1 |
KERKHOVEN E J, LAHTVEE P J, NIELSEN J. Applications of computational modeling in metabolic engineering of yeast [J]. FEMS Yeast Research, 2014, 15(1): 12199.
|
2 |
GOFFEAU A, BARRELL B G, BUSSEY H, et al. Life with 6000 genes [J]. Science, 1996, 274(5287): 546, 563-567.
|
3 |
HONG Kuk-Ki, NIELSEN J. Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries [J]. Cellular and Molecular Life Sciences, 2012, 69(16): 2671-2690.
|
4 |
WANG Yajie, YU Xiaowei, ZHAO Huimin. Biosystems design by directed evolution [J]. AIChE Journal, 2020, 66(3): e16716.
|
5 |
PATNAIK R. Engineering complex phenotypes in industrial strains [J]. Biotechnology Progress, 2008, 24(1): 38-47.
|
6 |
HASHIMOTO S, OGURA M, ARITOMI K, et al. Isolation of auxotrophic mutants of diploid industrial yeast strains after UV mutagenesis [J]. Applied and Environmental Microbiology, 2005, 71(1): 312-319.
|
7 |
ROUS C V, SNOW R, KUNKEE R E. Reduction of higher alcohols by fermentation with a leucine-auxotrophic mutant of wine yeast [J]. Journal of the Institute of Brewing, 1983, 89(4): 274-278.
|
8 |
BIOT PELLETIER D, MARTIN V J. Evolutionary engineering by genome shuffling [J]. Applied Microbiology and Biotechnology, 2014, 98(9): 3877-3887.
|
9 |
ZHANG Yingxin, PERRY K, VINCI V A, et al. Genome shuffling leads to rapid phenotypic improvement in bacteria [J]. Nature, 2002, 415(6872): 644-646.
|
10 |
SHI Dongjian, WANG Changlu, WANG Kuiming. Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae [J]. Journal of Industrial Microbiology & Biotechnology, 2009, 36(1): 139-147.
|
11 |
ZHENG D Q, WU X C, WANG P M, et al. Drug resistance marker-aided genome shuffling to improve acetic acid tolerance in Saccharomyces cerevisiae [J]. Journal of Industrial Microbiology & Biotechnology, 2011, 38(3): 415-422.
|
12 |
KUMAR A, SERINGHAUS M, BIERY M C, et al. Large-scale mutagenesis of the yeast genome using a Tn7-derived multipurpose transposon [J]. Genome Research, 2004, 14(10a): 1975-1986.
|
13 |
NI Haiying, LAPLAZA J M, JEFFRIES T W. Transposon mutagenesis to improve the growth of recombinant Saccharomyces cerevisiae on D-xylose [J]. Applied and Environmental Microbiology, 2007, 73(7): 2061-2066.
|
14 |
ALPER H, MOXLEY J, NEVOIGT E, et al. Engineering yeast transcription machinery for improved ethanol tolerance and production [J]. Science, 2006, 314(5805): 1565-1568.
|
15 |
NAGY A. Cre recombinase: the universal reagent for genome tailoring [J]. Genesis, 2000, 26(2): 99-109.
|
16 |
TURAN S, BODE J. Site-specific recombinases: from tag-and-target- to tag-and-exchange-based genomic modifications [J]. FASEB Journal, 2011, 25(12): 4088-4107.
|
17 |
DYMOND J S, RICHARDSON S M, COOMBES C E, et al. Synthetic chromosome arms function in yeast and generate phenotypic diversity by design [J]. Nature, 2011, 477(7365): 471-476.
|
18 |
JIA Bin, WU Yi, LI Bingzhi, et al. Precise control of SCRaMbLE in synthetic haploid and diploid yeast [J]. Nature Communications, 2018, 9(1): 1933.
|
19 |
Eun Joong OH, SKERKER J M, KIM Soo Rin, et al. Gene amplification on demand accelerates cellobiose utilization in engineered Saccharomyces cerevisiae [J]. Applied and Environmental Microbiology, 2016, 82(12): 3631-3639.
|
20 |
KIM Soo Rin, SKERKER J M, KANG Wei, et al. Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae [J]. PLoS One, 2013, 8(2): e57048.
|
21 |
ENQUIST NEWMAN M, FAUST A M, BRAVO D D, et al. Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform [J]. Nature, 2014, 505(7482): 239-243.
|
22 |
VOORDECKERS K, KOMINEK J, DAS A, et al. Adaptation to high ethanol reveals complex evolutionary pathways [J]. PLoS Genetics, 2015, 11(11): e1005635.
|
23 |
GONZÁLEZ-RAMOS D, DE VRIES A R G, GRIJSEELS S S, et al. A new laboratory evolution approach to select for constitutive acetic acid tolerance in Saccharomyces cerevisiae and identification of causal mutations [J]. Biotechnology for Biofuels, 2016, 9: 173.
|
24 |
FLETCHER E, FEIZI A, BISSCHOPS M M, et al. Evolutionary engineering reveals divergent paths when yeast is adapted to different acidic environments [J]. Metabolic Engineering, 2017, 39: 19-28.
|
25 |
HACISALIHOĞLU B, HOLYAVKIN C, TOPALOĞLU A, et al. Genomic and transcriptomic analysis of a coniferyl aldehyde-resistant Saccharomyces cerevisiae strain obtained by evolutionary engineering [J]. FEMS Yeast Research, 2019, 19(3): foz021.
|
26 |
CASPETA L, CHEN Yun, GHIACI P, et al. Altered sterol composition renders yeast thermotolerant [J]. Science, 2014, 346(6205): 75-78.
|
27 |
OUD B, MARIS A J VAN, DARAN J M, et al. Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast [J]. FEMS Yeast Research, 2012, 12(2): 183-196.
|
28 |
HONG Min Eui, Ki Sung LEE, YU Byung Jo, et al. Identification of gene targets eliciting improved alcohol tolerance in Saccharomyces cerevisiae through inverse metabolic engineering [J]. Journal of Biotechnology, 2010, 149(1/2): 52-59.
|
29 |
DICARLO J E, CONLEY A J, PENTTILA M, et al. Yeast oligo-mediated genome engineering (YOGE) [J]. ACS Synthetic Biology, 2013, 2(12): 741-749.
|
30 |
BARBIERI E M, MUIR P, AKHUETIE-ONI B O, et al. Precise editing at DNA replication forks enables multiplex genome engineering in eukaryotes [J]. Cell, 2017, 171(6): 1453-1467
|
31 |
SI Tong, LUO Yunzi, BAO Zehua, et al. RNAi-assisted genome evolution in Saccharomyces cerevisiae for complex phenotype engineering [J]. ACS Synthetic Biology, 2015, 4(3): 283-291.
|
32 |
SI Tong, CHAO Ran, MIN Yuhao, et al. Automated multiplex genome-scale engineering in yeast [J]. Nature Communications, 2017, 8(1): 15187.
|
33 |
BAO Zehua, HAMEDIRAD M, XUE Pu, et al. Genome-scale engineering of Saccharomyces cerevisiae with single-nucleotide precision [J]. Nature Biotechnology, 2018, 36(6): 505-508.
|
34 |
LIAN Jiazhang, SCHULTZ C, CAO Mingfeng, et al. Multi-functional genome-wide CRISPR system for high throughput genotype-phenotype mapping [J]. Nature Communications, 2019, 10(1): 5794.
|
35 |
ROY K R, SMITH J D, VONESCH S C, et al. Multiplexed precision genome editing with trackable genomic barcodes in yeast [J]. Nature Biotechnology, 2018, 36(6): 512-520.
|
36 |
WANG H H, ISAACS F J, CARR P A, et al. Programming cells by multiplex genome engineering and accelerated evolution [J]. Nature, 2009, 460(7257): 894-898.
|
37 |
PIJKEREN J P VAN, BRITTON R A. High efficiency recombineering in lactic acid bacteria [J]. Nucleic Acids Research, 2012, 40(10): e76.
|
38 |
DRINNENBERG I A, WEINBERG D E, XIE K T, et al. RNAi in budding yeast [J]. Science, 2009, 326(5952): 544-550.
|
39 |
XIAO Han, ZHAO Huimin. Genome-wide RNAi screen reveals the E3 SUMO-protein ligase gene SIZ1 as a novel determinant of furfural tolerance in Saccharomyces cerevisiae [J]. Biotechnology for Biofuels, 2014, 7(1): 78.
|
40 |
BAO Zehua, XIAO Han, LIANG Jing, et al. Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae [J]. ACS Synthetic Biology, 2015, 4(5): 585-594.
|
41 |
RUSSA M F LA, QI L S. The new state of the art: Cas9 for gene activation and repression [J]. Molecular and Cellular Biology, 2015, 35(22): 3800-3809.
|
42 |
LIAN Jiazhang, HAMEDIRAD M, HU Sumeng, et al. Combinatorial metabolic engineering using an orthogonal tri-functional CRISPR system [J]. Nature Communications, 2017, 8(1): 1688.
|
43 |
Suk Jin HA, GALAZKA J M, KIM Soo Rin, et al. Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(2): 504-509.
|
44 |
WEI Na, QUARTERMAN J, KIM Soo Rin, et al. Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast [J]. Nature Communications, 2013, 4(1): 2580.
|
45 |
WEI Na, Eun Joong OH, MILLION G, et al. Simultaneous utilization of cellobiose, xylose, and acetic acid from lignocellulosic biomass for biofuel production by an engineered yeast platform [J]. ACS Synthetic Biology, 2015, 4(6): 707-713.
|
46 |
REYES L H, GOMEZ J M, KAO K C. Improving carotenoids production in yeast via adaptive laboratory evolution [J]. Metabolic Engineering, 2014, 21: 26-33.
|
47 |
PATZSCHKE A, STEIGER M G, HOLZ C, et al. Enhanced glutathione production by evolutionary engineering of Saccharomyces cerevisiae strains [J]. Biotechnology Journal, 2015, 10(11): 1719-1726.
|
48 |
YU Tao, ZHOU Yongjin J, HUANG Mingtao, et al. Reprogramming yeast metabolism from alcoholic fermentation to lipogenesis [J]. Cell, 2018, 174(6): 1549-1558
|
49 |
ZHU Zhiwei, HU Yating, TEIXEIRA P G, et al. Multidimensional engineering of Saccharomyces cerevisiae for efficient synthesis of medium-chain fatty acids [J]. Nature Catalysis, 2020, 3(1): 64-74.
|
50 |
WANG Yanfeng, ZHANG Shuxian, LIU Huaqing, et al. Changes and roles of membrane compositions in the adaptation of Saccharomyces cerevisiae to ethanol [J]. Journal of Basic Microbiology, 2015, 55(12): 1417-1426.
|
51 |
SNOEK T, PICCA NICOLINO M, BREMT S VAN DEN, et al. Large-scale robot-assisted genome shuffling yields industrial Saccharomyces cerevisiae yeasts with increased ethanol tolerance [J]. Biotechnology for Biofuels, 2015, 8(1): 32.
|
52 |
LING Hua, JUWONO N K P, Wei Suong TEO, et al. Engineering transcription factors to improve tolerance against alkane biofuels in Saccharomyces cerevisiae [J]. Biotechnology for Biofuels, 2015, 8(1): 231.
|
53 |
BRENNAN T C, WILLIAMS T C, SCHULZ B L, et al. Evolutionary engineering improves tolerance for replacement jet fuels in Saccharomyces cerevisiae [J]. Applied and Environmental Microbiology, 2015, 81(10): 3316-3325.
|
54 |
BRACHER J M, DE HULSTER E, KOSTER C C, et al. Laboratory evolution of a biotin-requiring Saccharomyces cerevisiae strain for full biotin prototrophy and identification of causal mutations [J]. Applied and Environmental Microbiology, 2017, 83(16): e00892-00817.
|
55 |
LI Sijin, SI Tong, WANG Meng, et al. Development of a synthetic malonyl-CoA Sensor in Saccharomyces cerevisiae for intracellular metabolite monitoring and genetic screening [J]. ACS Synthetic Biology, 2015, 4(12): 1308-1315.
|
56 |
WANG Meng, LI Sijin, ZHAO Huimin. Design and engineering of intracellular-metabolite-sensing/regulation gene circuits in Saccharomyces cerevisiae [J]. Biotechnology and Bioengineering, 2016, 113(1): 206-215.
|
57 |
MUKHERJEE K, BHATTACHARYYA S, PERALTA-YAHYA P. GPCR-based chemical biosensors for medium-chain fatty acids [J]. ACS Synthetic Biology, 2015, 4(12): 1261-1269.
|
58 |
KIM Hee-Jung, Sura HA, Hee Yoon LEE, et al. ROSics: chemistry and proteomics of cysteine modifications in redox biology [J]. Mass Spectrometry Reviews, 2015, 34(2): 184-208.
|
59 |
LEAVITT J M, WAGNER J M, TU C C, et al. Biosensor-enabled directed evolution to improve muconic acid production in Saccharomyces cerevisiae [J]. Biotechnology Journal, 2017, 12(10): 1600687.
|
60 |
MAIR P, GIELEN F, HOLLFELDER F. Exploring sequence space in search of functional enzymes using microfluidic droplets [J]. Current Opinion in Chemical Biology, 2017, 37: 137-144.
|
61 |
CHEN B, Sungwon LIM, KANNAN A, et al. High-throughput analysis and protein engineering using microcapillary arrays [J]. Nature Chemical Biology, 2016, 12(2): 76-81.
|
62 |
LARSEN A C, DUNN M R, HATCH A, et al. A general strategy for expanding polymerase function by droplet microfluidics [J]. Nature Communications, 2016, 7(1): 11235.
|
63 |
DORR M, FIBINGER M P, LAST D, et al. Fully automatized high-throughput enzyme library screening using a robotic platform [J]. Biotechnology and Bioengineering, 2016, 113(7): 1421-1432.
|