Synthetic Biology Journal

   

The design and delivery of RNA vaccines

YANG Lu1, ZHANG Jingming2, XUShan 1, TONG Yigang1   

  1. 1.BAICSM,State Key Laboratory of Green Biomanufacturing,College of Life Science and Technology,Beijing University of Chemical Technology,Beijing 100029,China
    2.Advanced Medicine and Regenerative Medicine Institute,Hefei Comprehensive National Science Center for Health,Hefei 230601,Anhui,China
  • Received:2025-08-15 Revised:2025-09-28 Published:2025-09-30
  • Contact: XUShan , TONG Yigang

RNA疫苗的设计与递送

杨璐1, 张镜明2, 徐杉1, 童贻刚1   

  1. 1.北京化工大学,生命科学与技术学院,绿色生物制造国家重点实验室,中国 北京 100029
    2.合肥市综合性国家中心大健康研究院,先进医药与再生医学研究所,安徽 合肥 230601
  • 通讯作者: 徐杉,童贻刚
  • 作者简介:杨璐(1997—),女,博士研究生。研究方向为mRNA疫苗、噬菌体载体疫苗。E-mail:1359526291@qq.com
    徐杉(1992—),女,博士,副教授,硕士生导师。研究方向为流感病毒等复制机制及利用高通量测序技术发现未知病原体。徐杉,北京协和医学院生物化学与分子生物学博士,浙江大学博士后,青年优秀后备人才,主要研究流感病毒等复制机制及利用高通量测序技术发现未知病原体,在病毒分子机制与生物技术应用方面具有丰富研究经验,以第一/通讯作者在Nucleic Acids Research、Virus Research、Science Bulletin等期刊发表多篇重要论文,主持国家自然科学基金青年项目、博士后特别资助和博士后面上项目等科研课题。 E-mail:shanxu@buct.edu.cn
    童贻刚(1966—),男,博士,教授。研究方向为病毒学、抗病毒药物、疫苗、噬菌体学、生物信息学。从事新发病原体、生物安全、生物信息学、高通量测序、噬菌体学等领域研究。先后在Nature、Cell、PNAS、Lancet等刊物发表中英文论文500余篇,其中SCI论文370余篇。教育部微生物病毒学知识领域首席专家,教育部重点领域微生物病毒学课程虚拟教研室负责人,中国生物工程学会噬菌体技术专业委员会主任委员;世界卫生组织新冠肺炎病毒溯源联合团队动物与环境组中方组长,国家科技部新型冠状病毒溯源专班工作组咨询专家,中国援非抗击埃博拉疫情医疗队首席科学家,国家传染病重大专项项目、“合成生物学”与“前沿生物技术”国家重点专项项目首席专家。 E-mail:tongyigang@mail.buct.edu.cn
  • 基金资助:
    国家自然科学基金(92369201)

Abstract:

RNA vaccines have emerged as a revolutionary technology in the field of vaccinology due to their rapid development and high immunogenicity. This article systematically reviews the latest research progress in molecular design and delivery systems of mRNA vaccines, with a focus on three major types: linear mRNA, circular RNA (circRNA), and self-amplifying RNA (saRNA). It highlights that mRNA vaccines, with their rapid development, high immunogenicity, and favorable safety profiles, have become a significant breakthrough in vaccine technology, demonstrating immense potential, especially during the COVID-19 pandemic.In terms of design optimization, linear mRNA improves its stability and translation efficiency through strategies such as 5′cap, untranslated region (UTR) optimization, codon selection, and Poly(A) tail elongation. Circular RNA, with its covalently closed circular structure, exhibits excellent resistance to nucleases and long-lasting expression properties, providing a new avenue for sustained antigen presentation. Self-amplifying RNA leverages viral replication mechanisms to achieve intracellular self-replication, significantly reducing vaccine dosage requirements and enhancing immune response. The article also notes that while mRNA inherently possesses certain immune-stimulatory effects (acting as a built-in adjuvant), excessive activation of innate immunity may compromise vaccine efficacy. Thus, balancing immunogenicity and expression efficiency requires modifications of nucleotides (e.g., pseudouridine, N1-methyl-pseudouridine) and purification processes (e.g., HPLC, FPLC).In terms of delivery systems, lipid nanoparticles (LNPs) remain the mainstream platform. Through the rational composition of ionizable lipids, phospholipids, cholesterol, and PEGylated lipids, LNPs achieve efficient mRNA encapsulation and endosomal escape. Additionally, virus-like particles (VLPs), as an emerging bioinspired carrier, show great promise with their natural hollow structure, self-assembly properties, and high biocompatibility, enabling enhanced uptake efficiency by antigen-presenting cells (APCs) and mimicking viral invasion pathways. Other delivery strategies, such as polymer nanoparticles, peptide/protein carriers, and ex vivo dendritic cell (DC) loading, are also being continuously optimized.The article further explores the tremendous potential of mRNA vaccines in personalized cancer therapy and broad-spectrum infectious disease prevention. It also identifies current challenges, including formulation stability (reliance on cold chains), limited targeting specificity, high production costs, and the regulation of prolonged immune responses. Looking ahead, the integration of interdisciplinary innovations—such as artificial intelligence for sequence optimization, development of novel lyophilization techniques, and modular manufacturing—will gradually overcome existing limitations, advancing mRNA vaccine technology toward a more precise, safe, and efficient next-generation platform. This progress will not only play a vital role in human medicine but also promote the implementation of the "One Health" strategy in veterinary medicine.

Key words: RNA vaccine, circRNA, saRNA, vaccine design, delivery system, lipid nanoparticles (LNPs), virus-like particles (VLPs)

摘要:

RNA疫苗因其快速开发和高效免疫原性成为疫苗领域的革命性技术。本文综述了RNA疫苗的设计优化与递送策略,聚焦线性mRNA、环状RNA(circular RNA,circRNA)和自扩增RNA(Self-amplifying RNA,saRNA)三大类型的分子特征与应用潜力。在设计优化方面,线性mRNA通过5′帽结构、UTR(Untranslated regions,UTR)优化、密码子选择和Poly(A)尾延长提升稳定性和翻译效率;circRNA凭借共价闭合结构抵抗核酸酶降解,实现长效表达;saRNA利用病毒复制机制扩增抗原产量,降低剂量需求。在递送系统中,脂质纳米颗粒(Lipid nanoparticles,LNP)仍占据主导地位,但其可电离脂质设计和靶向配体修饰正不断优化递送效率。此外,病毒样颗粒(Virus-like particles,VLP)作为新型递送载体,凭借天然的空心结构和自组装特性,兼具高生物相容性与高效mRNA装载能力,同时可模拟天然病毒入侵途径,增强细胞摄取。本文展望了其在个性化肿瘤疫苗和通用型传染病预防中的应用前景。通过整合创新递送系统(如VLP)与智能化设计,mRNA疫苗技术将迈向更精准、安全的下一代平台。

关键词: RNA疫苗, circRNA, saRNA, 疫苗设计, 递送系统, 脂质纳米颗粒, 病毒样颗粒

CLC Number: