合成生物学 ›› 2021, Vol. 2 ›› Issue (6): 1000-1016.doi: 10.12211/2096-8280.2021-010
陈久洲, 王钰, 蒲伟, 郑平, 孙际宾
收稿日期:
2021-01-24
修回日期:
2021-03-30
出版日期:
2021-12-31
发布日期:
2022-01-21
通讯作者:
郑平
作者简介:
基金资助:
Jiuzhou CHEN, Yu WANG, Wei PU, Ping ZHENG, Jibin SUN
Received:
2021-01-24
Revised:
2021-03-30
Online:
2021-12-31
Published:
2022-01-21
Contact:
Ping ZHENG
摘要:
5-氨基乙酰丙酸(5-ALA)是生物体内天然存在的一种功能性非蛋白质氨基酸,在医药保健和农牧领域具有重要的应用价值。尽管化学合成技术率先打通了5-ALA的制备路线,但工艺的复杂性和高成本问题,限制了其生产规模和应用推广。随着生物技术的兴起,生物合成作为一种绿色替代技术成为解决上述问题的突破口。本文回顾了近50年来5-ALA生物合成技术的发展历程,综述了5-ALA生物合成的3种主要策略,即天然菌株诱变筛选、利用重组外源C4途径的工程菌株催化合成以及基于代谢工程的高效细胞工厂构建,总结了每种策略的技术特点和主要问题,重点介绍了代谢工程改造策略和合成生物技术在5-ALA微生物细胞工厂开发中的应用和研究进展。在此基础上,本文进一步分析了限制5-ALA生物合成的瓶颈,阐述了血红素合成代谢的复杂调控作用和多底物的协同供给在5-ALA生物合成中的重要作用,并从新靶点、新底盘和新技术策略的角度,对合成生物学时代5-ALA生物合成技术未来的发展进行了展望。
中图分类号:
陈久洲, 王钰, 蒲伟, 郑平, 孙际宾. 5-氨基乙酰丙酸生物合成技术的发展及展望[J]. 合成生物学, 2021, 2(6): 1000-1016, doi: 10.12211/2096-8280.2021-010.
Jiuzhou CHEN, Yu WANG, Wei PU, Ping ZHENG, Jibin SUN. Advances and perspective on bioproduction of 5-aminolevulinic acid[J]. Synthetic Biology Journal, 2021, 2(6): 1000-1016, doi: 10.12211/2096-8280.2021-010.
1 | KANG Z, DING W W, GONG X, et al. Recent advances in production of 5-aminolevulinic acid using biological strategies[J]. World Journal of Microbiology and Biotechnology, 2017, 33(11): 200. |
2 | INOUE K. 5-Aminolevulinic acid-mediated photodynamic therapy for bladder cancer[J]. International Journal of Urology, 2017, 24(2): 97-101. |
3 | SHI L, LIU P, LIU J, et al. Application of 5-aminolevulinic acid-photodynamic therapy in common skin diseases[J]. Translational Biophotonics, 2020, 2(1/2): e201900028. |
4 | HENDAWY A O, KHATTAB M S, SUGIMURA S, et al. Effects of 5-aminolevulinic acid as a supplement on animal performance, iron status, and immune response in farm animals: a review[J]. Animals, 2020, 10(8): 1352. |
5 | WU Y, LIAO W B, DAWUDA M M, et al. 5-Aminolevulinic acid (ALA) biosynthetic and metabolic pathways and its role in higher plants: a review[J]. Plant Growth Regulation, 2019, 87(2): 357-374. |
6 | SASAKI K, WATANABE M, TANAKA T, et al. Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid[J]. Applied Microbiology and Biotechnology, 2002, 58(1): 23-29. |
7 | FRANKENBERG N, MOSER J, JAHN D. Bacterial heme biosynthesis and its biotechnological application[J]. Applied Microbiology and Biotechnology, 2003, 63(2): 115-127. |
8 | SCHOBERT M, JAHN D. Regulation of heme biosynthesis in non-phototrophic bacteria[J]. Journal of Molecular Microbiology and Biotechnology, 2002, 4(3): 287-294. |
9 | KANG Z, ZHANG J L, ZHOU J W, et al. Recent advances in microbial production of δ-aminolevulinic acid and vitamin B12[J]. Biotechnology Advances, 2012, 30(6): 1533-1542. |
10 | LIU S L, ZHANG G M, LI X K, et al. Microbial production and applications of 5-aminolevulinic acid[J]. Applied Microbiology and Biotechnology, 2014, 98(17): 7349-7357. |
11 | 康振, 张俊丽, 杨森, 等. 微生物发酵生产5-氨基乙酰丙酸研究进展[J]. 生物工程学报, 2013, 29(9): 1214-1222. |
KANG Z, ZHANG J L, YANG S, et al. Advances in microbial production of 5-aminolevulinic acid[J]. Chinese Journal of Biotechnology, 2013, 29(9): 1214-1222. | |
12 | 李智祥, 赵磊, 梁云龙, 等. 生物法合成5-氨基乙酰丙酸的研究进展[J]. 发酵科技通讯, 2017, 46(3): 178-182. |
LI Z X, ZHAO L, LIANG Y L, et al. Advance on biosynthesis of 5-aminolevulinic acid[J]. Fajiao Keji Tongxun, 2017, 46(3): 178-182. | |
13 | 张双虹, 邹亚兰, 宋鑫, 等. 代谢工程合成5氨基乙酰丙酸的研究进展[J]. 生物加工过程, 2017, 15(5): 65-70. |
ZHANG S H, ZOU Y L, SONG X, et al. Advances in 5-aminolevulinic acid microbial production[J]. Chinese Journal of Bioprocess Engineering, 2017, 15(5): 65-70. | |
14 | 朱子薇, 张健, 王倩, 等. 卟啉代谢途径高价值产物及其微生物合成研究进展[J]. 中国科学(生命科学), 2020, 50(12): 1405-1417. |
ZHU Z W, ZHANG J, WANG Q, et al. Recent advances in the production of high-value products of porphyrin metabolism pathways and their microbial synthesis[J]. SCIENTIA SINICA Vitae, 2020, 50(12): 1405-1417. | |
15 | BEALE S I. The biosynthesis of delta-aminolevulinic acid in Chlorella[J]. Plant Physiology, 1970, 45(4): 504-506. |
16 | SASAKI K, IKEDA S, NISHIZAWA Y, et al. Production of 5-aminolevulinic acid by photosynthetic bacteria[J]. Journal of Fermentation Technology, 1987, 65(5): 511-515. |
17 | SASAKI K, TANAKA T, NISHIO N, et al. Effect of culture pH on the extracellular production of 5-aminolevulinic acid by Rhodobacter sphaeroides from volatile fatty acids[J]. Biotechnology Letters, 1993, 15(8): 859-864. |
18 | NISHIKAWA S, WATANABE K, TANAKA T, et al. Rhodobacter sphaeroides mutants which accumulate 5-aminolevulinic acid under aerobic and dark conditions[J]. Journal of Bioscience and Bioengineering, 1999, 87(6): 798-804. |
19 | NISHIKAWA S, TANAKA T, KAMINAGA T, et al. Microorganisms producing5-aminolevulinic acid and processes for producing 5-aminolevulinic acid by using the same: US6342377[P]. 2002-01-29. |
20 | 生产5-氨基乙酰丙酸的生物技术法[J]. 现代化工, 2004, 24(9): 69. |
5-Aminolevulinic acid production by biotechnology[J]. Modern Chemical Industry, 2004, 24(9): 69. | |
21 | WERF M J VAN DER, ZEIKUS J G. 5-Aminolevulinate production by Escherichia coli containing the Rhodobacter sphaeroideshemA gene[J]. Applied and Environmental Microbiology, 1996, 62(10): 3560-3566. |
22 | XIE L, HALL D, EITEMAN M A, et al. Optimization of recombinant aminolevulinate synthase production in Escherichia coli using factorial design[J]. Applied Microbiology and Biotechnology, 2003, 63(3): 267-273. |
23 | 张德咏, 成飞雪, 程菊娥, 等. 光合细菌嗜酸柏拉红菌5-氨基乙酰丙酸合成酶基因的克隆与原核表达[J]. 微生物学报, 2007(4): 639-644. |
ZHANG D Y, CHENG F X, CHENG J E, et al. Cloning and prokaryotic expression of Rhodoblastus acidophilus 5-aminolevlinate synthase gene[J]. Acta Microbiologica Sinica, 2007, 47(4): 639-644. | |
24 | CHOI H P, HONG J W, RHEE K H, et al. Cloning, expression, and characterization of 5-aminolevulinic acid synthase from Rhodopseudomonas palustris KUGB306[J]. FEMS Microbiology Letters, 2004, 236(2): 175-181. |
25 | CHOI C, HONG B S, SUNG H C, et al. Optimization of extracellular 5-aminolevulinic acid production from Escherichia coli transformed with ALA synthase gene of Bradyrhizobium japonicum[J]. Biotechnology Letters, 1999, 21(6): 551-554. |
26 | FU W Q, LIN J P, CEN P L. Expression of a hemA gene from Agrobacterium radiobacter in a rare codon optimizing Escherichia coli for improving 5-aminolevulinate production[J]. Applied Biochemistry and Biotechnology, 2010, 160(2): 456-466. |
27 | LOU J W, ZHU L, WU M B, et al. High-level soluble expression of the hemA gene from Rhodobacter capsulatus and comparative study of its enzymatic properties[J]. Journal of Zhejiang University-Science B, 2014, 15(5): 491-499. |
28 | MENG Q L, ZHANG Y F, MA C L, et al. Purification and functional characterization of thermostable 5-aminolevulinic acid synthases[J]. Biotechnology Letters, 2015, 37(11): 2247-2253. |
29 | FU W Q, LIN J P, CEN P L. 5-Aminolevulinate production with recombinant Escherichia coli using a rare codon optimizer host strain[J]. Applied Microbiology and Biotechnology, 2007, 75(4): 777-782. |
30 | FU W Q, LIN H P, CEN P L. Enhancement of 5-aminolevulinate production with recombinant Escherichia coli using batch and fed-batch culture system[J]. Bioresource Technology, 2008, 99(11): 4864-4870. |
31 | LIN J P, FU W Q, CEN P L. Characterization of 5-aminolevulinate synthase from Agrobacterium radiobacter, screening new inhibitors for 5-aminolevulinate dehydratase from Escherichia coli and their potential use for high 5-aminolevulinate production[J]. Bioresource Technology, 2009, 100(7): 2293-2297. |
32 | LIU X X, WANG L, WANG Y J, et al. D-glucose enhanced 5-aminolevulinic acid production in recombinant Escherichia coli culture[J]. Applied Biochemistry and Biotechnology, 2010, 160(3): 822-830. |
33 | YANG J, ZHU L, FU W Q, et al. Improved 5-aminolevulinic acid production with recombinant Escherichia coli by a short-term dissolved oxygen shock in fed-batch fermentation[J]. Chinese Journal of Chemical Engineering, 2013, 21(11): 1291-1295. |
34 | YU T H, YI Y C, SHIH I T, et al. Enhanced 5-aminolevulinic acid production by co-expression of codon-optimized hemA gene with chaperone in genetic engineered Escherichia coli[J]. Applied Biochemistry and Biotechnology, 2020, 191(1): 299-312. |
35 | ZHANG L L, CHEN J Z, CHEN N, et al. Cloning of two 5-aminolevulinic acid synthase isozymes HemA and HemO from Rhodopseudomonas palustris with favorable characteristics for 5-aminolevulinic acid production[J]. Biotechnology Letters, 2013, 35(5): 763-768. |
36 | ZHU C C, CHEN J Z, WANG Y, et al. Enhancing 5-aminolevulinic acid tolerance and production by engineering the antioxidant defense system of Escherichia coli[J]. Biotechnology and Bioengineering, 2019, 116(8): 2018-2028. |
37 | BAILEY J E. Toward a science of metabolic engineering[J]. Science, 1991, 252(5013): 1668-1675. |
38 | LEE S Y, KIM H U. Systems strategies for developing industrial microbial strains[J]. Nature Biotechnology, 2015, 33(10): 1061-1072. |
39 | J-A SHIN, Y-D KWON, O-H KWON, et al. 5-Aminolevulinic acid biosynthesis in Escherichia coli coexpressing NADP-dependent malic enzyme and 5-aminolevulinate synthase[J]. Journal of Microbiology and Biotechnology, 2007, 17(9): 1579-1584. |
40 | KANG Z, WANG Y, WANG Q, et al. Metabolic engineering to improve 5-aminolevulinic acid production[J]. Bioengineered Bugs, 2011, 2(6): 342-345. |
41 | 蒲伟, 陈久洲, 孙村民, 等. 琥珀酸脱氢酶或琥珀酰辅酶A合成酶缺失促进大肠杆菌积累5-氨基乙酰丙酸[J]. 生物工程学报, 2013, 29(10): 1494-1503. |
PU W, CHEN J Z, SUN C M, et al. Deficiency of succinic dehydrogenase or succinyl-CoA synthetase enhances the production of 5-aminolevulinic acid in recombinant Escherichia coli[J]. Chinese Journal of Biotechnology, 2013, 29(10): 1494-1503. | |
42 | 郑平, 陈久洲, 蒲伟, 等. 5-氨基乙酰丙酸高产菌株及其制备方法和应用: WO2014121724[P]. 2014-08-14. |
ZHENG P, CHEN J Z, PU W, et al. 5-Aminolevulinic acid high-yield bacterial train, preparation method and use thereof: WO2014121724[P]. 2014-08-14. | |
43 | 郑平, 陈久洲, 蒲伟, 等. 一种5‑氨基乙酰丙酸产生菌株及其制备方法与应用: CN103710374A[P]. 2014-04-09. |
ZHENG P, CHEN J Z, PU W, et al. Bacterial strain produced by 5-aminolevulinic acid as well as preparation method and application thereof: CN103710374A[P]. 2014-04-09. | |
44 | 郑平, 陈久洲, 潘丹丹, 等. 通过弱化5‑氨基乙酰丙酸脱水酶活性获得5‑氨基乙酰丙酸高产菌株及其应用: CN103695364A[P]. 2014-04-02. |
ZHENG P, CHEN J Z, PAN D D, et al. 5-aminolevulinic acid high-producing strain obtained by weakening activity of 5-aminolevulinic acid dehydratase and application of strain: CN103695364A[P]. 2014-04-02. | |
45 | LI T, GUO Y Y, QIAO G Q, et al. Microbial synthesis of 5-aminolevulinic acid and its coproduction with polyhydroxybutyrate[J]. ACS Synthetic Biology, 2016, 5(11): 1264-1274. |
46 | DING W W, WENG H J, DU G C, et al. 5-Aminolevulinic acid production from inexpensive glucose by engineering the C4 pathway in Escherichia coli[J]. Journal of Industrial Microbiology & Biotechnology, 2017, 44(8): 1127-1135. |
47 | REN J, ZHOU L B, WANG C, et al. An unnatural pathway for efficient 5-aminolevulinic acid biosynthesis with glycine from glyoxylate based on retrobiosynthetic design[J]. ACS Synthetic Biology, 2018, 7(12): 2750-2757. |
48 | 郑平, 陈久洲, 孙际宾, 等. 5-氨基乙酰丙酸高产菌株及其制备方法和应用: CN108517327A[P]. 2018-09-11. |
ZHENG P, CHEN J Z, SUN J B, et al. 5-aminolevulinic acid high-producing bacterial strain, preparation method and application thereof: CN108517327A[P]. 2018-09-11. | |
49 | ZHOU L B, REN J, LI Z D, et al. Characterization and engineering of a Clostridium glycine riboswitch and its use to control a novel metabolic pathway for 5-aminolevulinic acid production in Escherichia coli[J]. ACS Synthetic Biology, 2019, 8(10): 2327-2335. |
50 | GU F, JIANG W, MU Y L, et al. Quorum sensing-based dual-function switch and its application in solving two key metabolic engineering problems[J]. ACS Synthetic Biology, 2020, 9(2): 209-217. |
51 | MISCEVIC D, MAO J Y, KEFALE T, et al. Strain engineering for high-level 5-aminolevulinic acid production in Escherichia coli[J]. Biotechnology and Bioengineering, 2021, 118(1): 30-42. |
52 | FENG L L, ZHANG Y, FU J, et al. Metabolic engineering of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid[J]. Biotechnology and Bioengineering, 2016, 113(6): 1284-1293. |
53 | YANG P, LIU W J, CHENG X L, et al. A new strategy for production of 5-aminolevulinic acid in recombinant Corynebacterium glutamicum with high yield[J]. Applied and Environmental Microbiology, 2016, 82(9): 2709-2717. |
54 | ZOU Y L, CHEN T, FENG L L, et al. Enhancement of 5-aminolevulinic acid production by metabolic engineering of the glycine biosynthesis pathway in Corynebacterium glutamicum[J]. Biotechnology Letters, 2017, 39(9): 1369-1374. |
55 | CHEN J Z, WANG Y, GUO X, et al. Efficient bioproduction of 5-aminolevulinic acid, a promising biostimulant and nutrient, from renewable bioresources by engineered Corynebacterium glutamicum[J]. Biotechnology for Biofuels, 2020, 13(1): 41. |
56 | KANG Z, WANG Y, GU P F, et al. Engineering Escherichia coli for efficient production of 5-aminolevulinic acid from glucose[J]. Metabolic Engineering, 2011, 13(5): 492-498. |
57 | LI F F, WANG Y, GONG K, et al. Constitutive expression of RyhB regulates the heme biosynthesis pathway and increases the 5-aminolevulinic acid accumulation in Escherichia coli[J]. FEMS Microbiology Letters, 2014, 350(2): 209-215. |
58 | ZHANG J L, KANG Z, CHEN J, et al. Optimization of the heme biosynthesis pathway for the production of 5-aminolevulinic acid in Escherichia coli[J]. Scientific Reports, 2015, 5: 8584. |
59 | ZHANG J L, KANG Z, DING W W, et al. Integrated optimization of the in vivo heme biosynthesis pathway and the in vitro iron concentration for 5-aminolevulinate production[J]. Applied Biochemistry and Biotechnology, 2016, 178(6): 1252-1262. |
60 | NOH M H, LIM H G, PARK S, et al. Precise flux redistribution to glyoxylate cycle for 5-aminolevulinic acid production in Escherichia coli[J]. Metabolic Engineering, 2017, 43: 1-8. |
61 | ZHANG X, ZHANG J, XU J S, et al. Engineering Escherichia coli for efficient coproduction of polyhydroxyalkanoates and 5-aminolevulinic acid[J]. Journal of Industrial Microbiology & Biotechnology, 2018, 45(1): 43-51. |
62 | CUI Z Y, JIANG Z N, ZHANG J H, et al. Stable and efficient biosynthesis of 5-aminolevulinic acid using plasmid-free Escherichia coli[J]. Journal of Agricultural and Food Chemistry, 2019, 67(5): 1478-1483. |
63 | ZHAO A G, ZHAI M Z. Production of 5-aminolevulinic acid from glutamate by overexpressing HemA1 and pgr7 from Arabidopsis thaliana in Escherichia coli[J]. World Journal of Microbiology & Biotechnology, 2019, 35(11): 175. |
64 | ZHANG J L, WENG H J, ZHOU Z X, et al. Engineering of multiple modular pathways for high-yield production of 5-aminolevulinic acid in Escherichia coli[J]. Bioresource Technology, 2019, 274: 353-360. |
65 | YU X L, JIN H Y, LIU W J, et al. Engineering Corynebacterium glutamicum to produce 5-aminolevulinic acid from glucose[J]. Microbial Cell Factories, 2015, 14: 183. |
66 | RAMZI A B, HYEON J E, KIM S W, et al. 5-Aminolevulinic acid production in engineered Corynebacterium glutamicumvia C5 biosynthesis pathway[J]. Enzyme and Microbial Technology, 2015, 81: 1-7. |
67 | ZHANG B, YE B C. Pathway engineering in Corynebacterium glutamicum S9114 for 5-aminolevulinic acid production[J]. 3 Biotech, 2018, 8(5): 247. |
68 | ZHANG C L, LI Y J, ZHU F Z, et al. Metabolic engineering of an auto-regulated Corynebacterium glutamicum chassis for biosynthesis of 5-aminolevulinic acid[J]. Bioresource Technology, 2020, 318: 124064. |
69 | ASTNER I, SCHULZE J O, HEUVEL J VAN DEN, et al. Crystal structure of 5-aminolevulinate synthase, the first enzyme of heme biosynthesis, and its link to XLSA in humans[J]. EMBO Journal, 2005, 24(18): 3166-3177. |
70 | TAN Z J, ZHAO J, CHEN J Z, et al. Enhancing thermostability and removing hemin inhibition of Rhodopseudomonas palustris 5-aminolevulinic acid synthase by computer-aided rational design[J]. Biotechnology Letters, 2019, 41(1): 181-191. |
71 | WANG L Y, WILSON S, ELLIOTT T. A mutant HemA protein with positive charge close to the N terminus is stabilized against heme-regulated proteolysis in Salmonella typhimurium[J]. Journal of Bacteriology, 1999, 181(19): 6033-6041. |
72 | JONES A M, ELLIOTT T. A purified mutant HemA protein from Salmonella enterica serovar Typhimurium lacks bound heme and is defective for heme-mediated regulation in vivo[J]. FEMS Microbiology Letters, 2010, 307(1): 41-47. |
73 | ZHANG J L, WENG H J, DING W W, et al. N-terminal engineering of glutamyl-tRNA reductase with positive charge arginine to increase 5-aminolevulinic acid biosynthesis[J]. Bioengineered, 2017, 8(4): 424-427. |
74 | 尚柯, 郭小飞, 王艳萍, 等. 5-氨基乙酰丙酸脱水酶缺失对大肠杆菌生长的影响[J]. 现代食品科技, 2011, 27(7): 742-746. |
SHANG K, GUO X F, WANG Y P, et al. Influence of 5-aminolevulinic acid dehydratase deletion on E.coli growth[J]. Modern Food Science and Technology, 2011, 27(7): 742-746. | |
75 | 郭小飞, 陈久洲, 张莉露, 等. 利用5-氨基乙酰丙酸脱水酶缺失的重组大肠杆菌合成5-氨基乙酰丙酸[J]. 天津科技大学学报, 2012, 27(4): 1-6. |
GUO X F, CHEN J Z, ZHANG L L, et al. Production of 5-aminolevulinic acid with 5-aminolevulinic acid dehydratase deficient Escherichia coli mutant[J]. Journal of Tianjin University of Science & Technology, 2012, 27(4): 1-6. | |
76 | YU X L, JIN H Y, CHENG X L, et al. Transcriptomic analysis for elucidating the physiological effects of 5-aminolevulinic acid accumulation on Corynebacterium glutamicum[J]. Microbiological Research, 2016, 192: 292-299. |
77 | KO Y J, YOU S K, KIM M, et al. Enhanced production of 5-aminolevulinic acid via flux redistribution of TCA cycle toward l-glutamate in Corynebacterium glutamicum[J]. Biotechnology and Bioprocess Engineering, 2019, 24(6): 915-923. |
78 | LIN H, SAN K Y, BENNETT G N. Effect of Sorghum vulgare phosphoenolpyruvate carboxylase and Lactococcus lactis pyruvate carboxylase coexpression on succinate production in mutant strains of Escherichia coli[J]. Applied Microbiology and Biotechnology, 2005, 67(4): 515-523. |
79 | ZHANG R Z, YANG T W, RAO Z M, et al. Efficient one-step preparation of γ-aminobutyric acid from glucose without an exogenous cofactor by the designed Corynebacterium glutamicum[J]. Green Chemistry, 2014, 16(9): 4190-4197. |
80 | 饶德明, 张良程, 陈久洲, 等. 谷氨酸棒状杆菌合成5-氨基乙酰丙酸的途径构建与发酵优化[J]. 生物技术通报, 2017, 33(1): 148-156. |
RAO D M, ZHANG L C, CHEN J Z, et al. Construction of 5-aminolevulinic acid synthesis pathway and optimization of fermentation by Corynebacterium glutamicum[J]. Biotechnology Bulletin, 2017, 33(1): 148-156. | |
81 | LIANG Q F, QI Q S. From a co-production design to an integrated single-cell biorefinery[J]. Biotechnology Advances, 2014, 32(7): 1328-1335. |
82 | LU X Y, LIU Y W, YANG Y Q, et al. Constructing a synthetic pathway for acetyl-coenzyme A from one-carbon through enzyme design[J]. Nature Communications, 2019, 10(1): 1378. |
83 | KENT R, DIXON N. Contemporary tools for regulating gene expression in bacteria[J]. Trends in Biotechnology, 2020, 38(3): 316-333. |
84 | QI L S, LARSON M H, GILBERT L A, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression[J]. Cell, 2013, 152(5): 1173-1183. |
85 | NA D, YOO S M, CHUNG H, et al. Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs[J]. Nature Biotechnology, 2013, 31(2): 170-174. |
86 | SU T Y, GUO Q, ZHENG Y, et al. Fine-tuning of hemB using CRISPRi for increasing 5-aminolevulinic acid production in Escherichia coli[J]. Frontiers in Microbiology, 2019, 10: 1731. |
87 | ZHANG J, WANG Z G, SU T Y, et al. Tuning the binding affinity of heme-responsive biosensor for precise and dynamic pathway regulation[J]. iScience, 2020, 23(5): 101067. |
88 | LI M Y, CHEN J Z, WANG Y, et al. Efficient multiplex gene repression by CRISPR-dCpf1 in Corynebacterium glutamicum[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 357. |
89 | TAN S Z, PRATHER K L. Dynamic pathway regulation: recent advances and methods of construction[J]. Current Opinion in Chemical Biology, 2017, 41: 28-35. |
90 | 李晓萌, 姜威, 梁泉峰, 等. 细菌群体感应系统在细胞间通讯中的应用及其合成生物学研究进展[J]. 合成生物学, 2020, 1(5): 540-555. |
LI X M, JIANG W, LIANG Q F, et al. Application of bacterial quorum sensing system in intercellular communication and its progress in synthetic biology[J]. Synthetic Biology Journal, 2020, 1(5): 540-555. | |
91 | HUNTER G A, RIVERA E, FERREIRA G C. Supraphysiological concentrations of 5-aminolevulinic acid dimerize in solution to produce superoxide radical anions via a protonated dihydropyrazine intermediate[J]. Archives of Biochemistry and Biophysics, 2005, 437(2): 128-137. |
92 | ELFSSON B, WALLIN I, EKSBORG S, et al. Stability of 5-aminolevulinic acid in aqueous solution[J]. European Journal of Pharmaceutical Sciences, 1999, 7(2): 87-91. |
93 | BECHARA E J, DUTRA F, CARDOSO V E, et al. The dual face of endogenous alpha-aminoketones: pro-oxidizing metabolic weapons[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2007, 146(1/2): 88-110. |
94 | TAN S I, YU P J, NG I S. CRISPRi-mediated programming essential gene can as a Direct Enzymatic Performance Evaluation & Determination (DEPEND) system[J]. Biotechnology and Bioengineering, 2020, 117(9): 2842-2851. |
95 | TAN S I, YOU S C, SHIH I T, et al. Quantification, regulation and production of 5-aminolevulinic acid by green fluorescent protein in recombinant Escherichia coli[J]. Journal of Bioscience and Bioengineering, 2020, 129(4): 387-394. |
96 | WANG Y, LIU Y, LIU J, et al. MACBETH: multiplex automated Corynebacterium glutamicum base editing method[J]. Metabolic Engineering, 2018, 47: 200-210. |
97 | WANG T, GUAN C, GUO J, et al. Pooled CRISPR interference screening enables genome-scale functional genomics study in bacteria with superior performance[J]. Nature Communications, 2018, 9(1): 2475. |
98 | YAO L, SHABESTARY K, BJÖRK S M, et al. Pooled CRISPRi screening of the cyanobacterium Synechocystis sp PCC 6803 for enhanced industrial phenotypes[J]. Nature Communications, 2020, 11(1): 1666. |
99 | HARA K Y, SAITO M, KATO H, et al. 5-Aminolevulinic acid fermentation using engineered Saccharomyces cerevisiae[J]. Microbial Cell Factories, 2019, 18(1): 194. |
100 | MAO Y, CHEN Z, LU L, et al. Efficient solid-state fermentation for the production of 5-aminolevulinic acid enriched feed using recombinant Saccharomyces cerevisiae[J]. Journal of Biotechnology, 2020, 322: 29-32. |
101 | 张俊丽, 康振, 钱晟东, 等. 产5-氨基乙酰丙酸酿酒酵母工程菌株的构建[J]. 食品与生物技术学报, 2018, 37(3): 232-239. |
ZHANG J L, KANG Z, QIAN S D, et al. Construction of recombanant Saccharomyces cerevisiae for production of 5-aminolevulinic acid[J]. Journal of Food Science and Biotechnology, 2018, 37(3): 232-239. | |
102 | YOU C, ZHANG Y H P. Biomanufacturing by in vitro biosystems containing complex enzyme mixtures[J]. Process Biochemistry, 2017, 52: 106-114. |
103 | MENG Q L, ZHANG Y F, JU X Z, et al. Production of 5-aminolevulinic acid by cell free multi-enzyme catalysis[J]. Journal of Biotechnology, 2016, 226: 8-13. |
104 | ZHAO A G, DING R W, ZHAI M Z. Multi-enzymatic recycling of ATP and NADPH for the synthesis of 5-aminolevulinic acid using a semipermeable reaction system[J]. Bioscience, Biotechnology, and Biochemistry, 2019, 83(12): 2213-2219. |
[1] | 卞佳豪, 杨广宇. 人工智能辅助的蛋白质工程[J]. 合成生物学, 2022, 3(3): 429-444. |
[2] | 杨璐, 瞿旭东. 亚胺还原酶在手性胺合成中的应用[J]. 合成生物学, 2022, 3(3): 516-529. |
[3] | 王汇滨, 车昌丽, 游松. Fe/α-酮戊二酸依赖型卤化酶在绿色卤化反应中的研究进展[J]. 合成生物学, 2022, 3(3): 545-566. |
[4] | 郑涵奇, 吴晴, 李洪军, 顾臻. 合成生物学与纳米生物学的交叉融合及其在生物医药领域的应用[J]. 合成生物学, 2022, 3(2): 279-301. |
[5] | 施茜, 吴园园, 杨洋. DNA纳米技术与合成生物学[J]. 合成生物学, 2022, 3(2): 302-319. |
[6] | 胥欣欣, 匡华. 基于合成受体的食品污染物生物检测进展[J]. 合成生物学, 2022, 3(2): 399-414. |
[7] | 武伟红, 李炜, 张先恩, 崔宗强. 合成生物学与荧光成像技术[J]. 合成生物学, 2022, 3(2): 369-384. |
[8] | 冯晴晴, 张天鲛, 赵潇, 聂广军. 合成纳米生物学——合成生物学与纳米生物学的交叉前沿[J]. 合成生物学, 2022, 3(2): 260-278. |
[9] | 郭思敏, 叶斌, 徐飞. 美德伦理视角下的合成生物学技术伦理治理[J]. 合成生物学, 2022, 3(1): 224-237. |
[10] | 任师超, 孙秋艳, 冯旭东, 李春. 微生物细胞工厂合成五环三萜皂苷类化合物[J]. 合成生物学, 2022, 3(1): 168-183. |
[11] | 金交羽, 周佳海. Z-基因组的生物合成奥秘被揭示[J]. 合成生物学, 2022, 3(1): 1-5. |
[12] | 张亭, 冷梦甜, 金帆, 袁海. 合成生物研究重大科技基础设施概述[J]. 合成生物学, 2022, 3(1): 184-194. |
[13] | 郭姝媛, 吴良焕, 刘香健, 王博, 于涛. 微生物中一碳代谢网络构建的进展与挑战[J]. 合成生物学, 2022, 3(1): 116-137. |
[14] | 赵晓宇, 张浩, 李雪飞, 胡政. 进化视角下的定量生物学规律与人工生命合成[J]. 合成生物学, 2022, 3(1): 6-21. |
[15] | 褚亚东, 赵宗保. 小型集成化自动移液工作站系统及应用[J]. 合成生物学, 2022, 3(1): 195-208. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||