• 特约评述 •
盛周煌1,3, 陈智仙1,3, 张彦1,2
出版日期:
2024-08-30
通讯作者:
陈智仙,张彦
作者简介:
基金资助:
Zhouhuang SHENG1,3, Zhixian CHEN1,3, Yan ZHANG1,2
Online:
2024-08-30
Contact:
Zhixian CHEN, Yan ZHANG
摘要:
酵母甘露糖蛋白(Mannoprotein)是一种位于酵母细胞壁最外层的非丝状糖蛋白,作为天然功能性成分,其商业化应用受限,目前仅用作葡萄酒稳定剂。为推动酵母甘露糖蛋白的广泛商业化应用,本文简要介绍了其在肽链、核心区和外链组成方面的结构特征,并论述了酸法、碱法、酶法和物理方法提取酵母甘露糖蛋白的优缺点。还系统综述了酵母甘露糖蛋白在改善肠道健康、刺激免疫、抗氧化、降血脂、吸附霉菌毒素等方面的生物学活性,以及其在甘露寡糖生产、生物乳化剂、营养健康食品、水果保鲜、动物营养和葡萄酒中的应用。最后,酵母甘露糖蛋白的N-糖基化和O-糖基化合成途径及过程控制基因改造策略的研究进展,为高效生产甘露糖蛋白提供了新技术。然而酵母甘露糖蛋白的生产结构多样化给研究带来了挑战且结构-功能关系尚未揭示。未来应重点研究酵母甘露糖蛋白的结构与生物活性的关系,并结合生物合成技术,以推动其产业发展,提升在食品、化妆品和医药等领域的应用价值。
中图分类号:
盛周煌, 陈智仙, 张彦. 酵母甘露糖蛋白的研究进展[J]. 合成生物学, DOI: 10.12211/2096-8280.2024-050.
Zhouhuang SHENG, Zhixian CHEN, Yan ZHANG. Research progress of yeast mannoprotein[J]. Synthetic Biology Journal, DOI: 10.12211/2096-8280.2024-050.
图2 酵母甘露糖蛋白的结构特征(a,N-糖基化甘露糖蛋白;b,O-糖基化甘露糖蛋白)
Fig. 2 The structural characteristics of yeast mannoprotein(a, N-glycosylated yeast mannoprotein;b,O-glycosylated yeast mannoprotein)
图3 酵母甘露糖蛋白的生物合成途径(Glu—葡萄糖;G6-P—葡萄糖-6-磷酸;PGM1—磷酸葡萄糖变位酶;G1-P—葡萄糖-1-磷酸;UGP1—尿苷二磷酸葡萄糖焦磷酸酶;UDP-Glu—尿苷二磷酸葡萄糖;PGI1—磷酸葡萄糖异构酶;F6-P—果糖-6-磷酸;M6-P—甘露糖-6-磷酸;PMI40—磷酸甘露糖变位酶;SEC53—磷酸甘露糖酶;M1-P—甘露糖-1-磷酸;PSA1—鸟苷二磷酸甘露糖焦磷酸酶;GDP-Man—鸟苷二磷酸甘露糖;UDP-GlcNAc—尿苷二磷酸-N-乙酰葡糖胺;Dol-P—磷酸多萜醇;Alg—糖基化转移酶;OST—寡糖基转移酶;G-Ⅰ/G-Ⅱ—α-葡萄糖苷酶;ERMan1—内质网甘露糖苷酶I;MGAT—甘露糖基糖蛋白-N-乙酰氨基葡萄糖转移酶;DPM—多萜醇磷酸甘露糖合成酶;PMT—甘露糖转移酶)
Fig. 3 The biosynthetic pathway of yeast mannoprotein(Glu—glucose;G6-P—glucose-6-phosphat;PGM1—Phosphoglucomutase;G1-P—glucose-1-phosphat;UGP1—uridine diphosphate glucose pyrophosphatase;UDP-Glu—uridine diphosphate glucose;PGI1—phosphoglucose isomerase;F6-P—fructose-6-phosphate;M6-P—mannose-6-phosphate;PMI40—mannose phosphate isomerase;SEC53—phosphomannomutase;M1-P—mannose-1-phosphate;PSA1—guanosine diphosphate mannose pyrophosphatase;GDP-Man—guanosine diphosphate mannose;UDP-GlcNAc—uridine diphosphate-N-acetylglucosamine;Dol-P—dolichol phosphate;Alg—glycosyltransferase;OST—oligosaccharides transferase;G-Ⅰ/G-Ⅱ—α- glucosidase;ERMan1—Endoplasmic reticulum mannosidase I;MGAT—mannosyl-glycoprotein-N-acetylglucosaminyltransferase;DPM—dolichol phosphate mannose synthase;PMT—mannosyltransferase)
1 | BACON J, FARMER V C, JONES D, et al. The glucan components of the cell wall of baker's yeast (Saccharomyces cerevisiae) considered in relation to its ultrastructure [J]. Biochemical Journal, 1969, 114(3): 557-567. |
2 | FLEET G H, MANNERS D J. Isolation and composition of an alkali-soluble glucan from the cell walls of Saccharomyces cerevisiae [J]. Journal of General Microbiology, 1976, 94(1): 180. |
3 | SUNG S, NELSON R S, SILVERSTEIN S C. Yeast Mannans inhibit binding and phagocytosis of zymosan by mouse peritoneal macrophages [J]. The Journal of Cell Biology, 1983, 96(1): 160-166. |
