合成生物学 ›› 2020, Vol. 1 ›› Issue (5): 540-555.DOI: 10.12211/2096-8280.2020-043
收稿日期:
2020-04-08
修回日期:
2020-08-10
出版日期:
2020-10-31
发布日期:
2020-12-03
通讯作者:
梁泉峰,祁庆生
作者简介:
作者简介:李晓萌(1995—),女,硕士研究生。研究方向为微生物学。E-mail:1535271258@qq.com基金资助:
LI Xiaomeng(), JIANG Wei, LIANG Quanfeng, QI Qingsheng
Received:
2020-04-08
Revised:
2020-08-10
Online:
2020-10-31
Published:
2020-12-03
Contact:
LIANG Quanfeng, QI Qingsheng
摘要:
群体感应(quorum sensing,QS)是一种细菌细胞与细胞间的通讯系统,细菌通过分泌扩散性小分子信号感知细菌群体的密度,从而引起一组特定基因在转录水平协调表达。随着研究的不断深入,群体感应相关基因元件及调控原理逐渐清晰。近年来通过合成生物学手段构建包含细菌QS系统组成部分的基因线路,实现了种内和种间的人工通讯,而且这些基于QS的基因线路在生物技术和生物医药等领域有着巨大的应用潜力。本文综述了几种目前研究相对清楚且有代表性的微生物群体感应系统及其主要功能作用,介绍了基于群体感应系统构建的合成生物学基因线路在种内细胞间通讯和种间细胞间通讯的应用,并讨论了微生物群体感应系统研究在构建生物计算工具、调控种群密度和调节代谢流等方面的未来发展前景。
中图分类号:
李晓萌, 姜威, 梁泉峰, 祁庆生. 细菌群体感应系统在细胞间通讯中的应用及其合成生物学研究进展[J]. 合成生物学, 2020, 1(5): 540-555.
LI Xiaomeng, JIANG Wei, LIANG Quanfeng, QI Qingsheng. Application of bacterial quorum sensing system in intercellular communication and its progress in synthetic biology[J]. Synthetic Biology Journal, 2020, 1(5): 540-555.
Bacterial species | Regulatory gene | Signal molecule(s) | Functions |
---|---|---|---|
Vibrio fischeri | luxI/luxR, luxS-luxP/Q | 3-oxo-C6-HSL AI-2 | bioluminescence, motility |
Pseudomonas aeruginosa | lasI/lasR, rhlI/rhlR, pqsABCDE | 3-oxo-C12-HSL C4-HSL HHQ/PQS | virulence, motility and biofilms |
Agrobacterium tumefaciens | traI/traR | 3-oxo-C8-HSL | plasmid conjugation |
Yersinia pseudotuberculosis | ypsI/ypsR, ytbI/ytbR | C6-HSL, 3-oxo-C6-HSL, C8-HSL | motility, clumping and biofilms |
Burkholderia cepacia | cepI/cepR | C8-HSL | protease synthesis |
Erwinia carotovora | expI/expR, carI/carR | 3-oxo-C6-HSL | antibiotic synthesis |
Serratia plymuthica | splI/splR, spsI/spsR, sptR | 3-oxo-C6-HSL, C6-HSL, C4-HSL | biofilms |
Erwinia stewartii | esaI/esaR | 3-oxo-C6-HSL | virulence |
Rhizobium leguminosarum | rhiI/ rhiR | C6-HSL, C8-HSL 3-hydroxy-7- cis-C14-HSL | expression of rhizosphere genes |
Rhodobacter sphaeroides | cerI/cerR | 7-cis-C14-HSL | evacuated bacterial accumulation |
Aeromonas hydrophila | ahyI/ahyR | C4-HSL | biofilms, exoproteases |
表1 细菌典型的群体感应系统及其功能
Tab. 1 Typical QS systems and functions in bacteria
Bacterial species | Regulatory gene | Signal molecule(s) | Functions |
---|---|---|---|
Vibrio fischeri | luxI/luxR, luxS-luxP/Q | 3-oxo-C6-HSL AI-2 | bioluminescence, motility |
Pseudomonas aeruginosa | lasI/lasR, rhlI/rhlR, pqsABCDE | 3-oxo-C12-HSL C4-HSL HHQ/PQS | virulence, motility and biofilms |
Agrobacterium tumefaciens | traI/traR | 3-oxo-C8-HSL | plasmid conjugation |
Yersinia pseudotuberculosis | ypsI/ypsR, ytbI/ytbR | C6-HSL, 3-oxo-C6-HSL, C8-HSL | motility, clumping and biofilms |
Burkholderia cepacia | cepI/cepR | C8-HSL | protease synthesis |
Erwinia carotovora | expI/expR, carI/carR | 3-oxo-C6-HSL | antibiotic synthesis |
Serratia plymuthica | splI/splR, spsI/spsR, sptR | 3-oxo-C6-HSL, C6-HSL, C4-HSL | biofilms |
Erwinia stewartii | esaI/esaR | 3-oxo-C6-HSL | virulence |
Rhizobium leguminosarum | rhiI/ rhiR | C6-HSL, C8-HSL 3-hydroxy-7- cis-C14-HSL | expression of rhizosphere genes |
Rhodobacter sphaeroides | cerI/cerR | 7-cis-C14-HSL | evacuated bacterial accumulation |
Aeromonas hydrophila | ahyI/ahyR | C4-HSL | biofilms, exoproteases |
1 | GEETHANJALI, DINESH KUMAR V, RAGHU N, et al. Quorum sensing: a molecular cell communication in bacterial cells [J]. Journal of Biomedical Sciences, 2018, 5(2): 23-34. |
2 | BASSLER B L, WRIGHT M, SHOWALTER R E, et al. Intercellular signaling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence [J]. Molecular Microbiology, 1993, 9(4): 773-788. |
3 | FUQUA W C, WINANS S C, GREENBERG E P. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators [J]. Journal of Bacteriology, 1994, 176(2): 269-275. |
4 | GALLOWAY W R J D, HODGKINSON J T, BOWDEN S D, et al. Quorum sensing in Gram-negative bacteria: small-molecule modulation of AHL and AI-2 quorum sensing pathways [J]. Chemical Reviews, 2011, 111(1): 28-67. |
5 | CHOUDHARY S, SCHMIDT-DANNERT C. Applications of quorum sensing in biotechnology [J]. Applied Microbiology and Biotechnology, 2010, 86(5): 1267-1279. |
6 | BASSLER B L, LOSICK R. Bacterially speaking [J]. Cell, 2006, 125(2): 237-246. |
7 | STRAIGHT P D, KOLTER R. Interspecies chemical communication in bacterial development [J]. Annual Review of Microbiology, 2009, 63(1): 99-118. |
8 | CLINTON A, RUMBAUGH K P. Interspecies and interkingdom signaling via quorum signals [J]. Israel Journal of Chemistry, 2016, 56(5): 265-272. |
9 | Eunhye GOO, AN Jae Hyung, KANG Yongsung, et al. Control of bacterial metabolism by quorum sensing [J]. Trends in Microbiology, 2015, 23(9): 567-576. |
10 | RYAN R P, DOW J M. Diffusible signals and interspecies communication in bacteria [J]. Microbiology, 2008, 154(7): 1845-1858. |
11 | PATEL K, RODRIGUEZ C, STABB E V, et al. Spatially propagating activation of quorum sensing in Vibrio fischeri and the transition to low population density [J]. Physical Review E, 2020, 101(6): 062421. |
12 | NEALSON K H, PLATT T, HASTINGS J W. Cellular control of the synthesis and activity of the bacterial luminescent system [J]. Journal of Bacteriology, 1970, 104(1): 313-322. |
13 | WHITELEY M, DIGGLE S P, GREENBERG E P, et al. Progress in and promise of bacterial quorum sensing research [J]. Nature, 2017, 551(7680): 313-320. |
14 | SWARTZMAN A, KAPOOR S, GRAHAM A F, et al. A new Vibrio fischeri lux gene precedes a bidirectional termination site for the lux operon [J]. Journal of Bacteriology, 1990, 172(12): 6797-6802. |
15 | STEVENS A M, DOLAN K M, GREENBERG E P. Synergistic binding of the Vibrio fischeri LuxR transcriptional activator domain and RNA polymerase to the lux promoter region [J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(26): 12619-12623. |
16 | WHITEHEAD N A, BARNARD A M L, SLATER H, et al. Quorum-sensing in Gram-negative bacteria [J]. FEMS Microbiology Reviews, 2001, 25(4): 365-404. |
17 | MOK K C, WINGREEN N S, BASSLER B L. Vibrio harveyi quorum sensing: a coincidence detector for two autoinducers controls gene expression [J]. The EMBO Journal, 2003, 22(4): 870-881. |
18 | CHEN Xin, SCHAUDER S, POTIER N, et al. Structural identification of a bacterial quorum-sensing signal containing boron [J]. Nature, 2002, 415(6871): 545-549. |
19 | WATERS C M, BASSLER B L. The Vibrio harveyi quorum-sensing system uses shared regulatory components to discriminate between multiple autoinducers [J]. Genes & Development, 2006, 20(19): 2754-2767. |
20 | FREEMAN J A, BASSLER B L. Sequence and function of LuxU: a two-component phosphorelay protein that regulates quorum sensing in Vibrio harveyi [J]. Journal of Bacteriology, 1999, 181(3): 899-906. |
21 | ZHU Jun, MILLER M B, VANCE R E, et al. Quorum-sensing regulators control virulence gene expression in Vibrio cholerae [J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(5): 3129-3134. |
22 | LI Jun, ATTILA C, WANG Liang, et al. Quorum sensing in Escherichia coli is signaled by AI-2/LsrR: effects on small RNA and biofilm architecture [J]. Journal of Bacteriology, 2007, 189(16): 6011-6020. |
23 | WILLIAMS P, MIGUEL C. Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules [J]. Current Opinion in Microbiology, 2009, 12(2): 182-191. |
24 | FUQUA C, GREENBERG E P. Self perception in bacteria: quorum sensing with acylated homoserine lactones [J]. Current Opinion in Microbiology, 1998, 1(2): 183-189. |
25 | 曾莉莉, 史道华, 牛培广. 铜绿假单胞菌群体感应系统及其抑制剂的研究进展[J]. 中国抗生素杂志, 2014, 39(9): 701-705, 714. |
ZENG Lili, SHI Daohua, NIU Peiguang. Research progress in quorum sensing system and its inhibitors of Pseudomonas aeruginosa [J]. Chinese Journal of Antibiotics, 2014, 39(9): 701-705, 714. | |
26 | SINGH B N, SINGH H B, SINGH A, et al. Lagerstroemia speciosa fruit extract modulates quorum sensing-controlled virulence factor production and biofilm formation in Pseudomonas aeruginosa [J]. Microbiology, 2012, 158(2): 529-538. |
27 | DIGGLE S P, CORNELIS P, WILLIAMS P, et al. 4-Quinolone signalling in Pseudomonas aeruginosa: old molecules, new perspectives [J]. International Journal of Medical Microbiology, 2006, 296(2/3): 83-91. |
28 | DIGGLE S P, MATTHIJS S, WRIGHT V J, et al. The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment [J]. Chemistry & Biology, 2007, 14(1): 87-96. |
29 | 宋水山, 贾振华, 邢志华, 等. 植物对细菌群体感应系统的反应[J]. 细胞生物学杂志, 2005, 27(4): 427-430. |
SONG Shuishan, JIA Zhenhua, XING Zhihua, et al. Plant responds to bacterial quorum-sensing system [J]. Chinese Journal of Cell Biology, 2005, 27(4): 427-430. | |
30 | PARSEK M R, GREENBERG E P. Acyl-homoserine lactone quorum sensing in gram-negative bacteria: a signaling mechanism involved in associations with higher organisms [J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(16): 8789-8793. |
31 | SCHUSTER M, GREENBERG E P. A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa [J]. International Journal of Medical Microbiology, 2006, 296(2/3): 73-81. |
32 | 李佳. 枯草杆菌特征和应用现状[J]. 肉类研究, 2009(11): 18-21. |
LI Jia. Applied characters and status of Bacillus subtilis [J]. Meat Research, 2009(11): 18-21. | |
33 | 惠明, 窦丽娜, 田青, 等. 枯草芽孢杆菌的应用研究进展[J]. 安徽农业科学, 2008, 36(27): 11622-11623. |
HUI Ming, DOU Lina, TIAN Qing, et al. Advances in application research of Bacillus subtilis [J]. Journal of Anhui Agricultural Sciences, 2008, 36(27): 11622-11623. | |
34 | ANSALDI M, MAROLT D, STEBE T, et al. Specific activation of the Bacillus quorum-sensing systems by isoprenylated pheromone variants [J]. Molecular Microbiology, 2010, 44(6): 1561-1573. |
35 | COMELLA N, GROSSMAN A D. Conservation of genes and processes controlled by the quorum response in bacteria: characterization of genes controlled by the quorum-sensing transcription factor ComA in Bacillus subtilis [J]. Molecular Microbiology, 2005, 57(4): 1159-1174. |
36 | ROGGIANI M, DUBNAU D. ComA, a phosphorylated response regulator protein of Bacillus subtilis, binds to the promoter region of srfA [J]. Journal of Bacteriology, 1993, 175(10): 3182-3187. |
37 | SCHNEIDER K B, PALMER T M, GROSSMAN A D. Characterization of comQ and comX, two genes required for production of ComX pheromone in Bacillus subtilis [J]. Journal of Bacteriology, 2002, 184(2): 410-419. |
38 | KÖROĞLU T E, İ ÖĞÜLÜR, MUTLU S, et al. Global regulatory systems operating in Bacilysin biosynthesis in Bacillus subtilis [J]. Journal of Molecular Microbiology and Biotechnology, 2011, 20(3): 144-155. |
39 | JI Guangyong, BEAVIS R C, NOVICK R P. Cell density control of staphylococcal virulence mediated by an octapeptide pheromone [J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(26): 12055-12059. |
40 | MAYVILLE P, JI Guangyong, BEAVIS R, et al. Structure-activity analysis of synthetic antoinducing thiolactone peptides from Staphylococcus aureus responsible for virulence [J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(4): 1218-1223. |
41 | CASE R J, LABBATE M, KJELLEBERG S, et al. AHL-driven quorum-sensing circuits: their frequency and function among the Proteobacteria [J]. The International Society for Microbial Ecology Journal, 2008, 2: 345-349. |
42 | SRIVASTAVA D, WATERS C M. A tangled web: regulatory connections between quorum sensing and cyclic Di-GMP [J]. Journal of Bacteriology, 2012, 194(17): 4485-93. |
43 | KIM Jaoon Y H, Hyung Joon CHA. Down-regulation of acetate pathway through antisense strategy in Escherichia coli: improved foreign protein production [J]. Biotechnology and Bioengineering, 2003, 83(7): 841-853. |
44 | HERRING C D, GLASNER J D, BLATTNER F R. Gene replacement without selection: regulated suppression of amber mutations in Escherichia coli [J]. Gene, 2003, 311(1): 153-163. |
45 | 庞庆霄, 梁泉峰, 祁庆生. 合成生物学开关在代谢工程中的应用[J]. 生物技术通报, 2017, 33(1): 58-63. |
PANG Qingxiao, LIANG Quanfeng, QI Qingsheng. Application of switch for synthetic biology in metabolic engineering [J]. Biotechnology Bulletin, 2017, 33(1): 58-63. | |
46 | GU Pengfei, SU Tianyuan, WANG Qian, et al. Tunable switch mediated shikimate biosynthesis in an engineered non-auxotrophic Escherichia coli [J]. Scientific Reports, 2016, 6(1): 29745. |
47 | 陈昱帆, 刘诗胤, 梁志彬, 等. 群体感应与微生物耐药性[J]. 遗传, 2016, 38(10): 881-893. |
CHEN Yufan, LIU Shiyin, LIANG Zhibin, et al. Quorum sensing and microbial resistance [J]. Genetics, 2016, 38(10): 881-893. | |
48 | 梁志彬, 陈豫梅, 陈昱帆, 等. RND家族外排泵及其与微生物群体感应系统的相互关系[J]. 遗传, 2016, 38(10): 894-901. |
LIANG Zhibin, CHEN Yumei, CHEN Yufan, et al. RND family efflux pump and its relationship with microbial quorum sensing system [J]. Genetics, 2016, 38(10): 894-901. | |
49 | SWOFFORD C A, DESSEL N V, FORBES N S. Quorum-sensing Salmonella selectively trigger protein expression within tumors [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(11): 3457-3462. |
50 | SOMA Y, HANAI T. Self-induced metabolic state switching by a tunable cell density sensor for microbial isopropanol production [J]. Metabolic Engineering, 2015, 30: 7-15. |
51 | GUPTA A, REIZMAN I M B, REISCH C R, et al. Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit [J]. Nature Biotechnology, 2017, 35(3): 273-279. |
52 | DOONG S J, GUPTA A, PRATHER K L J. Layered dynamic regulation for improving metabolic pathway productivity in Escherichia coli [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(12): 2964-2969. |
53 | CUI Shixiu, LV Xueqin, WU Yaokang, et al. Engineering a bifunctional Phr60-Rap60-Spo0A quorum-sensing molecular switch for dynamic fine-tuning of menaquinone-7 synthesis in Bacillus subtilis [J]. ACS Synthetic Biology, 2019, 8(8): 1826-1837. |
54 | GU Fei, JIANG Wei, MU Yunlan, et al. Quorum sensing-based dual-function switch and its application in solving two key metabolic engineering problems [J]. ACS Synthetic Biology, 2020, 9(2): 209-217. |
55 | RAI N, RAI R, VENKATESH K V. Quorum sensing biosensors [M]// KALIA V C. Quorum sensing vs quorum quenching: a battle with no end in sight. New Delhi: Springer, 2015: 173-183. |
56 | WINKLER W, NAHVI A, BREAKER RR. Thiamine derivativesbind messenger RNAs directly to regulate bacterial gene expression [J]. Nature, 2002, 419(6910): 952-956. |
57 | PANG Qingxiao, HAN Hao, LIU Xiaoqin, et al. In vivo evolutionary engineering of riboswitch with high-threshold for N-acetylneuraminic acid production [J]. Metabolic Engineering, 2020, 59: 36-43. |
58 | RAWSON D M, WILLMER A J, TURNER A P P. Whole-cell biosensors for environmental monitoring [J]. Biosensors, 1989, 4(5): 299-311. |
59 | RAUT N, PASINI P, DAUNERT S. Deciphering bacterial universal language by detecting the quorum sensing signal, autoinducer-2, with a whole-cell sensing system [J]. Analytical Chemistry, 2013, 85(20): 9604-9609. |
60 | CAI Sheng, SHEN Yifei, ZOU Yan, et al. Engineered highly sensitive whole-cell mercury biosensors based on positive feedback loop from quorum-sensing system [J]. Analyst, 2018, 143: 630-634. |
61 | THAPA A, BISWAL S, SOOD N, et al. Development of a biosensor using Photobacterium Spps. For the detection of environmental pollutants [C]// 2017 2nd International Conference on Bio-engineering for Smart Technologies (BioSMART). Pairs: Institute of Electrical and Electronics Engineers, 2017: 1-3. |
62 | PARDEE K, GREEN A A, TAKAHASHI M K, et al. Rapid, low-cost detection of Zika virus using programmable biomolecular components [J]. Cell, 2016, 165: 1255-1266. |
63 | COURBET A, ENDY D, RENARD E, et al. Detection of pathological biomarkers in human clinical samples via amplifying genetic switches and logic gates [J]. Science Translational Medicine, 2015, 7(289): 289ra83. |
64 | SOLTANI M, DAVIS B R, FORD H, et al. Reengineering cell-free protein synthesis as a biosensor: biosensing with transcription, translation, and protein-folding [J]. Biochemical Engineering Journal, 2018, 138: 165-171. |
65 | WEN Keyan, CAMERON L, CHAPPELL J, et al. A cell-free biosensor for detecting quorum sensing molecules in P. aeruginosa-infected respiratory samples [J]. ACS Synthetic Biology, 2017, 6(12): 2293-2301. |
66 | NANDAGOPAL N, ELOWITZ M B. Synthetic biology: integrated gene circuits [J]. Science, 2011, 333(6047): 1244-1248. |
67 | SHONG J, COLLINS C H. Quorum sensing-modulated AND-gate promoters control gene expression in response to a combination of endogenous and exogenous signals [J]. ACS Synthetic Biology, 2014, 3(4): 238. |
68 | HASTY J, MCMILLEN D, COLLINS J J. Engineered gene circuits [J]. Nature, 2002, 420(6912): 224-230. |
69 | HU Yidan, YANG Yun, KATZ E, et al. Programming the quorum sensing-based AND gate in Shewanella oneidensis for logic gated-microbial fuel cells [J]. Chemical Communications, 2015, 51(20): 4184-4187. |
70 | HE Xinyuan, CHEN Yan, LIANG Quanfeng, et al. Autoinduced AND gate controls metabolic pathway dynamically in response to microbial communities and cell physiological state [J]. ACS Synthetic Biology, 2017, 6(3): 463-470. |
71 | GARG N, MANCHANDA G, KUMAR A. Bacterial quorum sensing: circuits and applications [J]. Antonie van Leeuwenhoek, 2014, 105(2): 289-305. |
72 | SCHUSTER S, DANDEKAR T, FELL D A. Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering [J]. Trends in Biotechnology, 1999, 17: 53-60. |
73 | WANG Qian, XU Jiasheng, SUN Zhijie, et al. Engineering an in vivo EP-bifido pathway in Escherichia coli for high-yield acetyl-CoA generation with low CO2 emission [J]. Metabolic Engineering, 2019, 51: 79-87. |
74 | AN Jae Hyung, Eunhye GOO, KIM Hongsup, et al. Bacterial quorum sensing and metabolic slowing in a cooperative population [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(41): 14912-14917. |
75 | Eunhye GOO, MAJERCZYK C D, AN Jae Hyung, et al. Bacterial quorum sensing, cooperativity, and anticipation of stationary-phase stress [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(48): 19775-19780. |
76 | PATIDAR S K, KIM Sae-Hee, KIM Jin Ho, et al. Pelagibaca bermudensis promotes biofuel competence of Tetraselmis striata in a broad range of abiotic stressors: dynamics of quorum-sensing precursors and strategic improvement in lipid productivity [J]. Biotechnology for Biofuels, 2018, 11(1): 102. |
77 | KIM Suhyun, KERNS S J, ZIESACK M, et al. Quorum sensing can be repurposed to promote information transfer between bacteria in the mammalian gut [J]. ACS Synthetic Biology, 2018, 7(9): 2270-2281. |
78 | BREXÓ R P, DE SOUZA SANT'ANA A. Microbial interactions during sugar cane must fermentation for bioethanol production: does quorum sensing play a role? [J]. Critical Reviews in Biotechnology, 2017, 38(2): 231-244. |
79 | SCOTT S R, DIN M O, BITTIHN P, et al. A stabilized microbial ecosystem of self-limiting bacteria using synthetic quorum-regulated lysis [J]. Nature Microbiology, 2017, 2(8): 17083. |
80 | POTVIN-TROTTIER L, LORD N D, VINNICOMBE G, et al. Synchronous long-term oscillations in a synthetic gene circuit [J]. Nature, 2016, 538(7626): 514-517. |
81 | TU B P, MCKNIGHT S L. Metabolic cycles as an underlying basis of biological oscillations [J]. Nature Reviews Molecular Cell Biology, 2006, 7(9): 696-701. |
82 | MONDRAGÓN-PALOMINO O, DANINO T, SELIMKHANOV J, et al. Entrainment of a population of synthetic genetic oscillators [J]. Science, 2011, 333(6047): 1315-1319. |
83 | MCMILLEN D, KOPELL N, HASTY J, et al. Synchronizing genetic relaxation oscillators by intercell signaling [J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(2): 679-684. |
84 | PRINDLE A, SAMAYOA P, RAZINKOV I, et al. A sensing array of radically coupled genetic 'biopixels' [J]. Nature, 2012, 481(7379): 39-44. |
85 | CHEN Ye, KIM Jae Kyoung, HIRNING A J, et al. Emergent genetic oscillations in a synthetic microbial consortium [J]. Science, 2015, 349(6251): 986-989. |
86 | KIM Jae Kyoung, CHEN Ye, HIRNING A J, et al. Long-range temporal coordination of gene expression in synthetic microbial consortia [J]. Nature Chemical Biology, 2019, 15(11): 1102-1109. |
87 | VENKATESWAR R L, NIRUPAMA P, SRIDEVI J, et al. Cellulase production by co-culture of Trichoderma sp.and Aspergillus sp.under submerged fermentation [J]. Dynamic Biochemistry, Process Biotechnology and Molecular Biology, 2012, 6(S1): 79-83. |
88 | DINH C V, CHEN Xingyu, PRATHER K L J. Development of a quorum-sensing based circuit for control of coculture population composition in a naringenin production system [J]. ACS Synthetic Biology, 2020, 9(3): 590-597. |
89 | EVANS K C, BENOMAR S, CAMUY-VÉLEZ L A, et al. Quorum-sensing control of antibiotic resistance stabilizes cooperation in Chromobacterium violaceum [J]. The International Society for Microbial Ecology Journal, 2018, 12(5): 1263-1272. |
90 | SMALLEY N E, AN Dingding, PARSEK M R, et al. Quorum sensing protects Pseudomonas aeruginosa against cheating by other species in a laboratory coculture model [J]. Journal of Bacteriology, 2015, 197(19): 3154-3159. |
[1] | 高歌, 边旗, 王宝俊. 合成基因线路的工程化设计研究进展与展望[J]. 合成生物学, 2025, 6(1): 45-64. |
[2] | 李冀渊, 吴国盛. 合成生物学视域下有机体的两种隐喻[J]. 合成生物学, 2025, 6(1): 190-202. |
[3] | 焦洪涛, 齐蒙, 邵滨, 蒋劲松. DNA数据存储技术的法律治理议题[J]. 合成生物学, 2025, 6(1): 177-189. |
[4] | 唐兴华, 陆钱能, 胡翌霖. 人类世中对合成生物学的哲学反思[J]. 合成生物学, 2025, 6(1): 203-212. |
[5] | 徐怀胜, 石晓龙, 刘晓光, 徐苗苗. DNA存储的关键技术:编码、纠错、随机访问与安全性[J]. 合成生物学, 2025, 6(1): 157-176. |
[6] | 石婷, 宋展, 宋世怡, 张以恒. 体外生物转化(ivBT):生物制造的新前沿[J]. 合成生物学, 2024, 5(6): 1437-1460. |
[7] | 柴猛, 王风清, 魏东芝. 综合利用木质纤维素生物转化合成有机酸[J]. 合成生物学, 2024, 5(6): 1242-1263. |
[8] | 邵明威, 孙思勉, 杨时茂, 陈国强. 基于极端微生物的生物制造[J]. 合成生物学, 2024, 5(6): 1419-1436. |
[9] | 陈雨, 张康, 邱以婧, 程彩云, 殷晶晶, 宋天顺, 谢婧婧. 微生物电合成技术转化二氧化碳研究进展[J]. 合成生物学, 2024, 5(5): 1142-1168. |
[10] | 郑皓天, 李朝风, 刘良叙, 王嘉伟, 李恒润, 倪俊. 负碳人工光合群落的设计、优化与应用[J]. 合成生物学, 2024, 5(5): 1189-1210. |
[11] | 夏孔晨, 徐维华, 吴起. 光酶催化混乱性反应的研究进展[J]. 合成生物学, 2024, 5(5): 997-1020. |
[12] | 陈子苓, 向阳飞. 类器官技术与合成生物学协同研究进展[J]. 合成生物学, 2024, 5(4): 795-812. |
[13] | 蔡冰玉, 谭象天, 李伟. 合成生物学在干细胞工程化改造中的研究进展[J]. 合成生物学, 2024, 5(4): 782-794. |
[14] | 谢皇, 郑义蕾, 苏依婷, 阮静怡, 李永泉. 放线菌聚酮类化合物生物合成体系重构研究进展[J]. 合成生物学, 2024, 5(3): 612-630. |
[15] | 查文龙, 卜兰, 訾佳辰. 中药药效成分群的合成生物学研究进展[J]. 合成生物学, 2024, 5(3): 631-657. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||