合成生物学 ›› 2023, Vol. 4 ›› Issue (6): 1178-1190.DOI: 10.12211/2096-8280.2023-045
文志琼1, 李煜真1, 张金刚2, 王菲菲2, 马小清1, 李福利1
收稿日期:
2023-06-30
修回日期:
2023-09-14
出版日期:
2023-12-31
发布日期:
2024-01-19
通讯作者:
李福利
作者简介:
基金资助:
Zhiqiong WEN1, Yuzhen LI1, Jin′gang ZHANG2, Feifei Wang2, Xiaoqing MA1, Fuli LI1
Received:
2023-06-30
Revised:
2023-09-14
Online:
2023-12-31
Published:
2024-01-19
Contact:
Fuli LI
摘要:
利用微生物发酵一碳气体生产燃料和高值化学品,是实现碳资源回收利用和绿色生物制造的重要途径之一。产乙酸菌可利用CO或H2为能量来源,通过伍德-永达尔(Wood-Ljungdahl)途径固定CO2,维持自身代谢,并生产乙酸、乙醇等高附加值产品。相较于化学催化而言,该生物催化过程对原料气体比例要求不高、反应条件温和、产物选择性高。在气体发酵中,CO和H2均可作为菌株生长和代谢的能量来源,二者具有不同的能量代谢模式。同时,不同的产乙酸菌代谢产物也不相同。发酵过程中气体溶解度低限制了能量供给,导致微生物生长速率慢、原料利用率低以及目标产物产量低等问题。提高气体利用效率和扩大产乙酸菌的产物谱,是面向产业化应用的必然要求。本文简述了产乙酸菌的伍德-永达尔途径、产乙酸途径和产乙醇途径等天然代谢途径,从分子改造的角度总结了产乙酸菌利用一碳气体发酵生产高附加值产品如乙醇、2,3-丁二醇、丙酮、异丙醇等的相关研究进展,并从提高能量供给和产物选择性的角度进行了总结。最后,本文以能量代谢为切入点对产乙酸菌转化一碳气体进行了展望,以期为未来的生物制造提供参考。
中图分类号:
文志琼, 李煜真, 张金刚, 王菲菲, 马小清, 李福利. 化能驱动的产乙酸菌转化利用CO2研究进展[J]. 合成生物学, 2023, 4(6): 1178-1190.
Zhiqiong WEN, Yuzhen LI, Jin′gang ZHANG, Feifei Wang, Xiaoqing MA, Fuli LI. Progress on bio-fixation and utilization of CO2 in acetogens driven by chemical energy[J]. Synthetic Biology Journal, 2023, 4(6): 1178-1190.
微生物 | 底物 | 产物 | 最适温度 | 最适pH | 参考文献 |
---|---|---|---|---|---|
Acetobacterium woodii | H2/CO2 | 乙酸 | 30 | 7.0 | [ |
Clostridium aceticum | H2/CO2,CO | 乙酸 | 30 | 8.3 | [ |
Clostridium autoethanogenum | H2/CO2,CO | 乙酸,乙醇,2,3-丁二醇 | 37 | 6.0 | [ |
Clostridium carboxidivorans | H2/CO2,CO | 乙酸,乙醇,丁酸,丁醇,己二醇 | 38 | 5.0~7.0 | [ |
Clostridium ljungdahlii | H2/CO2,CO | 乙酸,乙醇,2,3-丁二醇 | 37 | 6.0 | [ |
Clostridium coskatii | H2/CO2,CO | 乙酸,乙醇 | 37 | 6.0 | [ |
Clostridium ragsdalei | H2/CO2,CO | 乙酸,乙醇,2,3-丁二醇 | 37 | 6.3 | [ |
Clostridium drakei | H2/CO2,CO | 乙酸,乙醇 | 37 | 6.0 | [ |
Sporomusa ovata | H2/CO2 | 乙酸 | 34 | 6.3 | [ |
Thermoanaerobacter kivu | H2/CO2,CO | 乙酸 | 66 | 6.4 | [ |
Moorella thermoacetica | H2/CO2,CO | 乙酸 | 55 | 7 | [ |
表1 部分合成气利用产乙酸菌的特点
Table 1 Characteristics of some acetogens grown on syngas
微生物 | 底物 | 产物 | 最适温度 | 最适pH | 参考文献 |
---|---|---|---|---|---|
Acetobacterium woodii | H2/CO2 | 乙酸 | 30 | 7.0 | [ |
Clostridium aceticum | H2/CO2,CO | 乙酸 | 30 | 8.3 | [ |
Clostridium autoethanogenum | H2/CO2,CO | 乙酸,乙醇,2,3-丁二醇 | 37 | 6.0 | [ |
Clostridium carboxidivorans | H2/CO2,CO | 乙酸,乙醇,丁酸,丁醇,己二醇 | 38 | 5.0~7.0 | [ |
Clostridium ljungdahlii | H2/CO2,CO | 乙酸,乙醇,2,3-丁二醇 | 37 | 6.0 | [ |
Clostridium coskatii | H2/CO2,CO | 乙酸,乙醇 | 37 | 6.0 | [ |
Clostridium ragsdalei | H2/CO2,CO | 乙酸,乙醇,2,3-丁二醇 | 37 | 6.3 | [ |
Clostridium drakei | H2/CO2,CO | 乙酸,乙醇 | 37 | 6.0 | [ |
Sporomusa ovata | H2/CO2 | 乙酸 | 34 | 6.3 | [ |
Thermoanaerobacter kivu | H2/CO2,CO | 乙酸 | 66 | 6.4 | [ |
Moorella thermoacetica | H2/CO2,CO | 乙酸 | 55 | 7 | [ |
图1 产乙酸菌的中心代谢途径THF—四氢叶酸;FDH—甲酸脱氢酶;FHS—甲酰四氢叶酸合成酶;FCH—甲酰四氢叶酸环化水解酶;MDH—亚甲基四氢叶酸脱氢酶;MTHFR—亚甲基四氢叶酸还原酶;MT—甲基转移酶;CoFeSP—钴铁硫蛋白;CODH—一氧化碳脱氢酶;ACS—乙酰辅酶A合成酶;PTA—磷酸转乙酰酶;ACK—醋酸激酶;Fdox—氧化型铁氧还蛋白;Fdred—还原型铁氧还蛋白;Rnf complex—铁氧还蛋白∶NAD+氧化还原酶复合体;Nfn—NADH-铁氧还蛋白依赖的电子歧化转氢酶
Fig. 1 Wood-Ljungdahl pathway in acetogensTHF—Tetrahydrofolate; FDH—Formate dehydrogenase; FHS—Formyl-tetrahydrofolate synthase; FCH—Formyl-cyclohydrolase; MDH—Methylene-tetrahydrofolate dehydrogenase; MTHFR—Methylene-tetrahydrofolate reductase; MT—Methyltransferase; CoFeSP—Corrinoid iron-sulfur protein; CODH—CO dehydrogenase; ACS—Acetyl-CoA synthase; PTA—Phosphotransacetylase; ACK—Acetate kinase; Fdox—Oxidized ferredoxin; Fdred—Reduced ferredoxin; Rnf complex—ferredoxin: NAD+ oxidoreductase; Nfn—NADH-dependent Fdred:NADP+ oxidoreductase
图2 产乙酸菌的天然及非天然代谢途径[51](绿色表示天然代谢途径,橙色表示外源引入的代谢途径)PFOR—丙酮酸铁氧还蛋白氧化还原酶;Ldh—乳酸脱氢酶;Pta—磷酸转乙酰酶;Ack—乙酸激酶;AdhE—醇/醛脱氢酶;AOR—醛氧化还原酶;ALsS—乙酰乳酸合酶;Etf—电子转移黄素蛋白;AldC—乙偶姻脱羧酶;Bdh—丁醇脱氢酶;ThlA—硫解酶;Hbd—3-羟基丁酸辅酶A脱氢酶;Crt—巴豆酸酶;Ptb—磷酸乙酰转移酶;Buk—丁酸激酶;CtfAB—辅酶A亚基A和B转移酶;Adc—乙酰乙酸脱羧酶;Sadh—伯/仲醇脱氢酶;Ptf2—磷酸乙酰转移酶;Fak—脂肪酸激酶
Fig. 2 The native and non-native metabolic pathways in acetogens[51](The green and orange parts represent the native and non-native metabolic pathways, respectively) PFOR—Pyruvate:ferredoxin oxidoreductase; Ldh—Lactate dehydrogenase; Pta—Phosphotransacetylase; Ack—Acetate kinase; AdhE—Aldehyde/alcohol dehydrogenase; AOR—Acetaldehyde:ferredoxin oxidoreductase; ALsS—Acetolactate synthase; Etf—Electron transfer flavoprotein; AldC—Acetolactate decarboxylase; Bdh—Butanediol dehydrogenase; ThlA—Thiolase; Hbd—3-Hydroxybutyrate CoA dehydrogenase; Crt—Crotonase; Ptb—Phosphotransacetylase; Buk—Butyrate kinase; CtfAB—CoA transferase subunits A and B; Adc—Acetoacetate decarboxylase; Sadh—Primary/secondary alcohol dehydrogenase; Ptf2—Phosphotransacetylase; Fak—Fatty acid kinase
天然产物 | 微生物 | 原料 | 产量 /(g/L) | 参考文献 |
---|---|---|---|---|
Acetate | A. woodi | CO2/H2 | 51 | [ |
C. ljungdahlii | CO2/H2 | 35 | [ | |
Ethanol | C. ljungdahlii | CO/CO2 | 32.8 | [ |
C. autoethanogenum | CO | 2.46 | [ | |
C. ljungdahlii | CO/CO2/H2 | 28.4 | [ | |
2,3-Butanediol | C. ljungdahlii | CO/CO2 | 16.9 | [ |
C. autoethanogenum | CO/CO2/H2 | 0.2 | [ |
表2 部分合成气利用产乙酸菌的天然代谢产物
Table 2 Native products of acetogens
天然产物 | 微生物 | 原料 | 产量 /(g/L) | 参考文献 |
---|---|---|---|---|
Acetate | A. woodi | CO2/H2 | 51 | [ |
C. ljungdahlii | CO2/H2 | 35 | [ | |
Ethanol | C. ljungdahlii | CO/CO2 | 32.8 | [ |
C. autoethanogenum | CO | 2.46 | [ | |
C. ljungdahlii | CO/CO2/H2 | 28.4 | [ | |
2,3-Butanediol | C. ljungdahlii | CO/CO2 | 16.9 | [ |
C. autoethanogenum | CO/CO2/H2 | 0.2 | [ |
天然产物 | 微生物 | 策略 | 产量/产率 | 参考文献 |
---|---|---|---|---|
丙酮 | C. autoethanogenum | 构建丙酮合成途径并强化ctfAB的表达 | 约3 g/(L·h) | [ |
异戊二烯 | C. ljungdahlii | 质粒共表达甲羟戊酸途径及异戊二烯合成酶基因 | 1.5 ng/mL | [ |
丁酸 | C. ljungdahlii | 敲除pta、adhE1和乙酰辅酶A转移酶基因,导入丁酸合成途径 | 1.32 g/L | [ |
异丙醇 | C. ljungdahlii | 外源引入异丙醇合成途径 | 13.4 g/L | [ |
3-羟基丁酸 | C. ljungdahlii | 外源引入3-羟基丁酸合成途径 | 3.0 g/L | [ |
聚羟基丁酸 | C. autoethanogenum | 共表达phaA、phaB、phaC | 0.027 g/L | [ |
表3 部分产乙酸菌的非天然代谢产物
Table 3 Non-native products of acetogens
天然产物 | 微生物 | 策略 | 产量/产率 | 参考文献 |
---|---|---|---|---|
丙酮 | C. autoethanogenum | 构建丙酮合成途径并强化ctfAB的表达 | 约3 g/(L·h) | [ |
异戊二烯 | C. ljungdahlii | 质粒共表达甲羟戊酸途径及异戊二烯合成酶基因 | 1.5 ng/mL | [ |
丁酸 | C. ljungdahlii | 敲除pta、adhE1和乙酰辅酶A转移酶基因,导入丁酸合成途径 | 1.32 g/L | [ |
异丙醇 | C. ljungdahlii | 外源引入异丙醇合成途径 | 13.4 g/L | [ |
3-羟基丁酸 | C. ljungdahlii | 外源引入3-羟基丁酸合成途径 | 3.0 g/L | [ |
聚羟基丁酸 | C. autoethanogenum | 共表达phaA、phaB、phaC | 0.027 g/L | [ |
1 | HU K X, RAGHUTLA C, CHITTEDI K R, et al. The effect of energy resources on economic growth and carbon emissions: a way forward to carbon neutrality in an emerging economy[J]. Journal of Environmental Management, 2021, 298: 113448. |
2 | 许敬亮, 常春, 韩秀丽, 等. 合成气乙醇发酵技术研究进展[J]. 化工进展, 2019, 38(1): 586-597. |
XU J L, CHANG C, HAN X L, et al. Research progress on bioethanol production technologies through syngas fermentation[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 586-597. | |
3 | HENSTRA A M, SIPMA J, RINZEMA A, et al. Microbiology of synthesis gas fermentation for biofuel production[J]. Current Opinion in Biotechnology, 2007, 18(3): 200-206. |
4 | LIU Z H, WANG K, CHEN Y, et al. Third-generation biorefineries as the means to produce fuels and chemicals from CO2 [J]. Nature Catalysis, 2020, 3(3): 274-288. |
5 | DRAKE H L, GÖSSNER A S, DANIEL S L. Old acetogens, new light[J]. Annals of the New York Academy of Sciences, 2008, 1125: 100-128. |
6 | HUMPHREYS C M, MINTON N P. Advances in metabolic engineering in the microbial production of fuels and chemicals from C1 gas[J]. Current Opinion in Biotechnology, 2018, 50: 174-181. |
7 | SCHUCHMANN K, MÜLLER V. Energetics and application of heterotrophy in acetogenic bacteria[J]. Applied and Environmental Microbiology, 2016, 82(14): 4056-4069. |
8 | HEIJSTRA B D, LEANG C, JUMINAGA A. Gas fermentation: cellular engineering possibilities and scale up[J]. Microbial Cell Factories, 2017, 16(1): 60. |
9 | BALCH W E, SCHOBERTH S, TANNER R S, et al. Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing, anaerobic bacteria[J]. International Journal of Systematic Bacteriology, 1977, 27(4): 355-361. |
10 | BRAUN M, MAYER F, GOTTSCHALK G. Clostridium aceticum (Wieringa), a microorganism producing acetic acid from molecular hydrogen and carbon dioxide[J]. Archives of Microbiology, 1981, 128(3): 288-293. |
11 | MAYER A, SCHÄDLER T, TRUNZ S, et al. Carbon monoxide conversion with Clostridium aceticum [J]. Biotechnology and Bioengineering, 2018, 115(11): 2740-2750. |
12 | ABRINI J, NAVEAU H, NYNS E J. Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide[J]. Archives of Microbiology, 1994, 161(4): 345-351. |
13 | KÖPKE M, MIHALCEA C, LIEW F, et al. 2,3-Butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas[J]. Applied and Environmental Microbiology, 2011, 77(15): 5467-5475. |
14 | LIOU J S C, BALKWILL D L, DRAKE G R, et al. Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov[J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(5): 2085-2091. |
15 | LI N, YANG J J, CHAI C S, et al. Complete genome sequence of Clostridium carboxidivorans P7T, a syngas-fermenting bacterium capable of producing long-chain alcohols[J]. Journal of Biotechnology, 2015, 211: 44-45. |
16 | TANNER R S, MILLER L M, YANG D. Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I[J]. International Journal of Systematic Bacteriology, 1993, 43(2): 232-236. |
17 | KÖPKE M, HELD C, HUJER S, et al. Clostridium ljungdahlii represents a microbial production platform based on syngas[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(29): 13087-13092. |
18 | BENGELSDORF F R, POEHLEIN A, LINDER S, et al. Industrial acetogenic biocatalysts: a comparative metabolic and genomic analysis[J]. Frontiers in Microbiology, 2016, 7: 1036. |
19 | JEONG Y, SONG Y, SHIN H S, et al. Draft genome sequence of acid-tolerant Clostridium drakei SL1T, a potential chemical producer through syngas fermentation[J]. Genome Announcements, 2014, 2(3): e00387-14. |
20 | MÖLLER B, OßMER R, HOWARD B H, et al. Sporomusa, a new genus of gram-negative anaerobic bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata spec. nov[J]. Archives of Microbiology, 1984, 139(4): 388-396. |
21 | POEHLEIN A, GOTTSCHALK G, DANIEL R. First insights into the genome of the gram-negative, endospore-forming organism Sporomusa ovata strain H1 DSM 2662[J]. Genome Announcements, 2013, 1(5): e00734-13. |
22 | DANIEL S L, HSU T, DEAN S I, et al. Characterization of the H2- and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui [J]. Journal of Bacteriology, 1990, 172(8): 4464-4471. |
23 | HESS V, POEHLEIN A, WEGHOFF M C, et al. A genome-guided analysis of energy conservation in the thermophilic, cytochrome-free acetogenic bacterium Thermoanaerobacter kivui [J]. BMC Genomics, 2014, 15: 1139. |
24 | FONTAINE F E, PETERSON W H, MCCOY E, et al. A new type of glucose fermentation by Clostridium thermoaceticum [J]. Journal of Bacteriology, 1942, 43(6): 701-715. |
25 | BENGELSDORF F R, POEHLEIN A, ESSER C, et al. Complete genome sequence of the acetogenic bacterium Moorella thermoacetica DSM 2955T [J]. Genome Announcements, 2015, 3(5): e01157-15. |
26 | RAGSDALE S W, PIERCE E. Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation[J]. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2008, 1784(12): 1873-1898. |
27 | CLAASSENS N J, COTTON C A R, KOPLJAR D, et al. Making quantitative sense of electromicrobial production[J]. Nature Catalysis, 2019, 2(5): 437-447. |
28 | SCHUCHMANN K, MÜLLER V. Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria[J]. Nature Reviews Microbiology, 2014, 12(12): 809-821. |
29 | WOOLSTON B M, EMERSON D F, CURRIE D H, et al. Rediverting carbon flux in Clostridium ljungdahlii using CRISPR interference (CRISPRi)[J]. Metabolic Engineering, 2018, 48: 243-253. |
30 | ANNAN F J, AL-SINAWI B, HUMPHREYS C M, et al. Engineering of vitamin prototrophy in Clostridium ljungdahlii and Clostridium autoethanogenum [J]. Applied Microbiology and Biotechnology, 2019, 103(11): 4633-4648. |
31 | HUANG H, CHAI C S, YANG S, et al. Phage serine integrase-mediated genome engineering for efficient expression of chemical biosynthetic pathway in gas-fermenting Clostridium ljungdahlii [J]. Metabolic Engineering, 2019, 52: 293-302. |
32 | JIN S, BAE J Y, SONG Y, et al. Synthetic biology on acetogenic bacteria for highly efficient conversion of C1 gases to biochemicals[J]. International Journal of Molecular Sciences, 2020, 21(20): 7639. |
33 | BAE J Y, SONG Y, LEE H, et al. Valorization of C1 gases to value-added chemicals using acetogenic biocatalysts[J]. Chemical Engineering Journal, 2022, 428: 131325. |
34 | LIEW F E, NOGLE R, ABDALLA T, et al. Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale[J]. Nature Biotechnology, 2022, 40(3): 335-344. |
35 | RAGSDALE S W. Enzymology of the Wood-Ljungdahl pathway of acetogenesis[J]. Annals of the New York Academy of Sciences, 2008, 1125: 129-136. |
36 | KÖPKE M, SIMPSON S D. Pollution to products: recycling of 'above ground' carbon by gas fermentation[J]. Current Opinion in Biotechnology, 2020, 65: 180-189. |
37 | JEONG J, BERTSCH J, HESS V, et al. Energy conservation model based on genomic and experimental analyses of a carbon monoxide-utilizing, butyrate-forming acetogen, Eubacterium limosum KIST612[J]. Applied and Environmental Microbiology, 2015, 81(14): 4782-4790. |
38 | BERTSCH J, MÜLLER V. CO metabolism in the acetogen Acetobacterium woodii [J]. Applied and Environmental Microbiology, 2015, 81(17): 5949-5956. |
39 | WEGHOFF M C, MÜLLER V. CO metabolism in the thermophilic acetogen Thermoanaerobacter kivui [J]. Applied and Environmental Microbiology, 2016, 82(8): 2312-2319. |
40 | MOLITOR B, MARCELLIN E, ANGENENT L T. Overcoming the energetic limitations of syngas fermentation[J]. Current Opinion in Chemical Biology, 2017, 41: 84-92. |
41 | ÖPPINGER C, KREMP F, MÜLLER V. Is reduced ferredoxin the physiological electron donor for MetVF-type methylenetetrahydrofolate reductases in acetogenesis? A hypothesis[J]. International Microbiology, 2022, 25(1): 75-88. |
42 | LIEW F, MARTIN M E, TAPPEL R C, et al. Gas fermentation—a flexible platform for commercial scale production of low-carbon-fuels and chemicals from waste and renewable feedstocks[J]. Frontiers in Microbiology, 2016, 7: 694. |
43 | HESS V, SCHUCHMANN K, MÜLLER V. The ferredoxin: NAD+ oxidoreductase (Rnf) from the acetogen Acetobacterium woodii requires Na+ and is reversibly coupled to the membrane potential[J]. The Journal of Biological Chemistry, 2013, 288(44): 31496-31502. |
44 | TREMBLAY P L, ZHANG T, DAR S A, et al. The Rnf complex of Clostridium ljungdahlii is a proton-translocating ferredoxin: NAD+ oxidoreductase essential for autotrophic growth[J]. mBio, 2013, 4(1): e00406-12. |
45 | HEFFERNAN J K, VALGEPEA K, DE SOUZA PINTO LEMGRUBER R, et al. Enhancing CO2-valorization using Clostridium autoethanogenum for sustainable fuel and chemicals production[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 204. |
46 | PETERS J W, MILLER A F, JONES A K, et al. Electron bifurcation[J]. Current Opinion in Chemical Biology, 2016, 31: 146-152. |
47 | MAHAMKALI V, VALGEPEA K, DE SOUZA PINTO LEMGRUBER R, et al. Redox controls metabolic robustness in the gas-fermenting acetogen Clostridium autoethanogenum [J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(23): 13168-13175. |
48 | PAVAN M, REINMETS K, GARG S, et al. Advances in systems metabolic engineering of autotrophic carbon oxide-fixing biocatalysts towards a circular economy[J]. Metabolic Engineering, 2022, 71: 117-141. |
49 | MARTIN M E, RICHTER H, SAHA S, et al. Traits of selected Clostridium strains for syngas fermentation to ethanol[J]. Biotechnology and Bioengineering, 2016, 113(3): 531-539. |
50 | VALGEPEA K, LOI K Q, BEHRENDORFF J B, et al. Arginine deiminase pathway provides ATP and boosts growth of the gas-fermenting acetogen Clostridium autoethanogenum [J]. Metabolic Engineering, 2017, 41: 202-211. |
51 | 李婉麒, 杨凤娟, 贾德臣, 等. 合成气的生物利用与定向转化[J]. 化工进展, 2023, 42(1): 73-85. |
LI W Q, YANG F J, JIA D C, et al. Biological utilization and conversion of syngas[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 73-85. | |
52 | BERTSCH J, MÜLLER V. Bioenergetic constraints for conversion of syngas to biofuels in acetogenic bacteria[J]. Biotechnology for Biofuels, 2015, 8(1): 210. |
53 | KANG H, PARK B, OH S, et al. Metabolism perturbation caused by the overexpression of carbon monoxide dehydrogenase/acetyl-CoA synthase gene complex accelerated gas to acetate conversion rate of Eubacterium limosum KIST612[J]. Bioresource Technology, 2021, 341: 125879. |
54 | STRAUB M, DEMLER M, WEUSTER-BOTZ D, et al. Selective enhancement of autotrophic acetate production with genetically modified Acetobacterium woodii [J]. Journal of Biotechnology, 2014, 178: 67-72. |
55 | LEANG C, UEKI T, NEVIN K P, et al. A genetic system for Clostridium ljungdahlii: a chassis for autotrophic production of biocommodities and a model homoacetogen[J]. Applied and Environmental Microbiology, 2013, 79(4): 1102-1109. |
56 | ZHU H F, LIU Z Y, ZHOU X A, et al. Energy conservation and carbon flux distribution during fermentation of CO or H2/CO2 by Clostridium ljungdahlii [J]. Frontiers in Microbiology, 2020, 11: 416. |
57 | JIA D C, HE M Y, TIAN Y, et al. Metabolic engineering of gas-fermenting Clostridium ljungdahlii for efficient co-production of isopropanol, 3-hydroxybutyrate, and ethanol[J]. ACS Synthetic Biology, 2021, 10(10): 2628-2638. |
58 | KÖPKE M, GERTH M L, MADDOCK D J, et al. Reconstruction of an acetogenic 2,3-butanediol pathway involving a novel NADPH-dependent primary-secondary alcohol dehydrogenase[J]. Applied and Environmental Microbiology, 2014, 80(11): 3394-3403. |
59 | REDL S, SUKUMARA S, PLOEGER T, et al. Thermodynamics and economic feasibility of acetone production from syngas using the thermophilic production host Moorella thermoacetica [J]. Biotechnology for Biofuels, 2017, 10(1): 1-17. |
60 | KANG S, SONG Y, JIN S, et al. Adaptive laboratory evolution of Eubacterium limosum ATCC 8486 on carbon monoxide[J]. Frontiers in Microbiology, 2020, 11: 402. |
61 | LITTY D, MÜLLER V. Butyrate production in the acetogen Eubacterium limosum is dependent on the carbon and energy source[J]. Microbial Biotechnology, 2021, 14(6): 2686-2692. |
62 | DINER B A, FAN J, SCOTCHER M C, et al. Synthesis of heterologous mevalonic acid pathway enzymes in Clostridium ljungdahlii for the conversion of fructose and of syngas to mevalonate and isoprene[J]. Applied and Environmental Microbiology, 2017, 84(1): e01723-e01717. |
63 | UEKI T, NEVIN K P, WOODARD T L, et al. Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii [J]. mBio, 2014, 5(5): e01636-e01614. |
64 | ZHAO R, LIU Y Q, ZHANG H A, et al. CRISPR-Cas12a-mediated gene deletion and regulation in Clostridium ljungdahlii and its application in carbon flux redirection in synthesis gas fermentation[J]. ACS Synthetic Biology, 2019, 8(10): 2270-2279. |
65 | LIU Z Y, JIA D C, ZHANG K D, et al. Ethanol metabolism dynamics in Clostridium ljungdahlii grown on carbon monoxide[J]. Applied and Environmental Microbiology, 2020, 86(14): e00730-e00720. |
66 | LIEW F, HENSTRA A M, KӦPKE M, et al. Metabolic engineering of Clostridium autoethanogenum for selective alcohol production[J]. Metabolic Engineering, 2017, 40: 104-114. |
67 | DE SOUZA PINTO LEMGRUBER R, VALGEPEA K, TAPPEL R, et al. Systems-level engineering and characterisation of Clostridium autoethanogenum through heterologous production of poly-3-hydroxybutyrate (PHB)[J]. Metabolic Engineering, 2019, 53: 14-23. |
68 | KATSYV A, MÜLLER V. Overcoming energetic barriers in acetogenic C1 conversion[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 621166. |
69 | SKIDMORE B E, BAKER R A, BANJADE D R, et al. Syngas fermentation to biofuels: effects of hydrogen partial pressure on hydrogenase efficiency[J]. Biomass and Bioenergy, 2013, 55: 156-162. |
70 | RAGSDALE S W. Life with carbon monoxide[J]. Critical Reviews in Biochemistry and Molecular Biology, 2004, 39(3): 165-195. |
71 | EMERSON D F, WOOLSTON B M, LIU N A, et al. Enhancing hydrogen-dependent growth of and carbon dioxide fixation by Clostridium ljungdahlii through nitrate supplementation[J]. Biotechnology and Bioengineering, 2019, 116(2): 294-306. |
72 | KLASK C M, KLIEM-KUSTER N, MOLITOR B, et al. Nitrate feed improves growth and ethanol production of Clostridium ljungdahlii with CO2 and H2, but results in stochastic inhibition events[J]. Frontiers in Microbiology, 2020, 11: 724. |
73 | SONG Y, LEE J S, SHIN J, et al. Functional cooperation of the glycine synthase-reductase and Wood-Ljungdahl pathways for autotrophic growth of Clostridium drakei [J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(13): 7516-7523. |
74 | BECK M H, FLAIZ M, BENGELSDORF F R, et al. Induced heterologous expression of the arginine deiminase pathway promotes growth advantages in the strict anaerobe Acetobacterium woodii [J]. Applied Microbiology and Biotechnology, 2020, 104(2): 687-699. |
75 | CHENG C, LI W M, LIN M, et al. Metabolic engineering of Clostridium carboxidivorans for enhanced ethanol and butanol production from syngas and glucose[J]. Bioresource Technology, 2019, 284: 415-423. |
76 | SAKIMOTO K K, WONG A B, YANG P D. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production[J]. Science, 2016, 351(6268): 74-77. |
77 | GÖBBELS L, POEHLEIN A, DUMNITCH A, et al. Cysteine: an overlooked energy and carbon source[J]. Scientific Reports, 2021, 11: 2139. |
78 | TAKEMURA K, KATO J, KATO S, et al. Enhancing acetone production from H2 and CO2 using supplemental electron acceptors in an engineered Moorella thermoacetica [J]. Journal of Bioscience and Bioengineering, 2023, 136(1): 13-19. |
79 | JACK J, LO J, MANESS P C, et al. Directing Clostridium ljungdahlii fermentation products via hydrogen to carbon monoxide ratio in syngas[J]. Biomass and Bioenergy, 2019, 124: 95-101. |
80 | KUNDIYANA D K, HUHNKE R L, MADDIPATI P, et al. Feasibility of incorporating cotton seed extract in Clostridium strain P11 fermentation medium during synthesis gas fermentation[J]. Bioresource Technology, 2010, 101(24): 9673-9680. |
81 | SUN X, ATIYEH H K, ZHANG H L, et al. Enhanced ethanol production from syngas by Clostridium ragsdalei in continuous stirred tank reactor using medium with poultry litter biochar[J]. Applied Energy, 2019, 236: 1269-1279. |
82 | OH H J, KO J K, GONG G, et al. Production of hexanol as the main product through syngas fermentation by Clostridium carboxidivorans P7[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 850370. |
83 | COTTER J L, CHINN M S, GRUNDEN A M. Influence of process parameters on growth of Clostridium ljungdahlii and Clostridium autoethanogenum on synthesis gas[J]. Enzyme and Microbial Technology, 2009, 44(5): 281-288. |
84 | JUMPER J, EVANS R, PRITZEL A, et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021, 596(7873): 583-589. |
85 | BAEK M, DIMAIO F, ANISHCHENKO I, et al. Accurate prediction of protein structures and interactions using a three-track neural network[J]. Science, 2021, 373(6557): 871-876. |
[1] | 潘家豪, 潘炜松, 邱健, 谢东玲, 邹奇, 吴川. 重组胶原蛋白表达体系研究进展[J]. 合成生物学, 2023, 4(4): 808-823. |
[2] | 郑涵奇, 吴晴, 李洪军, 顾臻. 合成生物学与纳米生物学的交叉融合及其在生物医药领域的应用[J]. 合成生物学, 2022, 3(2): 279-301. |
[3] | 刘如欣, 杜磊, 徐晓庆, 丁金鹏, 张伟, 李盛英. 基于紫外诱变与生物合成基因簇倍增的多氧霉素高产菌株构建[J]. 合成生物学, 2020, 1(5): 609-620. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||