合成生物学 ›› 2025, Vol. 6 ›› Issue (5): 1126-1144.DOI: 10.12211/2096-8280.2025-083
刘丹1,2, 王建宇3, 江正强1,2
收稿日期:2025-08-04
修回日期:2025-09-16
出版日期:2025-10-31
发布日期:2025-11-05
通讯作者:
江正强
作者简介:基金资助:LIU Dan1,2, WANG Jianyu3, JIANG Zhengqiang1,2
Received:2025-08-04
Revised:2025-09-16
Online:2025-10-31
Published:2025-11-05
Contact:
JIANG Zhengqiang
摘要:
母乳寡糖(human milk oligosaccharide,HMO)是母乳中重要的功能和营养成分。其中,中性核心母乳寡糖(neutral core human milk oligosaccharide,ncHMO)主要包括乳糖-N-三糖(LNT Ⅱ)、乳糖-N-新四糖(LNnT)和乳糖-N-四糖(LNT),在婴幼儿健康发育过程中发挥着不可替代的生理作用。近年来,中性核心母乳寡糖的生物合成技术快速发展,其工业化生产从可能走向现实。本文综述了中性核心母乳寡糖的酶法和微生物细胞法合成研究现状,介绍了糖基转移酶和糖苷酶在酶法合成中性核心母乳寡糖的应用,讨论了糖基转移酶的催化特性、底盘细胞的种类及改造等关键因素对微生物细胞法合成中性核心母乳寡糖产量的影响,进一步对比了两种方法生物合成中性核心母乳寡糖的优缺点。目前,中性核心母乳寡糖的生物合成存在酶催化效率低、底盘细胞选择与适配性差、副产物多及内毒素污染等问题,需通过理性设计酶元件、优化安全底盘、动态调控代谢网络及强化发酵纯化工艺等策略协同攻关,有望实现母乳寡糖的低成本、高效绿色生产,为开发更具营养价值的婴幼儿健康食品提供核心支撑。
中图分类号:
刘丹, 王建宇, 江正强. 中性核心母乳寡糖生物合成的研究进展和发展趋势[J]. 合成生物学, 2025, 6(5): 1126-1144.
LIU Dan, WANG Jianyu, JIANG Zhengqiang. Research progress and development trends in the biosynthesis of neutral core human milk oligosaccharides[J]. Synthetic Biology Journal, 2025, 6(5): 1126-1144.
| classification | HMOs | concentrations in colostrum/(g/L) | concentrations in mature breast milk/(g/L) |
|---|---|---|---|
neutral HMOs | 2′-FL | 3.03 ± 1.79 | 1.64 ± 1.54 |
| 3-FL | 0.41 ± 0.43 | 1.35 ± 1.00 | |
| LNFP Ⅰ | 1.90 ± 0.96 | 0.70 ± 0.67 | |
| LNFP Ⅱ | 0.28 ± 0.37 | 0.54 ± 0.52 | |
| LDFT | 0.65 ± 0.71 | 0.19 ± 0.21 | |
| LNDFH Ⅰ | 0.47 ± 0.26 | 0.25 ± 0.25 | |
| LNDFH Ⅱ | 0.08 ± 0.10 | 0.12 ± 0.15 | |
| DFLNH | 0.05 ± 0.11 | 0.28 ± 0.30 | |
| neutral core HMOs | LNT Ⅱ | 0.16 ± 0.08 | 0.03 ± 0.01 |
| LNT | 0.59 ± 0.39 | 0.59 ± 0.27 | |
| LNnT | 0.40 ± 0.12 | 0.34 ± 0.14 | |
| sialylated HMOs | 3′-SL | 0.21 ± 0.06 | 0.10 ± 0.02 |
| 6′-SL | 0.33 ± 0.11 | 0.22 ± 0.09 | |
| DSLNT | 0.36 ± 0.14 | 0.19 ± 0.07 | |
| LSTc | 1.37 ± 0.56 | 0.23 ± 0.18 |
表1 人初乳和正常乳中主要HMO含量
Table 1 Concentrations of major HMOs in human colostrum and regular milk
| classification | HMOs | concentrations in colostrum/(g/L) | concentrations in mature breast milk/(g/L) |
|---|---|---|---|
neutral HMOs | 2′-FL | 3.03 ± 1.79 | 1.64 ± 1.54 |
| 3-FL | 0.41 ± 0.43 | 1.35 ± 1.00 | |
| LNFP Ⅰ | 1.90 ± 0.96 | 0.70 ± 0.67 | |
| LNFP Ⅱ | 0.28 ± 0.37 | 0.54 ± 0.52 | |
| LDFT | 0.65 ± 0.71 | 0.19 ± 0.21 | |
| LNDFH Ⅰ | 0.47 ± 0.26 | 0.25 ± 0.25 | |
| LNDFH Ⅱ | 0.08 ± 0.10 | 0.12 ± 0.15 | |
| DFLNH | 0.05 ± 0.11 | 0.28 ± 0.30 | |
| neutral core HMOs | LNT Ⅱ | 0.16 ± 0.08 | 0.03 ± 0.01 |
| LNT | 0.59 ± 0.39 | 0.59 ± 0.27 | |
| LNnT | 0.40 ± 0.12 | 0.34 ± 0.14 | |
| sialylated HMOs | 3′-SL | 0.21 ± 0.06 | 0.10 ± 0.02 |
| 6′-SL | 0.33 ± 0.11 | 0.22 ± 0.09 | |
| DSLNT | 0.36 ± 0.14 | 0.19 ± 0.07 | |
| LSTc | 1.37 ± 0.56 | 0.23 ± 0.18 |
| 来源 | 酶 | 受体 | 供体 | 转化率/% | 参考文献 |
|---|---|---|---|---|---|
| 米曲霉(Aspergillus oryzae) | NagA | 乳糖 | GlcNAc | 0.21 | [ |
| 两歧双歧杆菌(Bifidobacterium bifidum) | BbhI-WT | 乳糖 | β-D-GlcpNAcOpNP | 16 | [ |
| 两歧双歧杆菌(B. bifidum) | BbhI-D714T | 乳糖 | pNP-GlcNAc | 84.7 | [ |
| 两歧双歧杆菌(B. bifidum) | BbhI-D746E | 乳糖 | Glc-oxa | 86.0 | [ |
| 两歧双歧杆菌(B. bifidum) | BbhI-D746T | 乳糖 | pNP-GlcNAc | 85.0 | [ |
| 光冈链状杆菌(Catenibacterium mitsuokai) | CmHex187 | 乳糖 | pNP-GlcNAc | 44.3 | [ |
| 居海藻黄杆菌(Flavobacterium algicola) | FlaNag2353 | 乳糖 | pNP-GlcNAc | 4.15 | [ |
| Haloferula sp. | HaHex74 | 乳糖 | (GlcNAc)2 | 14.4 | [ |
| Haloferula sp. | mHaHex74 | 乳糖 | (GlcNAc)2 | 28.2 | [ |
| 土壤宏基因组 | HEX1 | 乳糖 | (GlcNAc)2 | 16.1 | [ |
| 紫色链霉菌(Streptomyces violascens) | Hex(Sv)-2557(D297K) | 乳清粉 | (GlcNAc)2 | 14.85 | [ |
| 丁氏泰泽菌(Tyzzerella nexilis) | TnHex189 | 乳糖 | pNP-GlcNAc | 57.2 | [ |
表2 不同来源的β-N-乙酰氨基葡萄糖苷酶合成LNT Ⅱ情况
Table 2 Comparison of LNT Ⅱ synthesis by different β-N-acetylhexosaminidases
| 来源 | 酶 | 受体 | 供体 | 转化率/% | 参考文献 |
|---|---|---|---|---|---|
| 米曲霉(Aspergillus oryzae) | NagA | 乳糖 | GlcNAc | 0.21 | [ |
| 两歧双歧杆菌(Bifidobacterium bifidum) | BbhI-WT | 乳糖 | β-D-GlcpNAcOpNP | 16 | [ |
| 两歧双歧杆菌(B. bifidum) | BbhI-D714T | 乳糖 | pNP-GlcNAc | 84.7 | [ |
| 两歧双歧杆菌(B. bifidum) | BbhI-D746E | 乳糖 | Glc-oxa | 86.0 | [ |
| 两歧双歧杆菌(B. bifidum) | BbhI-D746T | 乳糖 | pNP-GlcNAc | 85.0 | [ |
| 光冈链状杆菌(Catenibacterium mitsuokai) | CmHex187 | 乳糖 | pNP-GlcNAc | 44.3 | [ |
| 居海藻黄杆菌(Flavobacterium algicola) | FlaNag2353 | 乳糖 | pNP-GlcNAc | 4.15 | [ |
| Haloferula sp. | HaHex74 | 乳糖 | (GlcNAc)2 | 14.4 | [ |
| Haloferula sp. | mHaHex74 | 乳糖 | (GlcNAc)2 | 28.2 | [ |
| 土壤宏基因组 | HEX1 | 乳糖 | (GlcNAc)2 | 16.1 | [ |
| 紫色链霉菌(Streptomyces violascens) | Hex(Sv)-2557(D297K) | 乳清粉 | (GlcNAc)2 | 14.85 | [ |
| 丁氏泰泽菌(Tyzzerella nexilis) | TnHex189 | 乳糖 | pNP-GlcNAc | 57.2 | [ |
| 来源 | 酶 | 受体 | 供体 | 转化率/% | 参考文献 |
|---|---|---|---|---|---|
| 伴放线聚集杆菌(A. actinomycetemcomitans)NUM 4039 | Aa-β-1,4-GalT | LNT Ⅱ | UDP-Gal | 65 | [ |
| 睡眠嗜组织菌(H.somni) | Hs-β-1,4-GalT | LNT Ⅱ | UDP-Gal | 33 | [ |
| 环状芽孢杆菌(Bacillus circulans)ATCC 31382 | Biolacta | LNT Ⅱ | 乳糖 | 19 | [ |
| 环状芽孢杆菌(B. circulans)ATCC 31382 | BgaD-D | LNT Ⅱ | 乳糖 | 17 | [ |
| 芽孢杆菌属(Bacillus sp.) | mBsGal95-D | LNT Ⅱ | 乳糖 | 30.1 | [ |
| 嗜热栖热菌(Thermus thermophilus)HB27 | Ttβ-gly | LNT Ⅱ | 乳糖 | 5.2 | [ |
| 水管致黑栖热菌(T. scotoductus) | mTsGal48 | LNT Ⅱ | 乳糖 | 25.3 | [ |
| 超嗜热菌(Pyrococcus furiosus)DSM 3638 | CelB | LNT Ⅱ | 乳糖 | 1 | [ |
| 南极类芽孢杆菌(Paenibacillus antarcticus) | PaBgal2A-D | LNT Ⅱ | 乳糖 | 16.4 | [ |
表3 β-1,4-半乳糖基转移酶和β-半乳糖苷酶合成LNnT汇总
Table 3 Summary of LNnT synthesis by β-1,4-galactosyltransferases and β-galactosidases
| 来源 | 酶 | 受体 | 供体 | 转化率/% | 参考文献 |
|---|---|---|---|---|---|
| 伴放线聚集杆菌(A. actinomycetemcomitans)NUM 4039 | Aa-β-1,4-GalT | LNT Ⅱ | UDP-Gal | 65 | [ |
| 睡眠嗜组织菌(H.somni) | Hs-β-1,4-GalT | LNT Ⅱ | UDP-Gal | 33 | [ |
| 环状芽孢杆菌(Bacillus circulans)ATCC 31382 | Biolacta | LNT Ⅱ | 乳糖 | 19 | [ |
| 环状芽孢杆菌(B. circulans)ATCC 31382 | BgaD-D | LNT Ⅱ | 乳糖 | 17 | [ |
| 芽孢杆菌属(Bacillus sp.) | mBsGal95-D | LNT Ⅱ | 乳糖 | 30.1 | [ |
| 嗜热栖热菌(Thermus thermophilus)HB27 | Ttβ-gly | LNT Ⅱ | 乳糖 | 5.2 | [ |
| 水管致黑栖热菌(T. scotoductus) | mTsGal48 | LNT Ⅱ | 乳糖 | 25.3 | [ |
| 超嗜热菌(Pyrococcus furiosus)DSM 3638 | CelB | LNT Ⅱ | 乳糖 | 1 | [ |
| 南极类芽孢杆菌(Paenibacillus antarcticus) | PaBgal2A-D | LNT Ⅱ | 乳糖 | 16.4 | [ |
| 来源 | 酶 | 受体 | 供体 | 转化率/% | 参考文献 |
|---|---|---|---|---|---|
| 大肠杆菌(Escherichia coli)O55:H7 | WbgO | LNT Ⅱ | UDP-Gal | 87 | [ |
| 紫色色杆菌(Chromobacterium violaceum) | Cvβ3GalT | LNT Ⅱ | UDP-Gal | 99 | [ |
| 金杆菌(Aureobacterium sp.)L-101 | — | 乳糖 | pNP-LNB | 0.6 | [ |
| 两歧双歧杆菌(B. bifidum)JCM 1254 | LnbB-D320E | 乳糖 | LNB-oxa | 30 | [ |
| 两歧双歧杆菌(B. bifidum)JCM 1254 | LnbB-W394F | 乳糖 | pNP-LNB | 32 | [ |
| 两歧双歧杆菌(B. bifidum)JCM 1254 | LnbB-W394H | 乳糖 | LNB-oxa | 72 | [ |
| 环状芽孢杆菌(Bacillus circulans)ATCC 31382 | β-gal-3 | LNT Ⅱ | oNPG | 20,22 | [ |
| 玉米乳酪杆菌(Lacticaseibacillus zeae) | LzBgal35A | LNT Ⅱ | oNPG | 45.4 | [ |
表4 β-1,3-半乳糖基转移酶、N-乙酰乳糖酶和β-半乳糖苷酶合成LNT汇总
Table 4 Summary of LNT synthesis by β-1,3-galactosyltransferases, lacto-N-biosidases, and β-galactosidases
| 来源 | 酶 | 受体 | 供体 | 转化率/% | 参考文献 |
|---|---|---|---|---|---|
| 大肠杆菌(Escherichia coli)O55:H7 | WbgO | LNT Ⅱ | UDP-Gal | 87 | [ |
| 紫色色杆菌(Chromobacterium violaceum) | Cvβ3GalT | LNT Ⅱ | UDP-Gal | 99 | [ |
| 金杆菌(Aureobacterium sp.)L-101 | — | 乳糖 | pNP-LNB | 0.6 | [ |
| 两歧双歧杆菌(B. bifidum)JCM 1254 | LnbB-D320E | 乳糖 | LNB-oxa | 30 | [ |
| 两歧双歧杆菌(B. bifidum)JCM 1254 | LnbB-W394F | 乳糖 | pNP-LNB | 32 | [ |
| 两歧双歧杆菌(B. bifidum)JCM 1254 | LnbB-W394H | 乳糖 | LNB-oxa | 72 | [ |
| 环状芽孢杆菌(Bacillus circulans)ATCC 31382 | β-gal-3 | LNT Ⅱ | oNPG | 20,22 | [ |
| 玉米乳酪杆菌(Lacticaseibacillus zeae) | LzBgal35A | LNT Ⅱ | oNPG | 45.4 | [ |
| 菌株 | 改造情况 | 底物 | 发酵条件 | 发酵罐产量/(g/L) | 参考文献 |
|---|---|---|---|---|---|
| 大肠杆菌(E. coli)JM109 | lacY+lacZ- pCW-NmlgtA | 乳糖、甘油 | pH 6.8、34 ℃、0.2 mmol/L IPTG、矿物培养基 | 6(2 L)① | [ |
| 大肠杆菌(E. coli) BL21(DE3) | ΔwecBΔnagBΔlacZ pRSF-glmM-glmU-glmS* pET-NmlgtA | 乳糖、甘油 | pH 6.8、25 ℃、0.1 mmol/L IPTG、甘油优化培养基 | 46.2(5 L) | [ |
| 大肠杆菌(E. coli) BL21(DE3) | ΔlacZΔnanE - pRSF-nagA-glmM pET-glmU pET-NmlgtA | 乳糖、GlcNAc | pH 6.9、25 ℃、0.2 mmol/L IPTG、GlcNAc优化培养基 | 15.8(3 L) | [ |
| 大肠杆菌(E. coli)W3110S | ΔlacZY ΔyhbJ pUAKQE-NplgtA-lacY pSTV29-setA | 乳糖、葡萄糖 | pH 6.9、30 ℃、1 mmol/L IPTG、葡萄糖优化培养基 | 34.2(3 L) | [ |
| 大肠杆菌(E. coli)Nissle 1917 | ΔendAΔwecB pET-P tac -NmlgtA | 乳糖、 甘油 | —②、25 ℃、—、— | 2.04(3 L) | [ |
| 大肠杆菌(E. coli)K12 MG1655 | ΔnagBΔwecBΔlacIZ::P J23116 -lacY-GlmS* pTrc99A-Nm58lgtA(R13H/L24M/R205C)- InfB-RBST7-GlmS* | 乳糖、 甘油 | —、25 ℃、—、M9培养基 | 57.44(3 L) | [ |
| 大肠杆菌(E. coli)JM109 + 酿酒酵母 (Saccharomyces cerevisiae) | E. coli JM109(DE3) pET-NahK-linker-EcglmU-lgtA | 乳糖、GlcNAc | pH 6.98、18 ℃、0.2 mmol/L IPTG、葡萄糖优化培养基 | 52.34(5L) | [ |
表5 微生物细胞法合成LNT Ⅱ
Table 5 Microbial cell factory for LNT Ⅱ synthesis
| 菌株 | 改造情况 | 底物 | 发酵条件 | 发酵罐产量/(g/L) | 参考文献 |
|---|---|---|---|---|---|
| 大肠杆菌(E. coli)JM109 | lacY+lacZ- pCW-NmlgtA | 乳糖、甘油 | pH 6.8、34 ℃、0.2 mmol/L IPTG、矿物培养基 | 6(2 L)① | [ |
| 大肠杆菌(E. coli) BL21(DE3) | ΔwecBΔnagBΔlacZ pRSF-glmM-glmU-glmS* pET-NmlgtA | 乳糖、甘油 | pH 6.8、25 ℃、0.1 mmol/L IPTG、甘油优化培养基 | 46.2(5 L) | [ |
| 大肠杆菌(E. coli) BL21(DE3) | ΔlacZΔnanE - pRSF-nagA-glmM pET-glmU pET-NmlgtA | 乳糖、GlcNAc | pH 6.9、25 ℃、0.2 mmol/L IPTG、GlcNAc优化培养基 | 15.8(3 L) | [ |
| 大肠杆菌(E. coli)W3110S | ΔlacZY ΔyhbJ pUAKQE-NplgtA-lacY pSTV29-setA | 乳糖、葡萄糖 | pH 6.9、30 ℃、1 mmol/L IPTG、葡萄糖优化培养基 | 34.2(3 L) | [ |
| 大肠杆菌(E. coli)Nissle 1917 | ΔendAΔwecB pET-P tac -NmlgtA | 乳糖、 甘油 | —②、25 ℃、—、— | 2.04(3 L) | [ |
| 大肠杆菌(E. coli)K12 MG1655 | ΔnagBΔwecBΔlacIZ::P J23116 -lacY-GlmS* pTrc99A-Nm58lgtA(R13H/L24M/R205C)- InfB-RBST7-GlmS* | 乳糖、 甘油 | —、25 ℃、—、M9培养基 | 57.44(3 L) | [ |
| 大肠杆菌(E. coli)JM109 + 酿酒酵母 (Saccharomyces cerevisiae) | E. coli JM109(DE3) pET-NahK-linker-EcglmU-lgtA | 乳糖、GlcNAc | pH 6.98、18 ℃、0.2 mmol/L IPTG、葡萄糖优化培养基 | 52.34(5L) | [ |
图2 大肠杆菌合成LNT Ⅱ、LNnT和LNT路径图(ptsG—编码葡萄糖特异性PTS转运系统IIBC组分基因;glk—编码己糖激酶基因;glpF—编码甘油摄取促进蛋白基因;gloA—编码乳酸谷胱甘肽裂合酶基因;gloB—编码羟酰谷胱甘肽水解酶基因;nagE—编码N-乙酰葡萄糖胺(GlcNAc)PTS转运系统IIABC组分基因;pfkA—编码6-磷酸果糖激酶基因;fbp—编码1,6-二磷酸果糖磷酸化激酶基因;zwf—编码葡萄糖-6-磷酸脱氢酶基因;pgi—编码葡萄糖-6-磷酸异构酶基因;pgm—编码磷酸葡萄糖变位酶基因;agp—编码双功能葡萄糖-1-磷酸酶/肌醇磷酸酶基因;gcd—编码葡萄糖脱氢酶基因;galU—编码UTP-葡萄糖-1-磷酸尿苷酰转移酶基因;galE—编码UDP-葡萄糖差向异构酶基因;otsA—编码α,α-海藻糖-6-磷酸合酶基因;ugd—编码UDP-葡萄糖-6-脱氢酶基因;galK—编码半乳糖激酶基因;galT—编码半乳糖-1-磷酸尿苷酰转移酶基因;glmS—编码葡糖胺-6-磷酸合酶基因;glmM—编码磷酸葡糖胺变位酶基因;glmU—编码N-乙酰葡糖胺-1-磷酸尿酸基转移酶/氨基葡糖-1-磷酸乙酰基转移酶基因;nagB—编码6-磷酸氨基葡萄糖脱氨酶基因;nagA—编码N-乙酰氨基葡萄糖-6-磷酸脱乙酰酶基因;murA—编码UDP-N-乙酰氨基葡萄糖-1-羧基乙烯基转移酶基因;wecB—编码UDP-N-乙酰氨基葡萄糖-2-差向异构酶基因;lacZ—编码β-半乳糖苷酶基因;lacA—编码β-半乳糖苷转乙酰基酶基因;lacY—编码β-半乳糖苷通透酶基因)
Fig. 2 Pathway diagram for the biosynthesis of LNT Ⅱ, LNnT and LNT in E. coli(ptsG—PTS glucose transporter subunit IIBC; glk—glucokinase gene; glpF—glycerol uptake facilitator protein gene; gloA—lactoylglutathione lyase gene; gloB—hydroxyacylglutathione hydrolase gene; nagE—PTS N-acetyl glucosamine transporter subunit IIABC; pfkA—6-phosphofructokinase gene; fbp—fructose-1,6-disphosphatase gene; zwf—glucose-6-phosphate dehydrogenase gene; pgi—glucose-6-phosphate isomerase gene; pgm: glucophosphomutase gene; agp—bifunctional glucose-1-phosphatase/inositol phosphatase gene; gcd—glucose dehydrogenase gene; galU—UTP-glucose-1-phosphate uridylyltransferase gene; galE—UDP-glucose 4-epimerase gene; otsA—alpha-alpha-trehalose-phosphate synthase gene; ugd—UDP-glucose 6-dehydrogenase gene; galK—galactokinase gene; galT—galactose-1-phosphate uridylyltransferase gene; glmS—L-glutamine-D-fructose-6-phosphate aminotransferase gene; glmM—phosphoglucosamine mutase gene; glmU—fused N-acetylglucosamine-1-phosphate uridyltransferase and glucosamine-1-phosphate acetyltransferase gene; nagB—glucosamine-6-phosphate deaminase gene; nagA—N-acetylglucosamine-6-phosphate deacetylase gene; murA—UDP-N-acetylglucosamine 1-carboxyvinyltransferase gene; wecB—UDP-N-acetylglucosamine 2-epimerase gene; lacZ—β-galactosidase gene; lacA—thiogalactoside transacetylase gene; lacY—lactose permease gene)
| 菌株 | 改造情况 | 底物 | 发酵条件 | 发酵罐产量/(g/L) | 参考文献 |
|---|---|---|---|---|---|
| 大肠杆菌(E. coli) JM09 | pCW-lgtA pBB-lgtB | 乳糖、葡萄糖 | pH 6.8、28 ℃、0.2 mmol/L IPTG、矿物培养基 | <5(2 L)① | [ |
| 大肠杆菌(E. coli) BL21(DE3) | ΔwecBΔnagBΔlacZ pRSF-M-US* pET-lgtA pAC-AagalT(源自A. actinomycetemcomitans NUM4039) | 乳糖、甘油 | pH 6.8、25 ℃、0.2 mmol/L IPTG、甘油优化培养基 | 12.1(3 L) | [ |
| 大肠杆菌(E. coli)BL21 star (DE3) | ΔlacZΔugdΔushAΔagpΔwcaJΔotsAΔwcaCΔgalM::galETKM pRSF-lgtA-galE pET-HpgalT(源自Helicobacter pylori) | 乳糖、甘油 | pH 6.8、28 ℃、0.2 mmol/L IPTG、优化培养基 | 22.07(3 L) | [ |
| 大肠杆菌(E. coli)BL21(DE3) | ΔlacZΔwecBΔugdΔgloA pAC-M-US pCD-lgtA-lgtB(源自N. meningitidis) | 乳糖、甘油 | —②、25 ℃、0.4 mmol/L IPTG、甘油优化培养基 | 13.25(3 L) | [ |
| 大肠杆菌(E. coli) BL21 MG1655 | ΔwcaJΔlacZΔP lacY ::PJ23119 pTrc99a-PQS03-lgtA pCD-luxR-P QS33 -luxI-CP(源自S. agalactiae) | 乳糖、甘油 | pH 6.8、30 ℃、—、甘油优化培养基 | 20.33(5 L) | [ |
| 大肠杆菌(E. coli) K-12 MG1655 | ΔlacZΔnagBΔugdΔwecB gsK-ybaL:: lgtA-SH3lig- HpGalT-PDZlig-PDZ-SH3 mscK-ybaM::lgtA-SH3lig-HpGalT-PDZlig-PDZ-SH3 Phr-dtpD:: ParaBAD--dCpf1 ΔfliK::PJ23119-pfkA3-zwf P tac ::P mlc | 乳糖、葡萄糖 | pH 6.8、30 ℃、0.2 mmol/L IPTG、0.5 mmol/L 阿拉伯糖、葡萄糖优化培养基 | 23.73(3 L) | [ |
| 大肠杆菌(E. coli) BL21(DE3) | ΔlacZΔlacAΔwecBΔnagBΔugdΔgcdΔsetA pCD-lgtA-M-U-S* pET-lacY-prs pRSF-lgtB-pgm-galE-galU | 乳糖、甘油 | pH 7.2、25 ℃、0.1 mmol/L IPTG、甘油优化培养基 | 19.4(3 L) | [ |
| 大肠杆菌(E. coli)BL21 star (DE3) | ΔlacZΔugdΔushAΔagpΔwcaJΔotsAΔwcaCΔgalM::galETK ΔlacA::lgtA-galE Δyjgx::lgtA ΔnagB::HpgalT Δyjiv::HpgalT Δydeu::HpgalT ΔcaiB::HpgalT ΔhlyE::CmSET ΔxylB::galE ΔP galU ::PT7 ΔP glmM ::PT7 | 乳糖、葡萄糖、甘油 | pH 6.8、29.5 ℃、0.2 mmol/L IPTG、优化培养基 | 112.47(5 L) | [ |
| 大肠杆菌(E. coli) BL21(DE3) | ΔlacZΔugdΔwecBΔsetA pCD-lgtA-AagalT pET-galE | 乳糖、甘油 | pH 6.8、25 ℃、—、甘油优化培养基 | 15.53(5 L) | [ |
| 大肠杆菌(E. coli)BL21 (DE3) | ΔlacZΔlacAΔnagBΔwecB ΔugdΔgcdΔsetAΔiclR pRSF-lgtB-pgm-galU-galE-Galtpm1141 pET-lgtA-M-U-S* pCD-prsA-pgi-glf | 葡萄糖 | pH 7.0、25 ℃、0.1 mmol/L IPTG、葡萄糖优化培养基 | 25.4(3 L) | [ |
| 枯草芽孢杆菌(B. subtilis )168 | ΔamyE::P43-lacY P43-lgtB/pP43NMK-lgtA P43-lgtB P43-lgtB P43-pgi P43-gtaB P43-glmS P43-glmM P43-galE ΔtuaD::lox72 | 乳糖、葡萄糖 | pH 7.0、37 ℃、120 mmol/L木糖、优化培养基 | 4.52(3 L) | [ |
| 枯草芽孢杆菌(B. subtilis )168 | P xylA -comK ΔamyE::P43-lacY 3拷贝P43-lgtB, P43-pgi P43-gtaB P43-glmS P43-glmM P43-galE pP43NMK-lgtA ΔganA::xylR-P xylA -dCas9 P veg -sgRNA-pfkA7pyk1zwf1 P veg -sgRNA-mnaA2 ΔtuaD::lox72 P43-lgtB | 乳糖、葡萄糖 | pH 7.0、37 ℃、120 mmol/L木糖、优化培养基 | 5.41(3 L) | [ |
| 法夫驹形氏酵母(Komagataella phaffii)168 | HIS4::pGAP-hCas9-HIS4::pTEF1-ScRAD52-int11::pGAP-ScRAD59-Int20::pTEF1-ScMRE11 int12::lgtA-lgtB-int21::lac12-intE1::gal10 intE9::pgm-intE26::gfa-intE20-ugp-intE24::gna-intE14::qri-intE13::pcm intE10::lgtA-linker3-lgtB pfk-ɑ::X1 pfk-β::X2 | 乳糖、葡萄糖、甘油 | pH 6.5、30 ℃、—、BMGY培养基 | 1.24(3 L) | [ |
表6 微生物细胞法合成LNnT
Table 6 Microbial cell factory for LNnT synthesis
| 菌株 | 改造情况 | 底物 | 发酵条件 | 发酵罐产量/(g/L) | 参考文献 |
|---|---|---|---|---|---|
| 大肠杆菌(E. coli) JM09 | pCW-lgtA pBB-lgtB | 乳糖、葡萄糖 | pH 6.8、28 ℃、0.2 mmol/L IPTG、矿物培养基 | <5(2 L)① | [ |
| 大肠杆菌(E. coli) BL21(DE3) | ΔwecBΔnagBΔlacZ pRSF-M-US* pET-lgtA pAC-AagalT(源自A. actinomycetemcomitans NUM4039) | 乳糖、甘油 | pH 6.8、25 ℃、0.2 mmol/L IPTG、甘油优化培养基 | 12.1(3 L) | [ |
| 大肠杆菌(E. coli)BL21 star (DE3) | ΔlacZΔugdΔushAΔagpΔwcaJΔotsAΔwcaCΔgalM::galETKM pRSF-lgtA-galE pET-HpgalT(源自Helicobacter pylori) | 乳糖、甘油 | pH 6.8、28 ℃、0.2 mmol/L IPTG、优化培养基 | 22.07(3 L) | [ |
| 大肠杆菌(E. coli)BL21(DE3) | ΔlacZΔwecBΔugdΔgloA pAC-M-US pCD-lgtA-lgtB(源自N. meningitidis) | 乳糖、甘油 | —②、25 ℃、0.4 mmol/L IPTG、甘油优化培养基 | 13.25(3 L) | [ |
| 大肠杆菌(E. coli) BL21 MG1655 | ΔwcaJΔlacZΔP lacY ::PJ23119 pTrc99a-PQS03-lgtA pCD-luxR-P QS33 -luxI-CP(源自S. agalactiae) | 乳糖、甘油 | pH 6.8、30 ℃、—、甘油优化培养基 | 20.33(5 L) | [ |
| 大肠杆菌(E. coli) K-12 MG1655 | ΔlacZΔnagBΔugdΔwecB gsK-ybaL:: lgtA-SH3lig- HpGalT-PDZlig-PDZ-SH3 mscK-ybaM::lgtA-SH3lig-HpGalT-PDZlig-PDZ-SH3 Phr-dtpD:: ParaBAD--dCpf1 ΔfliK::PJ23119-pfkA3-zwf P tac ::P mlc | 乳糖、葡萄糖 | pH 6.8、30 ℃、0.2 mmol/L IPTG、0.5 mmol/L 阿拉伯糖、葡萄糖优化培养基 | 23.73(3 L) | [ |
| 大肠杆菌(E. coli) BL21(DE3) | ΔlacZΔlacAΔwecBΔnagBΔugdΔgcdΔsetA pCD-lgtA-M-U-S* pET-lacY-prs pRSF-lgtB-pgm-galE-galU | 乳糖、甘油 | pH 7.2、25 ℃、0.1 mmol/L IPTG、甘油优化培养基 | 19.4(3 L) | [ |
| 大肠杆菌(E. coli)BL21 star (DE3) | ΔlacZΔugdΔushAΔagpΔwcaJΔotsAΔwcaCΔgalM::galETK ΔlacA::lgtA-galE Δyjgx::lgtA ΔnagB::HpgalT Δyjiv::HpgalT Δydeu::HpgalT ΔcaiB::HpgalT ΔhlyE::CmSET ΔxylB::galE ΔP galU ::PT7 ΔP glmM ::PT7 | 乳糖、葡萄糖、甘油 | pH 6.8、29.5 ℃、0.2 mmol/L IPTG、优化培养基 | 112.47(5 L) | [ |
| 大肠杆菌(E. coli) BL21(DE3) | ΔlacZΔugdΔwecBΔsetA pCD-lgtA-AagalT pET-galE | 乳糖、甘油 | pH 6.8、25 ℃、—、甘油优化培养基 | 15.53(5 L) | [ |
| 大肠杆菌(E. coli)BL21 (DE3) | ΔlacZΔlacAΔnagBΔwecB ΔugdΔgcdΔsetAΔiclR pRSF-lgtB-pgm-galU-galE-Galtpm1141 pET-lgtA-M-U-S* pCD-prsA-pgi-glf | 葡萄糖 | pH 7.0、25 ℃、0.1 mmol/L IPTG、葡萄糖优化培养基 | 25.4(3 L) | [ |
| 枯草芽孢杆菌(B. subtilis )168 | ΔamyE::P43-lacY P43-lgtB/pP43NMK-lgtA P43-lgtB P43-lgtB P43-pgi P43-gtaB P43-glmS P43-glmM P43-galE ΔtuaD::lox72 | 乳糖、葡萄糖 | pH 7.0、37 ℃、120 mmol/L木糖、优化培养基 | 4.52(3 L) | [ |
| 枯草芽孢杆菌(B. subtilis )168 | P xylA -comK ΔamyE::P43-lacY 3拷贝P43-lgtB, P43-pgi P43-gtaB P43-glmS P43-glmM P43-galE pP43NMK-lgtA ΔganA::xylR-P xylA -dCas9 P veg -sgRNA-pfkA7pyk1zwf1 P veg -sgRNA-mnaA2 ΔtuaD::lox72 P43-lgtB | 乳糖、葡萄糖 | pH 7.0、37 ℃、120 mmol/L木糖、优化培养基 | 5.41(3 L) | [ |
| 法夫驹形氏酵母(Komagataella phaffii)168 | HIS4::pGAP-hCas9-HIS4::pTEF1-ScRAD52-int11::pGAP-ScRAD59-Int20::pTEF1-ScMRE11 int12::lgtA-lgtB-int21::lac12-intE1::gal10 intE9::pgm-intE26::gfa-intE20-ugp-intE24::gna-intE14::qri-intE13::pcm intE10::lgtA-linker3-lgtB pfk-ɑ::X1 pfk-β::X2 | 乳糖、葡萄糖、甘油 | pH 6.5、30 ℃、—、BMGY培养基 | 1.24(3 L) | [ |
| 菌株 | 改造情况 | 底物 | 发酵条件 | 发酵罐产量/(g/L) | 参考文献 |
|---|---|---|---|---|---|
| 大肠杆菌(E. coli)BL21(DE3) | ΔwecBΔnagBΔlacZ pCD-pfgalT-galE(源自Pseudogulbenkiania ferrooxidans) | 乳糖、甘油 | pH 6.8、28 ℃、0.2 mmol/L IPTG、甘油优化培养基 | 25.49(3 L)① | [ |
| 大肠杆菌(E. coli)BL21(DE3) | ΔlacZΔugd pCD-lgtA-wbgO pET-ETK(源自E. coli O55:H7) | 乳糖、甘油 | pH 6.8、25 ℃、0.4 mmol/L IPTG、甘油优化培养基 | 31.56(3 L) | [ |
| 大肠杆菌(E. coli) BL21(DE3) | ΔwecBΔnagBΔlacZΔrecA::P tac -galE、pET-lgtA、pAC-PfgalT、pCD-udk-pyrF | 乳糖、甘油 | pH 6.8、25 ℃、0.2 mmol/L IPTG、甘油优化培养基 | 57.5(5 L) | [ |
| 大肠杆菌(E. coli)BL21(DE3) | 菌株A:ΔlacZΔwecBΔnagBΔugd ΔrecA::P tac -galE 四拷贝:ΔIS186-1::Ptac-lgtA pET-wbgO 菌株B:pET-BbhI | 乳糖、甘油 | pH 6.8、25 ℃、0.2 mmol/L IPTG、甘油优化培养基 | 30.13(5 L) | [ |
| 大肠杆菌(E. coli)BL21 star (DE3) | ΔlacZΔwcaJ ΔintQ::lgtA-galE ΔcaiB::wbdO | 乳糖、甘油 | pH 6.8、29.5 ℃、0.02 mmol/L IPTG、甘油优化培养基 | 109.8(5 L) | [ |
| 大肠杆菌(E. coli)MG1655 | ΔlacZΔwcaJΔugd ΔP lacY ::P J23119 P galE ::P tac ΔarsB::lgtA ΔnagB::lgtA ΔpoxB::lgtA ΔldhA::wbgO ΔwecB::wbgO ΔmanY::wbgO ΔmanZ::wbgO ΔxylB::wbgO ΔhlyE::mdfA | 乳糖、甘油 | pH 6.8、25 ℃、—②、甘油优化培养基 | 42.38(5 L) | [ |
表7 微生物细胞法合成LNT
Table 7 Microbial cell factory for LNT synthesis
| 菌株 | 改造情况 | 底物 | 发酵条件 | 发酵罐产量/(g/L) | 参考文献 |
|---|---|---|---|---|---|
| 大肠杆菌(E. coli)BL21(DE3) | ΔwecBΔnagBΔlacZ pCD-pfgalT-galE(源自Pseudogulbenkiania ferrooxidans) | 乳糖、甘油 | pH 6.8、28 ℃、0.2 mmol/L IPTG、甘油优化培养基 | 25.49(3 L)① | [ |
| 大肠杆菌(E. coli)BL21(DE3) | ΔlacZΔugd pCD-lgtA-wbgO pET-ETK(源自E. coli O55:H7) | 乳糖、甘油 | pH 6.8、25 ℃、0.4 mmol/L IPTG、甘油优化培养基 | 31.56(3 L) | [ |
| 大肠杆菌(E. coli) BL21(DE3) | ΔwecBΔnagBΔlacZΔrecA::P tac -galE、pET-lgtA、pAC-PfgalT、pCD-udk-pyrF | 乳糖、甘油 | pH 6.8、25 ℃、0.2 mmol/L IPTG、甘油优化培养基 | 57.5(5 L) | [ |
| 大肠杆菌(E. coli)BL21(DE3) | 菌株A:ΔlacZΔwecBΔnagBΔugd ΔrecA::P tac -galE 四拷贝:ΔIS186-1::Ptac-lgtA pET-wbgO 菌株B:pET-BbhI | 乳糖、甘油 | pH 6.8、25 ℃、0.2 mmol/L IPTG、甘油优化培养基 | 30.13(5 L) | [ |
| 大肠杆菌(E. coli)BL21 star (DE3) | ΔlacZΔwcaJ ΔintQ::lgtA-galE ΔcaiB::wbdO | 乳糖、甘油 | pH 6.8、29.5 ℃、0.02 mmol/L IPTG、甘油优化培养基 | 109.8(5 L) | [ |
| 大肠杆菌(E. coli)MG1655 | ΔlacZΔwcaJΔugd ΔP lacY ::P J23119 P galE ::P tac ΔarsB::lgtA ΔnagB::lgtA ΔpoxB::lgtA ΔldhA::wbgO ΔwecB::wbgO ΔmanY::wbgO ΔmanZ::wbgO ΔxylB::wbgO ΔhlyE::mdfA | 乳糖、甘油 | pH 6.8、25 ℃、—②、甘油优化培养基 | 42.38(5 L) | [ |
| [1] | 史然, 江正强. 2′-岩藻糖基乳糖的酶法合成研究进展和展望[J]. 合成生物学, 2020, 1(4): 481-494. |
| SHI R, JIANG Z Q. Enzymatic synthesis of 2′-fucosyllactose: advances and perspectives[J]. Synthetic Biology Journal, 2020, 1(4): 481-494. | |
| [2] | SOUSA Y R F, MEDEIROS L B, PINTADO M M E, et al. Goat milk oligosaccharides: composition, analytical methods and bioactive and nutritional properties[J]. Trends in Food Science & Technology, 2019, 92: 152-161. |
| [3] | URRUTIA-BACA V H, ÁLVAREZ-BUYLLA J R, GUEIMONDE M, et al. Comparative study of the oligosaccharide profile in goat, bovine, sheep, and human milk whey[J]. Food Chemistry, 2025, 463: 141123. |
| [4] | 马心悦, 黄纯翠, 赵耀, 等. 人乳寡糖的结构及其分离分析[J]. 生物化学与生物物理进展, 2023, 50(12): 2869-2878. |
| MA X Y, HUANG C C, ZHAO Y, et al. Structure and separation analysis of human milk oligosaccharides[J]. Progress in Biochemistry and Biophysics, 2023, 50(12): 2869-2878. | |
| [5] | BENSIMON J, LU X N. Human milk oligosaccharides produced by synthetic biology[J]. Journal of Agriculture and Food Research, 2024, 18: 101361. |
| [6] | BODE L. Human milk oligosaccharides: next-generation functions and questions[J]. Nestle Nutrition Institute Workshop Series, 2019, 90: 191-201. |
| [7] | LI Y Y, DU G C, CHEN J, et al. Glycosyltransferases in human milk oligosaccharide synthesis: structural mechanisms and rational design[J]. Current Opinion in Biotechnology, 2025, 93: 103315. |
| [8] | ZHU Y Y, YANG L H, ZHAO C H, et al. Microbial synthesis of lacto-N-fucopentaose Ⅰ with high titer and purity by screening of specific glycosyltransferase and elimination of residual lacto-N-triose Ⅱ and lacto-N-tetraose[J]. Journal of Agricultural and Food Chemistry, 2024, 72(8): 4317-4324. |
| [9] | WANG L, ZHU Y Y, ZHAO C H, et al. Engineering Escherichia coli for highly efficient biosynthesis of lacto-N-difucohexaose Ⅱ through de novo GDP-L-fucose pathway[J]. Journal of Agricultural and Food Chemistry, 2024, 72(18): 10469-10476. |
| [10] | PEI C X, PENG X L, WU Y R, et al. Characterization and application of active human α2,6-sialyltransferases ST6GalNAc Ⅴ and ST6GalNAc Ⅵ recombined in Escherichia coli [J]. Enzyme and Microbial Technology, 2024, 177: 110426. |
| [11] | SUGITA T, SAMPEI S, KOKETSU K. Efficient production of lacto-N-fucopentaose Ⅲ in engineered Escherichia coli using α1,3-fucosyltransferase from Parabacteroides goldsteinii [J]. Journal of Biotechnology, 2023, 361: 110-118. |
| [12] | 孟佳炜, 朱莺莺, 罗国聪, 等. 乳酰-N-新四糖的生理功能、生物合成及其衍生化研究进展[J]. 中国食品学报, 2022, 22(3): 320-328. |
| MENG J W, ZHU Y Y, LUO G C, et al. Recent advances on physiological function, biosynthesis, and derivatization of lacto-N-neotetraose[J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(3): 320-328. | |
| [13] | LI C C, LI M L, GAO W, et al. Biosynthesis of sialyllacto-N-tetraose c in engineered Escherichia coli [J]. Journal of Agricultural and Food Chemistry, 2024, 72(46): 25836-25846. |
| [14] | SPRENGER G A, BAUMGÄRTNER F, ALBERMANN C. Production of human milk oligosaccharides by enzymatic and whole-cell microbial biotransformations[J]. Journal of Biotechnology, 2017, 258: 79-91. |
| [15] | GALEOTTI F, COPPA G V, ZAMPINI L, et al. Capillary electrophoresis separation of human milk neutral and acidic oligosaccharides derivatized with 2-aminoacridone[J]. ELECTROPHORESIS, 2014, 35(6): 811-818. |
| [16] | TONON K M, MIRANDA A, ABRÃO A C F V, et al. Validation and application of a method for the simultaneous absolute quantification of 16 neutral and acidic human milk oligosaccharides by graphitized carbon liquid chromatography-electrospray ionization-mass spectrometry[J]. Food Chemistry, 2019, 274: 691-697. |
| [17] | BYCH K, MIKŠ M H, JOHANSON T, et al. Production of HMOs using microbial hosts: from cell engineering to large scale production[J]. Current Opinion in Biotechnology, 2019, 56: 130-137. |
| [18] | SCHENK S, BODE L, JENSEN S R, et al. Systemic availability of human milk oligosaccharides in infants and adults: a narrative review[J]. Advances in Nutrition, 2025, 16(9): 100488. |
| [19] | PALUR D S K, PRESSLEY S R, ATSUMI S. Microbial production of human milk oligosaccharides[J]. Molecules, 2023, 28(3): 1491. |
| [20] | GE H D, ZHU W X, ZHANG J, et al. Human milk microbiota and oligosaccharides in colostrum and mature milk: comparison and correlation[J]. Frontiers in Nutrition, 2024, 11: 1512700. |
| [21] | KONG C L, CHENG L H, KRENNING G, et al. Human milk oligosaccharides mediate the crosstalk between intestinal epithelial caco-2 cells and Lactobacillus plantarum WCFS1 in an in vitro model with intestinal peristaltic shear force[J]. The Journal of Nutrition, 2020, 150(8): 2077-2088. |
| [22] | LIAO J Q, WANG M H, LI H Y, et al. Human milk oligosaccharide LNnT promotes intestinal epithelial growth and maturation during the early life of infant mice[J]. Journal of Agricultural and Food Chemistry, 2025, 73(11): 6678-6690. |
| [23] | LI M L, LU H, XUE Y L, et al. An in vitro colonic fermentation study of the effects of human milk oligosaccharides on gut microbiota and short-chain fatty acid production in infants aged 0-6 months[J]. Foods, 2024, 13(6): 921. |
| [24] | CHEN Y L, LUO G X, SONG F B, et al. Truncated rotavirus VP4 proteins induce stronger protective immunity compared to P2-VP8 in animal models[J]. Antiviral Research, 2025, 238: 106156. |
| [25] | SUN X M, LI D D, QI J X, et al. Glycan binding specificity and mechanism of human and porcine P [6]/P [19] rotavirus VP8*s[J]. Journal of Virology, 2018, 92(14): e00538-18. |
| [26] | EL-HAWIET A, KITOVA E N, KLASSEN J S. Recognition of human milk oligosaccharides by bacterial exotoxins[J]. Glycobiology, 2015, 25(8): 845-854. |
| [27] | THOMAS P G, CARTER M R, ATOCHINA O, et al. Maturation of dendritic cell 2 phenotype by a helminth glycan uses a Toll-like receptor 4-dependent mechanism[J]. Journal of Immunology, 2003, 171(11): 5837-5841. |
| [28] | IDÄNPÄÄN-HEIKKILÄ I, SIMON P M, ZOPF D, et al. Oligosaccharides interfere with the establishment and progression of experimental pneumococcal pneumonia[J]. The Journal of Infectious Diseases, 1997, 176(3): 704-712. |
| [29] | OTTINO-GONZÁLEZ J, ADISE S, MACHLE C J, et al. Consumption of different combinations of human milk oligosaccharides in the first 6 months of infancy is positively associated with early cognition at 2 years of age in a longitudinal cohort of Latino children[J]. The American Journal of Clinical Nutrition, 2024, 120(3): 593-601. |
| [30] | CHEETHAM N W H, DUBE V E. Preparation of lacto-N-neotetraose from human milk by high-performance liquid chromatography[J]. Journal of Chromatography A, 1983, 262: 426-430. |
| [31] | ALY M R E, IBRAHIM E I, ASHRY E H EL, et al. Synthesis of lacto-N-neotetraose and lacto-N-tetraose using the dimethylmaleoyl group as amino protective group[J]. Carbohydrate Research, 1999, 316(1-4): 121-132. |
| [32] | BANDARA M D, STINE K J, DEMCHENKO A V. The chemical synthesis of human milk oligosaccharides: lacto-N-neotetraose (Galβ1→4GlcNAcβ1→3Galβ1→4Glc)[J]. Carbohydrate Research, 2019, 483: 107743. |
| [33] | BANDARA M D, STINE K J, DEMCHENKO A V. The chemical synthesis of human milk oligosaccharides: lacto-N-tetraose (Galβ1→3GlcNAcβ1→3Galβ1→4Glc)[J]. Carbohydrate Research, 2019, 486: 107824. |
| [34] | 刘丹, 孙柳, 赵春华, 等. 母乳低聚糖LNnT和LNT的研究进展及法规市场情况概述[J]. 中国食品添加剂, 2024, 35(8): 230-240. |
| LIU D, SUN L, ZHAO C H, et al. Research progress and regulatory market overview of breast milk oligosaccharides LNnT and LNT[J]. China Food Additives, 2024, 35(8): 230-240. | |
| [35] | EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA), TURCK D, CASTENMILLER J, et al. Safety of lacto-N-neotetraose (LNnT) produced by derivative strains of E. coli BL21 as a novel food pursuant to Regulation (EU) 2015/2283[J]. EFSA Journal European Food Safety Authority, 2020, 18(11): e06305. |
| [36] | EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA), TURCK D, BOHN T, et al. Safety of lacto-N-tetraose (LNT) produced by derivative strains of Escherichia coli BL21 (DE3) as a Novel Food pursuant to Regulation (EU) 2015/2283[J]. EFSA Journal, 2022, 20(5): e07242. |
| [37] | CHEN C C, ZHANG Y, XUE M Y, et al. Sequential one-pot multienzyme (OPME) synthesis of lacto-N-neotetraose and its sialyl and fucosyl derivatives[J]. Chemical Communications, 2015, 51(36): 7689-7692. |
| [38] | JENNINGS M P, HOOD D W, PEAK I R A, et al. Molecular analysis of a locus for the biosynthesis and phase-variable expression of the lacto-N-neotetraose terminal lipopolysaccharide structure in Neisseria meningitidis [J]. Molecular Microbiology, 1995, 18(4): 729-740. |
| [39] | PENG W J, PRANSKEVICH J, NYCHOLAT C, et al. Helicobacter pylori β1,3-N-acetylglucosaminyltransferase for versatile synthesis of type 1 and type 2 poly-LacNAcs on N-linked, O-linked and I-antigen glycans[J]. Glycobiology, 2012, 22(11): 1453-1464. |
| [40] | ZEUNER B, NYFFENEGGER C, MIKKELSEN J D, et al. Thermostable β-galactosidases for the synthesis of human milk oligosaccharides[J]. New Biotechnology, 2016, 33(3): 355-360. |
| [41] | MATSUO I, KIM S, YAMAMOTO Y, et al. Cloning and overexpression of β-N-acetylglucosaminidase encoding gene nagA from Aspergillus oryzae and enzyme-catalyzed synthesis of human milk oligosaccharide[J]. Bioscience, Biotechnology, and Biochemistry, 2003, 67(3): 646-650. |
| [42] | NYFFENEGGER C, NORDVANG R T, ZEUNER B, et al. Backbone structures in human milk oligosaccharides: trans-glycosylation by metagenomic β-N-acetylhexosaminidases[J]. Applied Microbiology and Biotechnology, 2015, 99(19): 7997-8009. |
| [43] | TEZE D, ZHAO J, WIEMANN M, et al. Rational enzyme design without structural knowledge: a sequence-based approach for efficient generation of transglycosylases[J]. Chemistry-A European Journal, 2021, 27(40): 10323-10334. |
| [44] | CHEN X D, JIN L, JIANG X K, et al. Converting a β-N-acetylhexosaminidase into two trans-β-N-acetylhexosaminidases by domain-targeted mutagenesis[J]. Applied Microbiology and Biotechnology, 2020, 104(2): 661-673. |
| [45] | SCHMÖLZER K, WEINGARTEN M, BALDENIUS K, et al. Glycosynthase principle transformed into biocatalytic process technology: lacto-N-triose Ⅱ production with engineered exo-hexosaminidase[J]. ACS Catalysis, 2019, 9(6): 5503-5514. |
| [46] | LIU Y H, MA J W, SHI R, et al. Biochemical characterization of a β-N-acetylhexosaminidase from Catenibacterium mitsuokai suitable for the synthesis of lacto-N-triose Ⅱ[J]. Process Biochemistry, 2021, 102: 360-368. |
| [47] | LI C Q, CAO Z N, JIANG H, et al. Characterization of a GH20 β-N-acetylhexosaminidase from Flavobacterium algicola suitable to synthesize lacto-N-triose Ⅱ[J]. Journal of Agricultural and Food Chemistry, 2024, 72(9): 4849-4857. |
| [48] | LIU Y H, YAN Q J, MA J W, et al. Production of lacto-N-triose Ⅱ and lacto-N-neotetraose from chitin by a novel β-N-acetylhexosaminidase expressed in Pichia pastoris [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(41): 15466-15474. |
| [49] | LIU Y H, YAN Q J, MA J W, et al. Directed evolution of a β-N-acetylhexosaminidase from Haloferula sp. for lacto-N-triose Ⅱ and lacto-N-neotetraose synthesis from chitin[J]. Enzyme and Microbial Technology, 2023, 164: 110177. |
| [50] | JAMEK S B, MUSCHIOL J, HOLCK J, et al. Loop protein engineering for improved transglycosylation activity of a β-N-acetylhexosaminidase[J]. ChemBioChem, 2018, 19(17): 1858-1865. |
| [51] | CAO Z N, LI C Q, JIANG H, et al. Molecular modification of a GH84 β-N-acetylglucosaminidase from Streptomyces violascens for synthesis of lacto-N-triose Ⅱ using whey powder and chitin-derived N-acetyl chitobiose[J]. Food Chemistry, 2025, 474: 143046. |
| [52] | LIU Y H, WANG L, HUANG P, et al. Efficient sequential synthesis of lacto-N-triose Ⅱ and lacto-N-neotetraose by a novel β-N-acetylhexosaminidase from Tyzzerella nexilis [J]. Food Chemistry, 2020, 332: 127438. |
| [53] | ABDUL MANAS N H, ILLIAS R MD, MAHADI N M. Strategy in manipulating transglycosylation activity of glycosyl hydrolase for oligosaccharide production[J]. Critical Reviews in Biotechnology, 2018, 38(2): 272-293. |
| [54] | WAKARCHUK W, MARTIN A, JENNINGS M P, et al. Functional relationships of the genetic locus encoding the glycosyltransferase enzymes involved in expression of the lacto-N-neotetraose terminal lipopolysaccharide structure in Neisseria meningitidis [J]. Journal of Biological Chemistry, 1996, 271(32): 19166-19173. |
| [55] | ZHU Y Y, LUO G C, LI Z Y, et al. Efficient biosynthesis of lacto-N-neotetraose by a novel β-1,4-galactosyltransferase from Aggregatibacter actinomycetemcomitans NUM4039[J]. Enzyme and Microbial Technology, 2022, 153: 109912. |
| [56] | LUO G C, ZHU Y Y, MENG J W, et al. A novel β-1,4-galactosyltransferase from Histophilus somni enables efficient biosynthesis of lacto-N-neotetraose via both enzymatic and cell factory approaches[J]. Journal of Agricultural and Food Chemistry, 2021, 69(20): 5683-5690. |
| [57] | MURATA T, INUKAI T, SUZUKI M, et al. Facile enzymatic conversion of lactose into lacto-N-tetraose and lacto-N-neotetraose[J]. Glycoconjugate Journal, 1999, 16(3): 189-195. |
| [58] | 王建宇, 向芷璇, 刘丹, 等. 芽孢杆菌截短β-半乳糖苷酶的理性设计及在合成乳糖-N-新四糖中的应用[J]. 食品工业科技, 2025, 46(17): 232-239. |
| WANG J Y, XIANG Z X, LIU D, et al. Rational design of a truncated β-galactosidase from Bacillus sp. and its application in the synthesis of lacto-N-neotetraose[J]. Science and Technology of Food Industry, 2025, 46(17): 232-239. | |
| [59] | WANG J Y, XIANG Z X, LIU D, et al. Protein engineering of a novel β-galactosidase from Thermus scotoductus for efficient synthesis of lacto-N-neotetraose from chitin powder[J]. Journal of Agricultural and Food Chemistry, 2024, 72(16): 9289-9296. |
| [60] | LI J, WANG J Y, YAN Q J, et al. Biochemical characterization of a novel C-terminally truncated β-galactosidase from Paenibacillus antarcticus with high transglycosylation activity[J]. Journal of Dairy Science, 2024, 107(12): 10141-10152. |
| [61] | LUO G C, HUANG Z L, ZHU Y Y, et al. Crystal structure and structure-guided tunnel engineering in a bacterial β-1,4-galactosyltransferase[J]. International Journal of Biological Macromolecules, 2024, 279: 135374. |
| [62] | LAU K, THON V, YU H, et al. Highly efficient chemoenzymatic synthesis of β1-4-linked galactosides with promiscuous bacterial β1-4-galactosyltransferases[J]. Chemical Communications, 2010, 46(33): 6066-6068. |
| [63] | ZHANG Z Q, KONG H C, BAN X F, et al. C-terminal domains of β-galactosidase from Paenibacillus macquariensis modulate product distribution by altering substrate binding conformation[J]. International Journal of Biological Macromolecules, 2025, 310: 143412. |
| [64] | CHOI J Y, HONG H, SEO H, et al. High galacto-oligosaccharide production and a structural model for transgalactosylation of β-galactosidase Ⅱ from Bacillus circulans [J]. Journal of Agricultural and Food Chemistry, 2020, 68(47): 13806-13814. |
| [65] | HE X Y, LI Y, TAO Y H, et al. Discovering and efficiently promoting the extracellular secretory expression of Thermobacillus sp. ZCTH02-B1 sucrose phosphorylase in Escherichia coli [J]. International Journal of Biological Macromolecules, 2021, 173: 532-540. |
| [66] | LIU X W, XIA C F, LI L, et al. Characterization and synthetic application of a novel beta1,3-galactosyltransferase from Escherichia coli O55: H7[J]. Bioorganic & Medicinal Chemistry, 2009, 17(14): 4910-4915. |
| [67] | MCARTHUR J B, YU H, CHEN X. A bacterial β1-3-galactosyltransferase enables multigram-scale synthesis of human milk lacto-N-tetraose (LNT) and its fucosides[J]. ACS Catalysis, 2019, 9(12): 10721-10726. |
| [68] | SCHMÖLZER K, WEINGARTEN M, BALDENIUS K, et al. Lacto-N-tetraose synthesis by wild-type and glycosynthase variants of the β-N-hexosaminidase from Bifidobacterium bifidum [J]. Organic & Biomolecular Chemistry, 2019, 17(23): 5661-5665. |
| [69] | CASTEJÓN-VILATERSANA M, FAIJES M, PLANAS A. Transglycosylation activity of engineered Bifidobacterium lacto-N-biosidase mutants at donor subsites for lacto-N-tetraose synthesis[J]. International Journal of Molecular Sciences, 2021, 22(6): 3230. |
| [70] | VUILLEMIN M, HOLCK J, MATWIEJUK M, et al. Improvement of the transglycosylation efficiency of a lacto-N-biosidase from Bifidobacterium bifidum by protein engineering[J]. Applied Sciences, 2021, 11(23): 11493. |
| [71] | MIYAZAKI T, SATO T, FURUKAWA K, et al. Enzymatic synthesis of lacto-N-difucohexaose Ⅰ which binds to Helicobacter pylori [J]. Methods in enzymology, 2010, 480: 511-524. |
| [72] | LI T, LI J, YAN Q J, et al. Biochemical characterization of a novel β-galactosidase from Lacticaseibacillus zeae and its application in synthesis of lacto-N-tetraose[J]. Journal of Dairy Science, 2023, 106(10): 6623-6634. |
| [73] | WADA J, ANDO T, KIYOHARA M, et al. Bifidobacterium bifidum lacto-N-biosidase, a critical enzyme for the degradation of human milk oligosaccharides with a type 1 structure[J]. Applied and Environmental Microbiology, 2008, 74(13): 3996-4004. |
| [74] | FANG J L, TSAI T W, LIANG C Y, et al. Enzymatic synthesis of human milk fucosides α1, 2-fucosyl para-lacto-N-hexaose and its isomeric derivatives[J]. Advanced Synthesis & Catalysis, 2018, 360(17): 3213-3219. |
| [75] | VUILLEMIN M, LENGYEL M, MUSCHIOL J, et al. Enzymatic lacto-N-biose elongation of human milk oligosaccharides with the GH136 lacto-N-biosidase LnbX engineered for improved transglycosylation[J]. Enzyme and Microbial Technology, 2025, 189: 110660. |
| [76] | ZHU Y Y, WAN L, MENG J W, et al. Metabolic engineering of Escherichia coli for lacto-N-triose Ⅱ production with high productivity[J]. Journal of Agricultural and Food Chemistry, 2021, 69(12): 3702-3711. |
| [77] | PRIEM B, GILBERT M, WAKARCHUK W W, et al. A new fermentation process allows large-scale production of human milk oligosaccharides by metabolically engineered bacteria[J]. Glycobiology, 2002, 12(4): 235-240. |
| [78] | HU D D, WU H, ZHU Y Y, et al. Engineering Escherichia coli for highly efficient production of lacto-N-triose Ⅱ from N-acetylglucosamine, the monomer of chitin[J]. Biotechnology for Biofuels, 2021, 14(1): 198. |
| [79] | SUGITA T, KOKETSU K. Transporter engineering enables the efficient production of lacto-N-triose Ⅱ and lacto-N-tetraose in Escherichia coli [J]. Journal of Agricultural and Food Chemistry, 2022, 70(16): 5106-5114. |
| [80] | HU M M, ZHANG T. Metabolic engineering of the probiotic Escherichia coli Nissle 1917 for lacto-N-triose Ⅱ production[J]. Food Bioscience, 2024, 59: 103959. |
| [81] | LI J Z, HE T Y, ZHAO J J, et al. Combination of metabolic engineering and high-throughput screening to realize high-producing lacto-N-triose Ⅱ in Escherichia coli [J]. Journal of Agricultural and Food Chemistry, 2025, 73(28): 17769-17775. |
| [82] | WANG Z J, ZHANG Z M, LI Y, et al. Two-step production method for lacto-N-triose Ⅱ via cell-coupled biocatalytic strategy[J]. Journal of Agricultural and Food Chemistry, 2025, 73(14): 8391-8400. |
| [83] | ZHANG P, ZHU Y Y, LI Z Y, et al. Designing a highly efficient biosynthetic route for lacto-N-neotetraose production in Escherichia coli [J]. Journal of Agricultural and Food Chemistry, 2022, 70(32): 9961-9968. |
| [84] | LIAO Y X, WU J Y, LI Z K, et al. Metabolic engineering of Escherichia coli for high-level production of lacto-N-neotetraose and lacto-N-tetraose[J]. Journal of Agricultural and Food Chemistry, 2023, 71(30): 11555-11566. |
| [85] | HU M M, LI M L, LI C C, et al. High-level productivity of lacto-N-neotetraose in Escherichia coli by systematic metabolic engineering[J]. Journal of Agricultural and Food Chemistry, 2023, 71(9): 4051-4058. |
| [86] | TAO M T, YANG L H, ZHAO C H, et al. Implementation of a quorum-sensing system for highly efficient biosynthesis of lacto-N-neotetraose in engineered Escherichia coli MG1655[J]. Journal of Agricultural and Food Chemistry, 2024, 72(13): 7179-7186. |
| [87] | LIAO C, XU X H, HUANG H Y, et al. Construction of a plasmid-free Escherichia coli strain for lacto-N-neotetraose biosynthesis[J]. Systems Microbiology and Biomanufacturing, 2024, 4(3): 965-982. |
| [88] | ZHANG M W, ZHANG K, LIU T L, et al. High-level production of lacto-N-neotetraose in Escherichia coli by stepwise optimization of the biosynthetic pathway[J]. Journal of Agricultural and Food Chemistry, 2023, 71(43): 16212-16220. |
| [89] | LIAO Y X, LAO C W, WU J Y, et al. High-yield synthesis of lacto-N-neotetraose from glycerol and glucose in engineered Escherichia coli [J]. Journal of Agricultural and Food Chemistry, 2024, 72(10): 5325-5338. |
| [90] | LI Z Y, ZHU Y Y, ZHANG P, et al. Pathway optimization and uridine 5′-triphosphate regeneration for enhancing lacto-N-tetraose biosynthesis in engineered Escherichia coli [J]. Journal of Agricultural and Food Chemistry, 2022, 70(25): 7727-7735. |
| [91] | QIAN Q Y, YANG L H, ZHAO C H, et al. Highly efficient production of lacto-N-tetraose in plasmid-free Escherichia coli through chromosomal integration of multicopy key glycosyltransferase genes[J]. International Journal of Biological Macromolecules, 2025, 284: 137987. |
| [92] | DONG X M, LI N, LIU Z M, et al. Modular pathway engineering of key precursor supply pathways for lacto-N-neotetraose production in Bacillus subtilis [J]. Biotechnology for Biofuels, 2019, 12: 212. |
| [93] | DONG X M, LI N, LIU Z M, et al. CRISPRi-guided multiplexed fine-tuning of metabolic flux for enhanced lacto-N-neotetraose production in Bacillus subtilis [J]. Journal of Agricultural and Food Chemistry, 2020, 68(8): 2477-2484. |
| [94] | YANG J, MUND N K, YANG L R, et al. Engineering glycolytic pathway for improved lacto-N-neotetraose production in Pichia pastoris [J]. Enzyme and Microbial Technology, 2025, 184: 110576. |
| [95] | 刘丹, 梁山泉, 闫巧娟, 等. 基于模块优化强化大肠杆菌合成乳糖-N-新四糖的研究[J]. 食品科学技术学报, 2024, 42(2): 75-83. |
| LIU D, LIANG S Q, YAN Q J, et al. Study on enhancement of lacto-N-neotetraose synthesis in Escherichia coli based on module optimization[J]. Journal of Food Science and Technology, 2024, 42(2): 75-83. | |
| [96] | LIU T L, ZHANG K, ZHANG M W, et al. De novo synthesis of lacto-N-neotetraose in Escherichia coli through metabolic engineering with glucose as the sole carbon source[J]. Journal of Agricultural and Food Chemistry, 2025, 73(22): 13736-13745. |
| [97] | TAO M T, YANG L H, ZHAO C H, et al. Rational modification of Neisseria meningitidis β1,3-N-acetylglucosaminyltransferase for lacto-N-neotetraose synthesis with reduced long-chain derivatives[J]. Carbohydrate Polymers, 2024, 345: 122543. |
| [98] | LIU Y F, LIU L, LI J H, et al. Synthetic biology toolbox and chassis development in Bacillus subtilis [J]. Trends in Biotechnology, 2019, 37(5): 548-562. |
| [99] | LIU H, ZENG Q Q, ZHU C L, et al. High-throughput screening and directed evolution of β-1, 3-N-acetylglucosaminyltransferase for enhanced LNnT production in engineered Saccharomyces cerevisiae [J]. Journal of Agricultural and Food Chemistry, 2025, 73(13): 7966-7974. |
| [100] | ZHU Y Y, LI Z Y, LUO G C, et al. Metabolic engineering of Escherichia coli for efficient biosynthesis of lacto-N-tetraose using a novel β-1, 3-galactosyltransferase from Pseudogulbenkiania ferrooxidans [J]. Journal of Agricultural and Food Chemistry, 2021, 69(38): 11342-11349. |
| [101] | HU M M, LI M L, MIAO M, et al. Engineering Escherichia coli for the high-titer biosynthesis of lacto-N-tetraose[J]. Journal of Agricultural and Food Chemistry, 2022, 70(28): 8704-8712. |
| [102] | YANG L H, ZHU Y Y, ZHAO C H, et al. Elimination of residual lacto-N-triose Ⅱ for lacto-N-tetraose biosynthesis in engineered Escherichia coli [J]. Journal of Agricultural and Food Chemistry, 2023, 71(33): 12511-12518. |
| [103] | WANG J, LAO C W, WU J Y, et al. Multimodular metabolic engineering strategy enables high-efficiency synthesis of lacto-N-fucopentaose Ⅰ in engineered Escherichia coli [J]. Journal of Agricultural and Food Chemistry, 2025, 73(25): 15869-15879. |
| [104] | ABRAHAMSON C H, PALMERO B J, KENNEDY N W, et al. Theoretical and practical aspects of multienzyme organization and encapsulation[J]. Annual Review of Biophysics, 2023, 52: 553-572. |
| [105] | BANANI S F, LEE H O, HYMAN A A, et al. Biomolecular condensates: organizers of cellular biochemistry[J]. Nature Reviews Molecular Cell Biology, 2017, 18(5): 285-298. |
| [106] | LYON A S, PEEPLES W B, ROSEN M K. A framework for understanding the functions of biomolecular condensates across scales[J]. Nature Reviews Molecular Cell Biology, 2021, 22(3): 215-235. |
| [107] | LAU Y H, GIESSEN T W, ALTENBURG W J, et al. Prokaryotic nanocompartments form synthetic organelles in a eukaryote[J]. Nature Communications, 2018, 9: 1311. |
| [108] | WAN L, ZHU Y Y, KE J T, et al. Compartmentalization of pathway sequential enzymes into synthetic protein compartments for metabolic flux optimization in Escherichia coli [J]. Metabolic Engineering, 2024, 85: 167-179. |
| [109] | LI Y S, LI Y, LI P F, et al. Whole-cell biosynthesis of branched human milk hexasaccharide lacto-N-neohexaose[J]. Journal of Agricultural and Food Chemistry, 2025, 73(28): 17814-17823. |
| [1] | 宋开南, 张礼文, 王超, 田平芳, 李广悦, 潘国辉, 徐玉泉. 小分子生物农药及其生物合成研究进展[J]. 合成生物学, 2025, 6(5): 1203-1223. |
| [2] | 颜钊涛, 周鹏飞, 汪阳忠, 张鑫, 谢雯燕, 田晨菲, 王勇. 植物合成生物学:植物细胞大规模培养的新机遇[J]. 合成生物学, 2025, 6(5): 1107-1125. |
| [3] | 王明鹏, 陈蕾, 赵一冉, 张祎慜, 郑琪帆, 刘馨阳, 王毅学, 王钦宏. 卤化酶在生物催化中的应用:机制解析、定向进化和绿色制造的进展[J]. 合成生物学, 2025, 6(4): 728-763. |
| [4] | 盛周煌, 陈智仙, 张彦. 酵母甘露糖蛋白的研究进展[J]. 合成生物学, 2025, 6(2): 408-421. |
| [5] | 鲁锦畅, 武耀康, 吕雪芹, 刘龙, 陈坚, 刘延峰. 神经酰胺类鞘脂的绿色生物制造[J]. 合成生物学, 2025, 6(2): 422-444. |
| [6] | 韦灵珍, 王佳, 孙新晓, 袁其朋, 申晓林. 黄酮类化合物生物合成及其在化妆品中应用的研究[J]. 合成生物学, 2025, 6(2): 373-390. |
| [7] | 肖森, 胡立涛, 石智诚, 王发银, 余思婷, 堵国成, 陈坚, 康振. 可控分子量透明质酸的生物合成研究进展[J]. 合成生物学, 2025, 6(2): 445-460. |
| [8] | 汤传根, 王璟, 张烁, 张昊宁, 康振. 功能肽合成和挖掘策略研究进展[J]. 合成生物学, 2025, 6(2): 461-478. |
| [9] | 黄姝涵, 马赫, 罗云孜. 生物合成红景天苷的研究进展[J]. 合成生物学, 2025, 6(2): 391-407. |
| [10] | 仲泉周, 单依怡, 裴清云, 金艳芸, 王艺涵, 孟璐远, 王歆韵, 张雨鑫, 刘坤媛, 王慧中, 冯尚国. 生物合成法生产α-熊果苷的研究进展[J]. 合成生物学, 2025, 6(1): 118-135. |
| [11] | 竺方欢, 岑雪聪, 陈振. 微生物合成二元醇研究进展[J]. 合成生物学, 2024, 5(6): 1367-1385. |
| [12] | 刘益宁, 蒲伟, 杨金星, 王钰. ω-氨基酸与内酰胺的生物合成研究进展[J]. 合成生物学, 2024, 5(6): 1350-1366. |
| [13] | 李庚, 申晓林, 孙新晓, 王佳, 袁其朋. 过氧化物酶的重组表达和应用研究进展[J]. 合成生物学, 2024, 5(6): 1498-1517. |
| [14] | 郑皓天, 李朝风, 刘良叙, 王嘉伟, 李恒润, 倪俊. 负碳人工光合群落的设计、优化与应用[J]. 合成生物学, 2024, 5(5): 1189-1210. |
| [15] | 程晓雷, 刘天罡, 陶慧. 萜类化合物的非常规生物合成研究进展[J]. 合成生物学, 2024, 5(5): 1050-1071. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||