1 |
WHITAKER W B, SANDOVAL N R, BENNETT R K, et al. Synthetic methylotrophy: engineering the production of biofuels and chemicals based on the biology of aerobic methanol utilization [J]. Current Opinion in Biotechnology, 2015, 33: 165-175.
|
2 |
CHANG K, WANG T F, CHEN J G. Hydrogenation of CO2 to methanol over CuCeTiOx catalysts [J]. Applied Catalysis B-Environmental, 2017, 206: 704-711.
|
3 |
DU X L, JIANG Z, SU D S, et al. Research progress on the indirect hydrogenation of carbon dioxide to methanol [J]. ChemSusChem, 2016, 9(4): 322-332.
|
4 |
COTTON C A R, CLAASSENS N J, BENITO-VAQUERIZO S, et al. Renewable methanol and formate as microbial feedstocks [J]. Current Opinion in Biotechnology, 2020, 62: 168-180.
|
5 |
ANTONIEWICZ M R. Synthetic methylotrophy: strategies to assimilate methanol for growth and chemicals production[J]. Current Opinion in Biotechnology, 2019, 59: 165-174.
|
6 |
ZHANG W M, ZHANG T, WU S H, et al. Guidance for engineering of synthetic methylotrophy based on methanol metabolism in methylotrophy[J]. RSC Advances, 2017, 7(7): 4083-4091.
|
7 |
SHEEHAN M C, BAILEY C J, DOWDS B C A, et al. A new alcohol dehydrogense, reactive towards methanol, from Bacillus stearothermophilus [J]. Biochemical Journal, 1988, 252(3): 661-666.
|
8 |
WHITAKER W B, JONES J A, BENNETT R K, et al. Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli [J]. Metabolic Engineering, 2017, 39: 49-59.
|
9 |
WU T-Y, CHEN C-T, LIU J T-J, et al. Characterization and evolution of an activator-independent methanol dehydrogenase from Cupriavidus necator N-1[J]. Applied Microbiology and Biotechnology, 2016, 100(11): 4969-4983.
|
10 |
凡立稳, 王钰, 郑平, 等. 一碳代谢关键酶——甲醇脱氢酶的研究进展与展望[J]. 生物工程学报, 2021, 37(2): 530-540.
|
|
FAN L W, WANG Y, ZHENG P, et al. Methanol dehydrogenase, a key enzyme of one-carbon metabolism: a review [J]. Chinese Journal of Biotechnology, 2021, 37(2): 530-540.
|
11 |
TUYISHIME P, WANG Y, FAN L W, et al. Engineering Corynebacterium glutamicum for methanol-dependent growth and glutamate production [J]. Metabolic Engineering, 2018, 49: 220-231.
|
12 |
KIM S, LINDNER S N, ASLAN S, et al. Growth of E. coli on formate and methanol via the reductive glycine pathway [J]. Nature Chemical Biology, 2020, 16(5): 538-545.
|
13 |
KIM Y H, CAMPBELL E, YU J, et al. Complete oxidation of methanol in biobattery devices using a hydrogel created from three modified dehydrogenases[J]. Angewandte Chemie International Edition, 2013, 52(5): 1437-1440.
|
14 |
WANG Y P, SAN K Y, BENNETT G N. Cofactor engineering for advancing chemical biotechnology[J]. Current Opinion in Biotechnology, 2013, 24(6): 994-999.
|
15 |
KARA S, SCHRITTWIESER J H, HOLLMANN F, et al. Recent trends and novel concepts in cofactor-dependent biotransformations[J]. Applied Microbiology and Biotechnology, 2014, 98(4): 1517-1529.
|
16 |
XIAO W S, WANG R-S, HANDY D E, et al. NAD(H) and NADP(H) redox couples and cellular energy metabolism [J]. Antioxidants & Redox Signaling, 2018, 28(3): 251-272.
|
17 |
GRAY K A, RICHARDSON T H, KRETZ K, et al. Rapid evolution of reversible denaturation and elevated melting temperature in a microbial haloalkane dehalogenase [J]. Advanced Synthesis & Catalysis, 2001, 343(6/7): 607-617.
|
18 |
MAMPEL J, BUESCHER J M, MEURER G, et al. Coping with complexity in metabolic engineering [J]. Trends in Biotechnology, 2013, 31(1): 52-60.
|
19 |
PAUL C E, ARENDS I W C E, HOLLMANN F. Is simpler better? synthetic nicotinamide cofactor analogues for redox chemistry [J]. ACS Catalysis, 2014, 4(3): 788-797.
|
20 |
KNAUS T, PAUL C E, LEVY C W, et al. Better than nature: nicotinamide biomimetics that outperform natural coenzymes [J]. Journal of the American Chemical Society, 2016, 138(3): 1033-1039.
|
21 |
WEUSTHUIS R A, FOLCH P L, POZO-RODRÍGUEZ A, et al. Applying non-canonical redox cofactors in fermentation processes [J]. iScience, 2020, 23(9): 101471.
|
22 |
BLACK W B, ZHANG L Y, MAK W S, et al. Engineering a nicotinamide mononucleotide redox cofactor system for biocatalysis [J]. Nature Chemical Biology, 2020, 16(1): 87-94.
|
23 |
AGARWAL P K, WEBB S P, HAMMES-SCHIFFER S. Computational studies of the mechanism for proton and hydride transfer in liver alcohol dehydrogenase [J]. Journal of the American Chemical Society, 2000, 122(19): 4803-4812.
|
24 |
JI D B, WANG L, LIU W J, et al. Synthesis of NAD analogs to develop bioorthogonal redox system[J]. Science China - Chemistry, 2013, 56(3): 296-300.
|
25 |
HOU S H, LIU W J, JI D B, et al. Synthesis of 1,2,3-triazole moiety-containing NAD analogs and their potential as redox cofactors [J]. Tetrahedron Letters, 2011, 52(44): 5855-5857.
|
26 |
HOU S H, LIU W J, ZHAO Z B. Synthesis of novel nicotinamide adenine dinucleotide (NAD) analogs and their coenzyme activities [J]. Chinese Journal of Organic Chemistry, 2012, 32(2): 349-353.
|
27 |
JI D B, WANG L, HOU S H, et al. Creation of bioorthogonal redox systems depending on nicotinamide flucytosine dinucleotide [J]. Journal of the American Chemical Society, 2011, 133(51): 20857-20862.
|
28 |
WANG L, JI D B, LIU Y X, et al. Synthetic cofactor-linked metabolic circuits for selective energy transfer [J]. ACS Catalysis, 2017, 7(3): 1977-1983.
|
29 |
GUO X J, LIU Y X, WANG Q, et al. Non-natural cofactor and formate-driven reductive carboxylation of pyruvate [J]. Angewandte Chemie International Edition, 2020, 59(8): 3143-3146.
|
30 |
LIAO Z P, YANG X T, FU H X, et al. The significance of aspartate on NAD(H) biosynthesis and ABE fermentation in Clostridium acetobutylicum ATCC 824 [J]. AMB Express, 2019, 9(1): 142.
|
31 |
刘美霞, 李强子, 孟冬冬, 等. 烟酰胺类辅酶依赖型氧化还原酶的辅酶偏好性改造及其在合成生物学中的应用[J]. 合成生物学, 2020, 1(5): 570-582.
|
|
LIU M X, LI Q Z, MENG D D, et al. Protein engineering of nicotinamide coenzyme-dependent oxidoreductases for coenzyme preference and its application in synthetic biology [J]. Synthetic Biology Journal, 2020, 1(5): 570-582.
|
32 |
GUO X J, FENG Y B, WANG X Y, et al. Characterization of the substrate scope of an alcohol dehydrogenase commonly used as methanol dehydrogenase [J]. Bioorganic & Medicinal Chemistry Letters, 2019, 29(12): 1446-1449.
|
33 |
WATERHOUSE A, BERTONI M, BIENERT S, et al. SWISS-MODEL: homology modelling of protein structures and complexes [J]. Nucleic Acids Research, 2018, 46(W1): W296-W303.
|
34 |
LILL M A, DANIELSON M L. Computer-aided drug design platform using PyMOL [J]. Journal of Computer-Aided Molecular Design, 2011, 25(1): 13-19.
|
35 |
RUI L Y, CAO L, CHEN W, et al. Active site engineering of the epoxide hydrolase from Agrobacterium radiobacter AD1 to enhance aerobic mineralization of cis-1,2-dichloroethylene in cells expressing an evolved toluene ortho-monooxygenase [J]. Journal of Biological Chemistry, 2004, 279(45): 46810-46817.
|
36 |
VAN DEN ENT F, LÖWE J. RF cloning: A restriction-free method for inserting target genes into plasmids [J]. Journal of Biochemical and Biophysical Methods, 2006, 67(1): 67-74.
|
37 |
WU T K, LIU Y T, CHANG C H, et al. Site-saturated mutagenesis of histidine 234 of Saccharomyces cerevisiae oxidosqualene-lanosterol cyclase demonstrates dual functions in cyclization and rearrangement reactions [J]. Journal of the American Chemical Society, 2006, 128(19): 6414-6419.
|
38 |
GRAGEROV A, HORIE K, PAVLOVA M, et al. Large-scale, saturating insertional mutagenesis of the mouse genome [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(36): 14406-14411.
|
39 |
ELHAWRANI A S, SESSIONS R B, MORETON K M, et al. Guided evolution of enzymes with new substrate specificities [J]. Journal of Molecular Biology, 1996, 264(1): 97-110.
|
40 |
WANG L, ZHOU Y J, JI D B, et al. Identification of UshA as a major enzyme for NAD degradation in Escherichia coli [J]. Enzyme and Microbial Technology, 2014, 58/59: 75-79.
|
41 |
REETZ M T, CARBALLEIRA J D. Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes [J]. Nature Protocols, 2007, 2(4): 891-903.
|
42 |
LAMZIN V S, DAUTER Z, POPOV V O, et al. High resolution structures of holo and apo formate dehydrogense [J]. Journal of Molecular Biology, 1994, 236(3): 759-785.
|
43 |
REETZ M T, WANG L W, BOCOLA M. Directed evolution of enantioselective enzymes: Iterative cycles of CASTing for probing protein-sequence space [J]. Angewandte Chemie International Edition, 2006, 45(8): 1236-1241.
|
44 |
SUN Z T, LONSDALE R, ILIE A, et al. Catalytic asymmetric reduction of difficult-to-reduce ketones: triple-code saturation mutagenesis of an alcohol dehydrogenase [J]. ACS Catalysis, 2016, 6(3): 1598-1605.
|
45 |
LIU Y X, FENG Y B, WANG L, et al. Structural insights into phosphite dehydrogenase variants favoring a non-natural redox cofactor [J]. ACS Catalysis, 2019, 9(3): 1883-1887.
|
46 |
GUO X J, WANG X Y, LIU Y X, et al. Structure-guided design of formate dehydrogenase for regeneration of a non-natural redox cofactor [J]. Chemistry a European Journal, 2020, 26(70): 16611-16615.
|