合成生物学

• 特约评述 •    

农业合成生物学驱动动物营养创新:进展与展望

李一塍, 罗会颖, 姚斌, 涂涛   

  1. 畜禽营养与饲养全国重点实验室,中国农业科学院北京畜牧兽医研究所,北京 100193
  • 收稿日期:2025-08-01 修回日期:2025-08-29 出版日期:2025-09-01
  • 通讯作者: 涂涛
  • 作者简介:李一塍(1999), 男,博士研究生。研究方向为动物营养与饲料。E-mail:li_yi_c@163.com
    涂涛(1988),男,研究员,博士生导师。国家优秀青年科学基金获得者和国家重点研发计划青年科学家项目主持人。研究方向为饲料用酶工程。立足国家重大需求,在饲用酶解决养殖业供需平衡、缓解养殖环境污染、保障动物产品安全等方面取得了一系列原创性成果。以第一作者或通讯作者发表SCI论文42篇,以主要完成人获得国家发明专利35件(含PCT专利 4件)。获神农中华农业科技奖一等奖和湖北省科技进步二等奖各1项。E-mail:tutao@caas.cn
  • 基金资助:
    国家自然科学基金(L2324219)

Agricultural Synthetic Biology Driving Innovation in Animal Nutrition: Advances and Prospects

LI Yicheng, LUO Huiying, YAO Bin, TU Tao   

  1. State Key Laboratory of Animal Nutrition and Feeding,Institute of Animal Sciences,Chinese Academy of Agricultural Sciences,Beijing 100193,China
  • Received:2025-08-01 Revised:2025-08-29 Online:2025-09-01
  • Contact: TU Tao

摘要:

动物营养是保障畜牧业可持续发展的关键环节,其效率直接关系到资源利用效率、环境承载能力与粮食安全。随着农业合成生物技术的快速发展,研究者正积极应用工程化策略革新动物营养利用体系,主要涵盖饲料原料开发、饲料添加剂合成及胃肠道高效营养转化等方向。本文系统综述了该领域的最新进展,重点聚焦于基因编辑作物、微生物蛋白、饲料添加剂、胃肠道工程微生物等方向的关键使能技术与工程化策略,阐释了农业合成生物学在提升饲料利用效率、保障动物健康及促进畜牧业绿色转型中的巨大潜力。探讨了当前农业合成生物学在动物营养领域所面临的挑战与未来发展趋势,包括多基因系统设计与AI设计驱动生物育种进入4.0时代,动态调控系统开发与机器学习强化细胞工厂全局调控,多维度设计与学科交叉用于解析与调控动物消化系统。强调了其理念与技术对于突破现有技术瓶颈的关键作用。展望未来,农业合成生物学有望在动物营养领域扮演愈发重要的角色。

关键词: 农业合成生物技术, 动物营养, 蛋白饲料, 饲料添加剂, 微生物组工程

Abstract:

Animal nutrition stands as the cornerstone of sustainable animal husbandry development, with its overall efficiency directly influencing resource utilization efficiency, environmental carrying capacity, and global food security. Recent rapid advances in agricultural synthetic biology have enabled researchers to engineer animal nutrient utilization systems through innovative strategies, primarily encompassing feed ingredient optimization, synthetic feed additive production, and enhancement of gastrointestinal nutrient conversion efficiency. This review systematically examines recent progress in this field, focusing on the applicable of agricultural synthetic biology strategies for advancing animal nutrition. In the realm of feed ingredient quality improvement, gene editing technologies have significantly enhanced the nutritional value of key crops. For example, specific knockout of the GhPGF gene in cotton has achieved cottonseed detoxification, while targeted modifications to the sorghum kafirin gene family has improved protein digestibility and quality. To reduce reliance on soybean meal, multiple approaches have been developed to harness microbial protein resources, including overcoming production bottlenecks in methylotrophic yeast, precisely tuning carbon metabolism pathways in Clostridiumautoethanogenum, and developing cell wall disruption techniques for microalgae to enhance protein bioavailability. Synthetic biology approaches have also revolutionized feed additive production. Key strategies include metabolic pathway engineering to boost precursor supply, cofactor optimization to increase metabolic flux, gene editing to attenuate competing pathways, and protein engineering to improve the activity of rate-limiting enzymes. Furthermore, emerging synthetic biology tools show great promise for regulating gastrointestinal function. These include biotechnology-optoelectronic integration for advanced sensing systems, novel gene editing tools for precise modulation of gut microbiota, and intelligent synthetic microbial consortia for targeted regulation of the gastrointestinal microenvironment. Agricultural synthetic biology holds immense potential for enhancing feed conversion efficiency, safeguarding animal health, and driving the green transformation of animal husbandry. This review further discusses current challenges in the field, including technological bottlenecks and scalability issues, and outlines future development trends, emphasizing the critical role of synthetic biology in shaping next-generation animal nutrition systems.

Key words: agricultural synthetic biotechnology, animal nutrition, protein feed, feed additives, microbiome engineering

中图分类号: