合成生物学 ›› 2023, Vol. 4 ›› Issue (6): 1161-1177.DOI: 10.12211/2096-8280.2023-051

• 特约评述 • 上一篇    下一篇

面向高效光驱固碳产醇的蓝细菌合成生物技术研究进展

孙绘梨1,2,3, 崔金玉1,2,3, 栾国栋1,2,3, 吕雪峰1,2,3   

  1. 1.中国科学院青岛生物能源与过程研究所,中国科学院生物燃料重点实验室,山东 青岛 266101
    2.山东能源研究院,山东 青岛 266101
    3.青岛新能源山东省实验室,山东 青岛 266101
  • 收稿日期:2023-07-17 修回日期:2023-08-24 出版日期:2023-12-31 发布日期:2024-01-19
  • 通讯作者: 吕雪峰
  • 作者简介:孙绘梨(1995—),女,博士后。研究方向为蓝细菌合成生物技术研究,包括光驱固碳细胞工厂的构建和底盘细胞生理功能认识与改造。E-mail:sunhl@qibebt.ac.cn
    吕雪峰(1974—),男,研究员,博士生导师,中国科学院青岛生物能源与过程研究所所长。研究方向为合成生物学与绿色生物制造,在光驱固碳产能蓝细菌的人工设计与构建及真菌天然产物药物等。E-mail:lvxf@qibebt.ac.cn
  • 基金资助:
    国家重点研发计划(2021YFA0909700);国家自然科学基金(32270103);山东省博士后创新项目(SDCX-ZG-202202036);中国博士后科学基金第70 批面上项目(2021M703320)

Progress of cyanobacterial synthetic biotechnology for efficient light-driven carbon fixation and ethanol production

Huili SUN1,2,3, Jinyu CUI1,2,3, Guodong LUAN1,2,3, Xuefeng LYU1,2,3   

  1. 1.Key Laboratory of Biofuels,Qingdao Institute of Bioenergy and Bioprocess Technology,Chinese Academy of Sciences,Qingdao 266101,Shandong,China
    2.Shandong Energy Institute,Qingdao 266101,Shandong,China
    3.Qingdao New Energy Shandong Laboratory,Qingdao 266101,Shandong,China
  • Received:2023-07-17 Revised:2023-08-24 Online:2023-12-31 Published:2024-01-19
  • Contact: Xuefeng LYU

摘要:

蓝细菌能够直接利用二氧化碳和太阳能通过光合作用生产乙醇,为提供绿色生物燃料提供了一条有前途的可持续路线。光驱固碳合成乙醇是最具代表性的蓝细菌光合生物制造技术。乙醇并不属于典型的蓝细菌天然代谢物,蓝细菌产醇细胞工厂的构建需要通过向基因组中导入异源的丙酮酸脱羧酶并结合异源/内源醇脱氢酶的过量表达来实现;在过去二十多年间,通过蛋白、途径、底盘、工艺层面的系统优化,蓝细菌产醇细胞工厂的效能得到有效提高,乙醇成为目前产量最高、产率最高、碳流分配率最高的蓝细菌代谢工程产物。本文总结并比较了“蓝细菌生物质炼制产醇”“蓝细菌固碳产糖-产醇”“蓝细菌固碳直接产醇”等三种光驱固碳产醇技术路线,并以构建光合细胞工厂驱动二氧化碳一站式转化为乙醇的技术路线为主,从乙醇合成途径优化与强化、蓝细菌光合碳代谢网络的调节与重塑、代谢网络模型与计算机辅助设计引导细胞工厂构建和优化三个方面对蓝细菌高效光驱固碳合成乙醇的技术发展历程和基本现状进行了介绍,特别是强调了计算生物学、系统代谢工程、生物材料嵌合等研究手段在本领域的应用进展;在此基础上,也从新型底盘开发、高通量筛选技术应用、细胞工厂的稳定性与鲁棒性优化等角度对蓝细菌固碳产醇的未来发展方向进行了展望。

关键词: 蓝细菌, 光合生物制造, 合成生物学, 代谢工程, 乙醇

Abstract:

The utilization of solar energy and carbon dioxide by cyanobacterial cell factories for photosynthetic ethanol production represents a promising and sustainable route towards green biofuels. Ethanol is one of the most representative products of the cyanobacterial photosynthetic biomanufacturing technology. Cyanobacterial ethanol production systems could serve as models for developing and optimizing advanced synthetic biology and metabolic engineering strategies. While most known cyanobacterial species lack the ability to synthesize and accumulate ethanol, the introduction and overexpression of heterologous pyruvate decarboxylase and alcohol dehydrogenase (heterologous or native) are required to enable ethanol synthesis in cyanobacteria. In the past decades, the performance of ethanol-producing cyanobacterial cell factories has been significantly improved through systematic optimization of proteins, pathways, chassis cells, and cultivation techniques. Cyanobacterial ethanol production technology has yielded the highest titer, productivity, and carbon partitioning ratio among all current cyanobacterial biomanufacturing systems. Recent advances have led to further improved efficiency of cyanobacterial ethanol photosynthetic production. Based on extensive systems biology data and rapidly developing computer modeling technologies, more accurate simulations of cyanobacterial physiological characteristics and metabolic networks have become possible. These simulations facilitate the identification of potential modification targets, thereby enhancing ethanol production capacity and guiding the design of next-generation alcohol-producing cell factories. With a more comprehensive understanding of cyanobacteria physiology and metabolism, systematic genome modifications and pathway optimizations have been performed, resulting in further improved ethanol productivity and final titers. Concurrently, efforts have been made to improve model strains and evaluate newly emerging non-conventional strains to establish more robust and efficient ethanol production processes. In conclusion, this review summarizes and compares three technological routes of light-driven carbon fixation and ethanol production in cyanobacteria, introduces the technological development trajectory and basic status of efficient light-driven carbon fixation for ethanol synthesis by cyanobacteria, provides valuable and up-to-date insights to facilitate the development of more promising cyanobacterial ethanol photosynthetic production technologies and explores future challenges and directions in this dynamic field.

Key words: cyanobacteria, photosynthetic biomanufacturing, synthetic biology, metabolic engineering, ethanol

中图分类号: