合成生物学 ›› 2022, Vol. 3 ›› Issue (2): 320-334.DOI: 10.12211/2096-8280.2022-009

• 特约评述 • 上一篇    下一篇

合成生物纳米酶

刘奇奇, 王春玉, 齐天翊, 朱明盛, 黄兴禄   

  1. 南开大学生命科学学院,药物化学生物学国家重点实验室,生物活性材料教育部重点实验室,纳米酶联合实验室,天津 300071
  • 收稿日期:2022-01-28 修回日期:2022-03-31 出版日期:2022-04-30 发布日期:2022-05-11
  • 通讯作者: 黄兴禄
  • 作者简介:刘奇奇(1994—),女,博士研究生。研究方向为纳米生物材料的生物学效应及疾病治疗应用。 E-mail:450137842@qq.com|黄兴禄(1981—),男,教授,博士生导师。研究方向为合成生物学纳米材料、血管纳米生物学等。 E-mail:huangxinglu@nankai.edu.cn
  • 基金资助:
    国家自然科学基金(31870999);天津合成生物技术创新能力提升行动项目(TSBICIP-KJGG-014-03)

Synthetic biological nanozyme

Qiqi LIU, Chunyu WANG, Tianyi QI, Mingsheng ZHU, Xinglu HUANG   

  1. State Key Laboratory of Medicinal Chemical Biology and Key Laboratory of Bioactive Materials for the Ministry of Education,Joint Laboratory of Nanozymes,College of Life Sciences,Nankai University,Tianjin 300071,China
  • Received:2022-01-28 Revised:2022-03-31 Online:2022-04-30 Published:2022-05-11
  • Contact: Xinglu HUANG

摘要:

纳米酶是一类本身蕴含酶学特性的纳米材料,能够在生理条件下催化天然酶的底物及其介导的生化反应,表现出类似的反应动力学和催化机理。自2007年首次发现四氧化三铁纳米颗粒自身具有类过氧化物酶活性以来,成百上千种不同的纳米酶材料相继被开发出来,在生物医学、检测传感、环境工程等领域有着广泛的应用。近年来,以基因编辑或重组为基础的纳米酶材料开始出现。相比较其他纳米酶,这种纳米酶是基于合成生物学相关技术开发而来,在这里将其命名为合成生物纳米酶,其特点是以人为改造或从头设计的蛋白作为骨架,原位生长一些金属纳米颗粒,将蛋白骨架的功能和材料的催化融于一体。本文主要介绍了纳米酶的基本概况,例证了其在生物医学应用上的优势;概述了多种天然蛋白作为骨架制备纳米酶的原理,列举了其中的部分应用;简述了基因改造蛋白骨架方面的研究进展,并重点强调这种蛋白骨架在合成无机纳米颗粒方面的优势;在以上这些进展的基础上,提出了合成生物纳米酶的概念,并阐释了其中的内涵,最后也以基因重组铁蛋白纳米酶为例介绍了目前的一些设计及应用。未来,以合成生物纳米酶为代表的纳米酶,有可能会将计算生物学、结构生物学、蛋白/基因工程及化学等手段融为一体,在模拟酶的设计上更为理性,在赋予功能上更为多样化,并且有望进一步促进合成生物学与纳米生物学的深度融合。

关键词: 纳米酶, 纳米生物材料, 基因改造, 合成生物纳米酶, 铁蛋白纳米酶

Abstract:

Nanozymes are nanomaterials with intrinsic enzyme-like activities, which can convert specific substrates to products and catalyze biochemical reactions as natural enzymes, with the similar reaction dynamics and catalytic mechanisms. Since the discovery of the intrinsic peroxidase activity of Fe3O4 nanoparticles, thousands of nanozymes have been developed, and extensively applied in many fields, such as biomedicine, biosensor/biodetection and bioremediation. Recently, one type of nanozymes based on gene editing or genetic recombination technology was developed. Compared to other nanozymes, this kind of nanozymes was fabricated based on the key techniques of synthetic biology. Herein, we term them as synthetic biological nanozymes. The main characteristic of synthetic biological nanozymes is the utilization of artificially or de novo designed protein as scaffolds. Furthermore, the amino acids or domains of the scaffolds with metal ion binding ability can be used for synthesizing metal nanoparticles. This characteristic of synthetic biological nanozymes integrates the function of proteins and the catalytic activity of metal nanoparticles together. In this review, we comment the progress of nanozymes and their advantages in biomedicine applications, and highlight the synthesis principle of natural protein scaffold-based nanozymes and their applications in nanomedicine. We also introduce the gene editing or genetic recombination protein scaffolds for nanomaterials preparation and the superiorities of this kind of scaffolds for inorganic nanoparticles synthesis. Through such an overview, we elaborate the definition of synthetic biological nanozymes, and explain their essential connotation and finally take ferritin-based nanozymes as an example to demonstrate their design and applications. In the future, synthetic biological nanozymes may integrate technological innovations of many fields including computational biology, structural biology, protein engineering, genetic engineering, chemistry, etc., which would make the design of nanozymes more rational, their functions more diverse, and integration of synthetic biology and nanobiology more profound.

Key words: nanozymes, bioactive materials, genetic engineering, synthetic biological nanozymes, ferritin nanozymes

中图分类号: