif in the design of vaccines to fight against SARS-CoV-2 and influenza virus [J]. Synthetic Biology Journal, 2024, 5(2): 385-395. |
[3] | YU Huimin, ZHENG Yukun, DU Yan, WANG Miaomiao, LIANG Youxiang. Microbial promoter engineering strategies in synthetic biology [J]. Synthetic Biology Journal, 2021, 2(4): 598-611. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||