4 | SMITH H, GRANT S, PARKER J, et al. Yeast cell wall mannan rich fraction modulates bacterial cellular respiration potentiating antibiotic efficacy [J]. Scientific Reports, 2020, 10(1): 21880-21889. |
5 | LEE T, DUGOUA J J. Nutritional supplements and their effect on glucose control [J]. Current Diabetes Reports, 2011, 11(2): 142-148. |
6 | ONITAKE T, UENO Y, TANAKA S, et al. Pulverized konjac glucomannan ameliorates oxazolone Induced colitis in mice [J]. European Journal of Nutrition, 2015, 54(6): 959-969. |
7 | 刘红芝. 酿酒酵母甘露聚糖的制备、结构鉴定及免疫活性研究[D]. 中国农业科学院, 2009. |
8 | ZHAO Y Y, WANG J Q, FU Q Z, et al. Characterization and antioxidant activity of mannans from Saccharomyces cerevisiae with different molecular weight [J]. Molecules, 2022, 27: 4439-4450. |
9 | KOROLENKO T A, BGATOVA N P, OVSYUKOVA M V, et al. Hypolipidemic effects of β-glucans, mannans, and fucoidans: mechanism of action and their prospects for clinical application [J]. Molecules, 2020, 25(8): 1819. |
10 | GALINARI D, SABRY D A, SASSAKI G L, et al. Chemical structure, antiproliferative and antioxidant activities of a cell wall α-D-mannan from yeast Kluyveromyces marxianus [J]. Carbohydrate Polymers, 2016, 157: 1298-1305. |
11 | ISEPPI A D, CURIONI A, MARANGON M, et al. Characterization and emulsifying properties of extracts obtained by physical and enzymatic methods from an oenological yeast strain [J]. Journal of the Science of Food and Agriculture, 2019, 99(13): 5702-5710. |
12 | ADMA N F DE M, EVANDRO L DE S, VILMA B DA S A, et al. Stability, nutritional and sensory characteristics of French salad dressing made with mannoprotein from spent brewer's yeast [J]. LWT-Food Science & Technology, 2015, 62(1): 771-774. |
13 | RAMOS-PINEDA A M, GARCIA-ESTEVEZ I, DUENAS M, et al. Effect of the addition of mannoproteins on the interaction between wine flavonols and salivary proteins [J]. Food Chemistry, 2018, 264(30): 226-232. |
14 | ISEPPI A D, LOMOLINO G, MARANGON M, et al. Current and future strategies for wine yeast lees valorization [J]. Food Research International, 2020, 137: 109352. |
15 | RODRIGUES A, RICARDO-DA-SILVA J M, et al. Effect of commercial mannoproteins on wine colour and tannins stability [J]. Food Chemistry, 2012, 131(3): 907-914. |
16 | 周义发, 梁忠岩. 酵母甘露聚糖的研究(Ⅰ)——纯化与鉴定[J]. 东北师大学报自然科学版, 1991, (2):79-82+86.. |
17 | SNYMAN C, NGUELA J M, SIECZKOWSKI N, et al. Optimised extraction and preliminary characterisation of mannoproteins from non-saccharomyces wine yeasts [J]. Foods (Basel, Switzerland), 2021, 10(5): 924. |
18 | MARGARIDA F, JOANA D, CARLA FP, et al. Mannans and mannan oligosaccharides (MOS) from Saccharomyces cerevisiae - a sustainable source of functional ingredients [J]. Carbohydrate Polymers, 2021, 272():118467. |
19 | 周义发, 焦明大, 胡阿林, 等. 酵母甘露聚糖的电子显微镜观察[J]. 东北师大学报(自然科学版), 1994, (1): 58-59+91. |
20 | 刘焕新, 陈宗道. 啤酒酵母胞壁多糖提取工艺的研究[J]. 重庆大学学报, 1994, 17(6): 43-48. |
21 | 孙建义, 李卫芬. 啤酒酵母甘露聚糖的提取及其对鸡肠道微生物区系的影响[J]. 浙江大学学报: 农业与生命科学版, 2001, 27(4): 447-450. |
22 | 张玉香, 尹卓容. 甘露糖蛋白的提纯及分子量测定[J]. 酿酒科技, 2005, (4): 72-74.. |
23 | 倪靖岳. 酵母甘露聚糖的生产技术研究[D]. 河北科技大学, 2015. |
24 | LI J, KARBOUNE S. A comparative study for the isolation and characterization of mannoproteins from Saccharomyces cerevisiae yeast cell wall [J]. International Journal of Biological Macromolecules, 2018, 119, 654-661[25] MATULOVÁM, CAPEKP, et al. Human pathogen Candida dubliniensis: A cell wall mannan with a high content of β-1,2-linked mannose residues [J]. Carbohydrate Polymers, 2007, 70(1): 89-100. |
26 | JUAN MM, GUILLERMO C, IGNACIO A, et al. Release of mannoproteins during Saccharomyces cerevisiae autolysis induced by pulsed electric field [J]. Frontiers in Microbiology, 2016, 7: 1435. |
27 | GANAN M, CARRASCOSA A V, PASCUAL-TERESA S D, et al. Effect of mannoproteins on the growth, gastrointestinal viability, and adherence to caco-2 cells of lactic acid bacteria [J]. Journal of Food Science, 2012, 77(3): 176-180. |
28 | CUSKIN F, LOWE E C, TEMPLE M J, et al. Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism [J]. Nature, 2015, 517(7533): 165-169. |
29 | LEI L, YDAB C. Antimicrobial activity of mannose binding lectin in grass carp (Ctenopharyngodon idella) in vivo and in vitro [J]. Fish & Shellfish Immunology, 2020, 98: 25-33. |
30 | MEDZHITOV R. Decoding the patterns of self and nonself by the innate immune system [J]. Science, 2002, 296(5566): 298-300. |
31 | BAZAN S B, BREINIG T, SCHMITT M J, et al. Heat treatment improves antigen-specific T cell activation after protein delivery by several but not all yeast genera [J]. Vaccine, 2014, 32(22): 2591-2598. |
32 | MOUE M, OKINAGA T, USUI M, et al. β-Glucan suppresses cell death of ASC deficient macrophages invaded by periodontopathic bacteria through the caspase-11 pathway [J]. FEMS Microbiology Letters, 2019, 366(8): fnz093. |
33 | FERENCZI S, SZEGI K, WINKLER Z, et al. Oligomannan prebiotic attenuates immunological, clinical and behavioral symptoms in mouse model of inflammatory bowel disease [J]. Scientific Reports, 2016, 6(1): 34132. |
34 | HOVING L R, VAN D Z H J P, AMANDA P, et al. Dietary yeast-derived mannan oligosaccharides have immune-modulatory properties but do not improve high fat diet-induced obesity and glucose intolerance [J]. Plos One, 2018, 13(5): e0196165. |
35 | SHITULENI S A, GAN F, NIDO S A, et al. Effects of yeast polysaccharide on biochemical indices, antioxidant status, histopathological lesions and genetic expressions related with lipid metabolism in mice fed with high fat diet [J]. Bioactive Carbohydrates & Dietary Fibre, 2016, 8(2): 51-57. |
36 | 杨晓红, 王元秀, 郑明洋, 等. 酵母甘露聚糖的降血脂作用研究[J]. 食品与药品, 2013, 15(2): 92-93. |
37 | CHEN Z Y, LIN S S, JIANG Y, et al. Effects of bread yeast cell wall beta-glucans on mice with loperamide-induced constipation [J]. Journal of Medicinal Food, 2019, 22(10): 1009-1021. |
38 | PEREYRA C M, CAVAGLIERI L R, CHIACCHIERA S M, et al. The corn influence on the adsorption levels of aflatoxin B1 and zearalenone by yeast cell wall [J]. Journal of Applied Microbiology, 2013, 114(3): 655-662. |
39 | KUMAR U, SURYAWANSHI R K, PRAJAPATI B P, et al. Prebiotic mannooligosaccharides: synthesis, characterization and bioactive properties [J]. Food Chemistry, 2020, 342(6): 128328. |
40 | MARZAIOLI A M, BEDINI E, LANZETTA R, et al. Conversion of yeast mannan polysaccharide in mannose oligosaccharides with a thiopropargyl linker at the pseudo-reducing end [J]. Curbohydrate Research, 2014, 383(Complete): 43-49. |
41 | NAKAJIMA T, BALLOU C E. Characterization of the carbohydrate fragments obtained from Saccharomyces cerevisiae mannan by alkaline degradation [J]. Journal of Biological Chemistry, 1974, 249(23): 7679-7684. |
42 | 贺丹艳, 罗永发. 甘露寡糖的研究与应用[J]. 饲料研究, 2010, 343(6): 4-7. |
43 | 张玉香, 周元, 屈慧鸽, 等. 甘露糖蛋白的提取及乳化性质研究[J]. 安徽农业科学, 2008(25): 10742-10744. |
44 | DIKIT P, MANEERAT S, MUSIKASANG H, et al. Emulsifier properties of the mannoprotein extract from yeast isolated from sugar palm wine[J]. Science Asia, 2010, 36(4): 312-318. |
45 | 谢芳, 潘寒姁, 袁树枝, 等. 酵母甘露聚糖处理对番茄果实贮藏效果的影响[J]. 食品科学, 2015, 36(2): 221-225. |
46 | 张丙云, 王玉丽, 王永刚. 复配酵母甘露聚糖对草莓的保鲜研究[J]. 中国食品工业, 2011(8): 42-42. |
47 | 侯亚彬, 徐梦晨, 武佩贤, 等. 酵母来源甘露聚糖的提取纯化及其对水果保鲜[J]. 化学研究, 2019, 30(2): 197-201. |
48 | XIAO R, POWER R F, MALLONEE D, et al. Effects of yeast cell wall-derived mannan-oligosaccharides on jejunal gene expression in young broiler chickens [J]. Poultry Science, 2012, 91(7): 1660-1669. |
49 | KUMAGAI Y, KAWAKAMI K, MUKAIHARA T, et al. The structural analysis and the role of calcium binding site for thermal stability in mannanase [J]. Biochimie, 2012, 94(12): 2783-2790. |
50 | TESTER R F, AL-GHAZZEWI F H. Mannans and health, with a special focus on glucomannans [J]. Food Research International, 2013, 50(1): 384-391. |
51 | LIU H X, GONG J S, LI H, et al. Biochemical characterization and cloning of an endo-l,4-beta-mannanase from Bacillus subtilis YH12 with unusually broad substrate profile[J]. Process biochemistry, 2015, 50(5): 712-721. |
52 | DIEZ L, GUADALUPE Z, AYESTARAAN B, et al. Effect of yeast mannoproteins and grape polysaccharides on the growth of wine lactic acid and acetic acid bacteria [J]. Journal of Agricultural and Food Chemistry, 2010, 58(13): 7731-7739. |
53 | SCHMIDT S A, LENG T EE, SHAUNA B, et al. Hpf2 glycan structure is critical for protection against protein haze formation in white wine [J]. Journal of Agricultural & Food Chemistry, 2009, 57(8): 3308-3315. |
54 | TANG Q, HUANG G, ZHAO F, et al. The antioxidant activities of six (1→3)-β-d-glucan derivatives prepared from yeast cell wall [J]. International Journal of Biological Macromolecules, 2017, 98: 216-221. |
55 | GALINARI, EDER, ALMEIDA-LIMA, JAILMA, et al. Antioxidant, antiproliferative, and immunostimulatory effects of cell wall alpha-D-mannan fractions from Kluyveromyces marxianus [J]. International Journal of Biological Macromolecules, 2018, 109: 837-846. |
56 | LIU Y, HUANG G L. The derivatization and antioxidant activities of yeast mannan [J]. International Journal of Biological Macromolecules, 2018, 107(Pt A): 755-761. |
57 | 季小莉, 赵国群, 刘金龙. 酿酒酵母甘露聚糖的理化性质及吸湿保湿性[J]. 精细化工, 2018, 35(2): 284-289. |
58 | BO H Y, LEE S M, CHANG H I, et al. Mannoproteins from Saccharomyces cerevisiae stimulate angiogenesis by promoting the akt-eNOS signaling pathway in endothelial cells [J]. Biochemical and Biophysical Research Communications, 2019, 519(4): 767-772. |
59 | GROOT P W J D, RUIZ C, CARLOS R. VÁZQUEZ DE ALDANA,et al. A Genomic approach for the identification and classification of genes involved in cell wall formation and its regulation in Saccharomyces cerevisiae [J]. Comparative and Functional Genomics, 2006, 2(3): 124-142. |
60 | GOW N A R, MUNRO C A, LATGE J P. The fungal cell wall: structure, biosynthesis, and function [J]. Microbiology Spectrum, 2017, 5(3). |
61 | LESAGE G, BUSSEY H. Cell wall assembly in Saccharomyces cerevisiae [J]. Microbiology and Molecular Biology Reviews, 2006, 70(2): 317-343. |
62 | LIPKE P N, OVALLE R J. Cell wall architecture in yeast: new structure and new challenges [J]. Journal of Bacteriology, 1998, 180(15): 3735-3740. |
63 | KWAK S, ROBINSON S J, LEE J W, et al. Dissection and enhancement of prebiotic properties of yeast cell wall oligosaccharides through metabolic engineering [J]. Biomaterials, 2022, 282: 121379. |
64 | Rose A H. The yeasts: metabolism and physiology of yeast [J]. Academic Press, 1989, 186(1): 183. |
65 | KAPTEYN J C, VAN DEN ENDE H, KLIS F M. The contribution of cell wall proteins to the organization of the yeast cell wall [J]. Biochimica Et Biophysica Acta, 1999, 1426(2): 373-383. |
66 | JUNGMANN J, MUNRO S J. Multi-protein complexes in the cis Golgi of Saccharomyces cerevisiae with α-1, 6-mannosyltransferase activity [J]. EMBO Journal, 1998, 17(2): 423-434. |
67 | RAYNER J C, MUNRO S. Identification of the MNN2 and MNN5 mannosyltransferases required for forming and extending the mannose branches of the outer chain mannans of Saccharomyces cerevisiae [J]. Journal of Biological Chemistry, 1998, 273(41): 26836-26843. |
68 | LOBSANOV Y D, ROMERO P A, SLENO B, et al. Structure of Kre2p/Mnt1p: a yeast alpha1,2-mannosyltransferase involved in mannoprotein biosynthesis [J]. Journal of Biological Chemistry, 2004, 279(17): 17921-17931. |
69 | STRAHL-BOLSINGER S, GENTZSCH M, TANNER W. Protein O-mannosylation [J]. Biochimica Et Biophysica Acta (BBA) - General Subjects, 1999, 1426 (2): 297-307. |
70 | CONDE R, PABLO G, CUEVA R, et al. Screening for new yeast mutants affected in mannosylphosphorylation of cell wall mannoproteins [J]. Yeast, 2003, 20(14): 1189-1211. |
71 | DEAN N, ZHANG Y B, POSTE R B J. The VRG4 gene is required for GDP-mannose transport into the lumen of the Golgi in the yeast Saccharomyces cerevisiae [J]. Journal of Biological Chemistry, 1997, 272(50): 31908-31914. |
72 | STRIEBECK A, ROBINSON D A, SCHÜTTELKOPF A W, et al. Yeast Mnn9 is both a priming glycosyltransferase and an allosteric activator of mannan biosynthesis [J]. Open biology, 2013, 3 (9): 130022. |
73 | KLIS F M, DE KOSTER C G, BRUL S. Cell wall-related bionumbers and bioestimates of Saccharomyces cerevisiae and Candida albicans [J]. Eukaryotic Cell, 2014, 13(1): 2-9. |
74 | SCHIAVONE M, SIECZKOWSKI N, CASTEX M, et al. Effects of the strain background and autolysis process on the composition and biophysical properties of the cell wall from two different industrial yeasts [J]. Fems Yeast Research, 2015, 15(2). |
[1] | 汤志军, 胡友财, 刘文. 酶促4+2和2+2环加成反应:区域与立体选择性的理解与应用[J]. 合成生物学, 2024, 5(3): 401-407. |
[2] | 张俊, 金诗雪, 云倩, 瞿旭东. 聚酮化合物非天然延伸单元的生物合成与结构改造应用[J]. 合成生物学, 2024, 5(3): 561-570. |
[3] | 陈锡玮, 张华然, 邹懿. 真菌源非核糖体肽类药物生物合成及代谢工程[J]. 合成生物学, 2024, 5(3): 571-592. |
[4] | 冯金, 潘海学, 唐功利. 近十年天然产物药物的生物合成研究进展[J]. 合成生物学, 2024, 5(3): 408-446. |
[5] | 奚萌宇, 胡逸灵, 顾玉诚, 戈惠明. 基因组挖掘指导天然药物分子的发现[J]. 合成生物学, 2024, 5(3): 447-473. |
[6] | 施鑫杰, 杜艺岭. 双嵌入家族抗肿瘤非核糖体肽的生物合成研究进展[J]. 合成生物学, 2024, 5(3): 593-611. |
[7] | 宋永相, 张秀凤, 李艳芹, 肖华, 闫岩. 自抗性基因导向的活性天然产物挖掘[J]. 合成生物学, 2024, 5(3): 474-491. |
[8] | 周强, 周大伟, 孙敬翔, 王靖楠, 姜万奎, 章文明, 蒋羽佳, 信丰学, 姜岷. 微生物发酵法合成虾青素的研究进展[J]. 合成生物学, 2024, 5(1): 126-143. |
[9] | 张凡忠, 相长君, 张骊駻. 进化与大数据导向生物信息学在天然产物研究中的发展及应用[J]. 合成生物学, 2023, 4(4): 629-650. |
[10] | 曾涛, 巫瑞波. 数据驱动的酶反应预测与设计[J]. 合成生物学, 2023, 4(3): 535-550. |
[11] | 赖奇龙, 姚帅, 查毓国, 白虹, 宁康. 微生物组生物合成基因簇发掘方法及应用前景[J]. 合成生物学, 2023, 4(3): 611-627. |
[12] | 董佳钰, 李敏, 肖宗华, 胡明, 松田侑大, 汪伟光. 米曲霉异源表达天然产物研究进展[J]. 合成生物学, 2022, 3(6): 1126-1149. |
[13] | 唐士茗, 胡纪元, 郑穗平, 韩双艳, 林影. 基于无细胞体系的生物合成代谢模块设计、构建与快速途径原型[J]. 合成生物学, 2022, 3(6): 1250-1261. |
[14] | 杨璐, 瞿旭东. 亚胺还原酶在手性胺合成中的应用[J]. 合成生物学, 2022, 3(3): 516-529. |
[15] | 王汇滨, 车昌丽, 游松. Fe/α-酮戊二酸依赖型卤化酶在绿色卤化反应中的研究进展[J]. 合成生物学, 2022, 3(3): 545-566. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||