合成生物学 ›› 2023, Vol. 4 ›› Issue (6): 1140-1160.DOI: 10.12211/2096-8280.2023-044

• 特约评述 • 上一篇    下一篇

真核微藻脂质代谢工程的研究进展和展望

孙翰1, 刘进1,2   

  1. 1.深圳大学高等研究院,广东 深圳 518060
    2.北京大学工学院,北京 100871
  • 收稿日期:2023-06-29 修回日期:2023-08-06 出版日期:2023-12-31 发布日期:2024-01-19
  • 通讯作者: 刘进
  • 作者简介:孙翰(1991—),男,博士,副研究员。研究方向为微藻代谢工程和微藻生物质精制。E-mail:shlyg2242@163.com
    刘进(1980—),男,博士,研究员,博士生导师。研究方向为微藻代谢与合成生物。E-mail:gjinliu@pku.edu.cn
  • 基金资助:
    国家重点研发计划(2019YFA0902500);广东省“珠江人才计划”(2019ZT08H476);深圳市孔雀团队项目(KQTD20180412181334790)

Research progress and prospects in lipid metabolic engineering of eukaryotic microalgae

Han SUN1, Jin LIU1,2   

  1. 1.Institute for Advanced Study,Shenzhen University,Shenzhen 518060,Guangdong,China
    2.College of Engineering,Peking University,Beijing 100871,China
  • Received:2023-06-29 Revised:2023-08-06 Online:2023-12-31 Published:2024-01-19
  • Contact: Jin LIU

摘要:

真核微藻作为一类重要的生物资源,脂质含量高,广泛应用于能源、化工和食品等领域。然而,真核微藻生物能源成本偏高,其产业化应用仍然面临着一系列挑战。通过代谢工程手段改造微藻,促进脂质的合成与积累,可提高微藻脂质生产的经济可行性。本文介绍真核微藻脂质代谢途径和关键酶基因,并总结了不同培养条件下代谢途径相关基因在转录水平上的变化。还探讨通过代谢工程调控脂质合成相关酶、转录因子和竞争途径等方法,以提高微藻脂质含量和调整脂肪酸组成。通过基因组学、转录组学和蛋白质组学数据的整合分析可揭示脂质代谢中的关键节点和主效调控因子,有助于确定代谢工程的潜在目标。此外,基因工具和基因编辑技术的开发和拓展可显著提高转化效率,实现对微藻底盘细胞的精准改造。通过重塑能量和碳代谢途径,可设计优化微藻脂质生物合成过程。在微藻遗传工具、基因编辑技术、代谢通路调控和产业化等方面的进一步研究和探索对于推动微藻脂质工程的研究和发展具有重要意义。

关键词: 真核微藻, 生物质精制, 脂质代谢, 能量代谢, 合成生物学

Abstract:

Microalgae represent a diverse group of photosynthetic organisms that are widely found in various ecosystems on the Earth. They play a crucial role in carbon dioxide bio-fixation. Apart from their efficient growth through photosynthesis, many microalgae can also grow robustly under heterotrophic and mixotrophic conditions for high biomass production. Due to their high lipid content and the presence of diverse fatty acid and lipid species, microalgae have a wide range of applications in industries of energy, chemicals, and food. However, the high production cost associated with microalgae-based bioenergy poses a significant challenge for large-scale implementation. To overcome this, there is a growing interest in engineering microalgae to enhance lipid biosynthesis and accumulation, which holds promise for improving the economic feasibility of microalgal lipid production. This requires a better understanding of lipid metabolism and regulation in microalgae. This article provides an overview of recent advances in the elucidation of lipid metabolic pathways, the roles of key enzyme genes involved in lipid metabolism, and the transcriptional regulation of lipid metabolic pathways under different cultivation conditions in eukaryotic microalgae. It also summarizes strategies for metabolic engineering aiming for manipulating lipid biosynthesis-related enzymes, transcription factors, and competing pathways to increase lipid content and/or modify fatty acid composition in microalgae. Integrated analysis of genomics, transcriptomics, and proteomics data can help identify crucial nodes and key regulators in lipid metabolism, facilitating the identification of potential targets for metabolic engineering. Furthermore, the rapid development of genetic tools and gene editing technologies has significantly improved transformation efficiency and enabled precise gene modification, providing a foundation for genetic engineering of microalgae. By reshaping energy and carbon metabolic pathways, it becomes possible to design and optimize lipid biosynthesis processes in microalgae for a better production. Further research and exploration in genetic tools, gene editing technologies, metabolic pathway regulation, and large-scale implementation are of utmost importance for driving the research and development of microalgal lipid engineering.

Key words: eukaryotic microalgae, biorefineries, lipid metabolism, energy metabolism, synthetic biology

中图分类号: