Synthetic Biology Journal ›› 2020, Vol. 1 ›› Issue (1): 103-119.DOI: 10.12211/2096-8280.2020-007
• Invited Review • Previous Articles
FU Xian1,2, LIN Tao1, ZHANG Fan3, ZHANG Huiming1, ZHANG Wenwei1, YANG Huanming1,4, ZHU Shida1,5, XU Xun1,2, SHEN Yue1,2,5,6
Received:
2020-02-28
Revised:
2020-03-25
Online:
2020-07-07
Published:
2020-02-29
Contact:
SHEN Yue
付宪1,2, 林涛1, 张帆3, 张惠铭1, 章文蔚1, 杨焕明1,4, 朱师达1,5, 徐讯1,2, 沈玥1,2,5,6
通讯作者:
沈玥
作者简介:
付宪(1989-),男,博士,副研究员,研究方向为合成生物学、合成基因组学、蛋白质定向进化。E-mail:fuxian1@genomics.cn基金资助:
CLC Number:
FU Xian, LIN Tao, ZHANG Fan, ZHANG Huiming, ZHANG Wenwei, YANG Huanming, ZHU Shida, XU Xun, SHEN Yue. Progress in the study of genetic code expansion related methods, principles and applications[J]. Synthetic Biology Journal, 2020, 1(1): 103-119.
付宪, 林涛, 张帆, 张惠铭, 章文蔚, 杨焕明, 朱师达, 徐讯, 沈玥. 基因密码子拓展技术的方法原理和前沿应用研究进展[J]. 合成生物学, 2020, 1(1): 103-119.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2020-007
1 | MACINO G, CORUZZI G, NOBREGA F G, et al. Use of the UGA terminator as a tryptophan codon in yeast mitochondria[J]. PNAS, 1979, 76(8): 3784-3785. |
2 | BOCK A and STADTMAN T C. Selenocysteine, a highly specific component of certain enzymes, is incorporated by a UGA-directed co-translational mechanism[J]. Biofactors, 1988, 1(3): 245-250. |
3 | NOREN C, ANTHONY-CAHILL S, GRIFFITH M, et al. A general method for site-specific incorporation of unnatural amino acids into proteins[J]. Science, 1989, 244(4901): 182-188. |
4 | BUDISA N, MINKS C, ALEFELDER S, et al. Toward the experimental codon reassignment in vivo: protein building with an expanded amino acid repertoire[J]. FASEB J., 1999, 13(1): 41-51. |
5 | CORNISH V W, MENDEL D, SCHULTZ P G. Probing protein structure and function with an expanded genetic code[J]. Cheminform, 1995, 34(6): 621-633. |
6 | CHIN J W. Expanding and reprogramming the genetic code of cells and animals[J]. Annu. Rev. Biochem., 2014, 83: 379-408. |
7 | CHIN J W. Expanding and reprogramming the genetic code[J]. Nature, 2017, 550(7674): 53-60. |
8 | ARRANZ-GIBERT P, PATEL J R, ISAACS F J. The role of orthogonality in genetic code expansion[J]. Life, 2019, 9(3): 58. |
9 | GIEGÉ R, SISSLER M, FLORENTZ C. Universal rules and idiosyncratic features in tRNA identity[J]. Nucleic Acids Res., 1998, 26(22): 5017-5035. |
10 | LIU D R, MAGLIERY T J, PASTRNAK M, et al. Engineering a tRNA and aminoacyl-tRNA synthetase for the site-specific incorporation of unnatural amino acids into proteins in vivo [J]. PNAS, 1997, 94(19): 10092-10097. |
11 | WANG L, BROCK A, HERBERICH B, et al. Expanding the genetic code of Escherichia coli [J]. Science, 2001, 292(5516): 498-500. |
12 | STEER B A, SCHIMMEL P. Major anticodon-binding region missing from an archaebacterial tRNA synthetase[J]. Journal of Biological Chemistry, 1999, 274(50): 35601-35606. |
13 | JAKUBOWSKI H, GOLDMAN E. Editing of errors in selection of amino acids for protein synthesis[J]. Microbiology and Molecular Biology Reviews, 1992, 56(3): 412-429. |
14 | XIE J, SCHULTZ P G. An expanding genetic code[J]. Methods, 2005, 36(3): 227-238. |
15 | CHIN J W, CROPP T A, ANDERSON J C, et al. An expanded eukaryotic genetic code[J]. Science, 2003, 301(5635): 964-967. |
16 | CHIN J W, CROPP T A, CHU S, et al. Progress toward an expanded eukaryotic genetic code[J]. Chemistry & Biology, 2003, 10(6): 511-519. |
17 | SAKAMOTO K, HAYASHI A, SAKAMOTO A, et al. Site‐specific incorporation of an unnatural amino acid into proteins in mammalian cells[J]. Nucleic Acids Research, 2002, 30(21): 4692-4699. |
18 | LIU W R, SCHULTZ P G. Genetic incorporation of unnatural amino acids into proteins in mammalian cells[J]. Nature Methods, 2007, 4(3): 239-244. |
19 | WU N, DEITERS A, CROPP T A, et al. A genetically encoded photocaged amino acid[J]. Journal of the American Chemical Society, 2004, 126(44): 14306-14307. |
20 | AMBROGELLY A, GUNDLLAPALLI S, HERRING S, et al. Pyrrolysine is not hardwired for cotranslational insertion at UAG codons[J]. PNAS, 2007, 104(9): 3141-3146. |
21 | SUZUKI T, MILLER C, GUO L T, et al. Crystal structures reveal an elusive functional domain of pyrrolysyl-tRNA synthetase[J]. Nature Chemical Biology, 2017, 13(12): 1261-1266. |
22 | ITALIA J S, ADDY P S, ERICKSON S B, et al. Mutually orthogonal nonsense-suppression systems and conjugation chemistries for precise protein labeling at up to three distinct sites[J]. Journal of the American Chemical Society, 2019, 141(15): 6204-6212. |
23 | NEUMANN H, PEAK-CHEW S Y, CHIN J W. Genetically encoding N ε -acetyllysine in recombinant proteins[J]. Nature Chemical Biology, 2008, 4(4): 232-234. |
24 | WAN W, HUANG Y, WANG Z, et al. A facile system for genetic incorporation of two different noncanonical amino acids into one protein in Escherichia coli [J]. Angewandte Chemie International Edition, 2010, 49(18): 3211-3214. |
25 | CHATTERJEE A, XIAO H, SCHULTZ P G. Evolution of multiple, mutually orthogonal prolyl-tRNA synthetase/tRNA pairs for unnatural amino acid mutagenesis in Escherichia coli [J]. PNAS, 2012, 109(37): 14841-14846. |
26 | WILLIS J C W, CHIN J W. Mutually orthogonal pyrrolysyl-tRNA synthetase/tRNA pairs[J]. Nat. Chem., 2018, 10(8): 831-837. |
27 | MEINEKE B, HEIMGÄRTNER J, LAFRANCHI L, et al. Methanomethylophilus alvus Mx1201 provides basis for mutual orthogonal pyrrolysyl tRNA/aminoacyl-tRNA synthetase pairs in mammalian cells[J]. ACS Chemical Biology, 2018, 13(11): 3087-3096. |
28 | VARGAS-RODRIGUEZ O, SEVOSTYANOVA A, SÖLL D, et al. Upgrading aminoacyl-tRNA synthetases for genetic code expansion[J]. Current Opinion in Chemical Biology, 2018, 46: 115-122. |
29 | GUO L, WANG Y, NAKAMURA A, et al. Polyspecific pyrrolysyl-tRNA synthetases from directed evolution[J]. PNAS, 2014, 111(47): 16724-16729. |
30 | WANG L, SCHULTZ P G. Expanding the genetic code[J]. Angewandte Chemie International Edition, 2005, 44(1): 34-66. |
31 | WAN W, THARP J M, LIU W R. Pyrrolysyl-tRNA synthetase: an ordinary enzyme but an outstanding genetic code expansion tool[J]. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2014, 1844(6): 1059-1070. |
32 | DUMAS A, LERCHER L, SPICER C D, et al. Designing logical codon reassignment-expanding the chemistry in biology[J]. Chemical Science, 2015, 6(1): 50-69. |
33 | LIU C C, SCHULTZ P G. Adding new chemistries to the genetic code[J]. Annual Review of Biochemistry, 2010, 79: 413-444. |
34 | DULIC M, CVETESIC N, ZIVKOVIC I, et al. Kinetic origin of substrate specificity in post-transfer editing by leucyl-tRNA synthetase[J]. Journal of Molecular Biology, 2018, 430(1): 1-16. |
35 | O'DONOGHUE P, LING J, WANG Y S, et al. Upgrading protein synthesis for synthetic biology[J]. Nature Chemical Biology, 2013, 9(10): 594-598. |
36 | AMIRAM M, HAIMOVICH A D, FAN C, et al. Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids[J]. Nature Biotechnology, 2015, 33(12): 1272. |
37 | BRYSON D I, FAN C, GUO L T, et al. Continuous directed evolution of aminoacyl-tRNA synthetases[J]. Nature Chemical Biology, 2017, 13(12): 1253. |
38 | PACKER M S, LIU D R. Methods for the directed evolution of proteins[J]. Nature Reviews Genetics, 2015, 16(7): 379-394. |
39 | BADRAN A H, LIU D R. Development of potent in vivo mutagenesis plasmids with broad mutational spectra[J]. Nature Communications, 2015, 6: 8425. |
40 | ALDAG C, BRÖCKER M J, HOHN M J, et al. Rewiring translation for elongation factor Tu‐dependent selenocysteine incorporation[J]. Angewandte Chemie International Edition, 2013, 52(5): 1441-1445. |
41 | MILLER C, BRÖCKER M J, PRAT L, et al. A synthetic tRNA for EF‐Tu mediated selenocysteine incorporation in vivo and in vitro [J]. FEBS letters, 2015, 589(17): 2194-2199. |
42 | GUO J, MELANÇON III C E, LEE H S, et al. Evolution of amber suppressor tRNAs for efficient bacterial production of proteins containing nonnatural amino acids[J]. Angewandte Chemie International Edition, 2009, 48(48): 9148-9151. |
43 | THARP J M, EHNBOM A, LIU W R. tRNAPyl: structure, function, and applications[J]. RNA Biology, 2018, 15(4/5): 441-452. |
44 | FAN C, XIONG H, REYNOLDS N M, et al. Rationally evolving tRNAPyl for efficient incorporation of noncanonical amino acids[J]. Nucleic Acids Research, 2015, 43(22): e156. |
45 | PETRY S, BRODERSEN D E, MURPHY IV F V, et al. Crystal structures of the ribosome in complex with release factors RF1 and RF2 bound to a cognate stop codon[J]. Cell, 2005, 123(7): 1255-1266. |
46 | WANG K, NEUMANN H, PEAK-CHEW S Y, et al. Evolved orthogonal ribosomes enhance the efficiency of synthetic genetic code expansion[J]. Nature Biotechnology, 2007, 25(7): 770-777. |
47 | ORELLE C, CARLSON E D, SZAL T, et al. Protein synthesis by ribosomes with tethered subunits[J]. Nature, 2015, 524(7563): 119-124. |
48 | FRIED S D, SCHMIED W H, UTTAMAPINANT C, et al. Ribosome subunit stapling for orthogonal translation in E. coli [J]. Angewandte Chemie International Edition, 2015, 54(43): 12791-12794. |
49 | PARK H S, HOHN M J, UMEHARA T, et al. Expanding the genetic code of Escherichia coli with phosphoserine[J]. Science, 2011, 333(6046): 1151-1154. |
50 | MUKAI T, HAYASHI A, IRAHA F, et al. Codon reassignment in the Escherichia coli genetic code[J]. Nucleic Acids Res., 2010, 38(22): 8188-8195. |
51 | SCHMIED W H, ELSÄSSER S J, UTTAMAPINANT C, et al. Efficient multisite unnatural amino acid incorporation in mammalian cells via optimized pyrrolysyl tRNA synthetase/tRNA expression and engineered eRF1[J]. Journal of the American Chemical Society, 2014, 136(44): 15577-15583. |
52 | ARRANZ-GIBERT P, VANDERSCHUREN K, ISAACS F J. Next-generation genetic code expansion[J]. Current Opinion in Chemical Biology, 2018, 46: 203-211. |
53 | SHIMIZU Y, INOUE A, TOMARI Y, et al. Cell-free translation reconstituted with purified components[J]. Nature Biotechnology, 2001, 19(8): 751-755. |
54 | 高伟,卜宁,卢元. 无细胞体系非天然蛋白质合成研究进展[J]. 生物工程学报, 2018, 34(9):1371-1385. |
GAO W, BU N, LU Y. Recent advances in cell-free unnatural protein synthesis[J]. Chinese Journal of Biotechnology, 2018, 34(9): 1371-1385. | |
55 | NEUMANN H, WANG K H, DAVIS L, et al. Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome[J]. Nature, 2010, 464(7287): 441-444. |
56 | RACKHAM O, CHIN J W. A network of orthogonal ribosome·mRNA pairs[J]. Nature Chemical Biology, 2005, 1(3): 159-166. |
57 | SCHMIED W H, TNIMOV Z, UTTAMAPINANT C, et al. Controlling orthogonal ribosome subunit interactions enables evolution of new function[J]. Nature, 2018, 564(7736): 444-448. |
58 | REINKEMEIER C D, GIRONA G E, LEMKE E A. Designer membraneless organelles enable codon reassignment of selected mRNAs in eukaryotes[J]. Science, 2019, 363(6434): eaaw2644. |
59 | JOHNSON D B, XU J, SHEN Z, et al. RF1 knockout allows ribosomal incorporation of unnatural amino acids at multiple sites[J]. Nature Chemical Biology, 2011, 7(11): 779-786. |
60 | RUAN B, PALIOURA S, SABINA J, et al. Quality control despite mistranslation caused by an ambiguous genetic code[J]. PNAS, 2008, 105(43): 16502-16507. |
61 | LAJOIE M J, ROVNER A J, GOODMAN D B, et al. Genomically recoded organisms expand biological functions[J]. Science, 2013, 342(6156): 357-360. |
62 | RICHARDSON S M, MITCHELL L A, STRACQUADANIO G, et al. Design of a synthetic yeast genome[J]. Science, 2017, 355(6329): 1040-1044. |
63 | KOMAR A A. The Yin and Yang of codon usage[J]. Human Molecular Genetics, 2016, 25(R2): R77. |
64 | CHANEY J L, CLARK P L. Roles for synonymous codon usage in protein biogenesis[J]. Annual Review of Biophysics, 2015, 44: 143-166. |
65 | QUAX T E, CLAASSENS N J, SOLL D, et al. Codon bias as a means to fine-tune gene expression[J]. Molecular Cell, 2015, 59(2): 149-161. |
66 | CHO B K, ZENGLER K, QIU Y, et al. The transcription unit architecture of the Escherichia coli genome[J]. Nat. Biotechnol., 2009, 27(11): 1043-1049. |
67 | LI G W, OH E, WEISSMAN J S. The anti-Shine-Dalgarno sequence drives translational pausing and codon choice in bacteria[J]. Nature, 2012, 484(7395): 538-541. |
68 | ZHOU M, GUO J, CHA J, et al. Non-optimal codon usage affects expression, structure and function of clock protein FRQ[J]. Nature, 2013, 495(7439): 111-115. |
69 | PRESNYAK V, ALHUSAINI N, CHEN Y H, et al. Codon optimality is a major determinant of mRNA stability[J]. Cell, 2015, 160(6): 1111-1124. |
70 | BOËL G, LETSO R, NEELY H, et al. Codon influence on protein expression in E. coli correlates with mRNA levels[J]. Nature, 2016, 529(7586): 358-363. |
71 | MISHIMA Y, TOMARI Y. Codon usage and 3' UTR length determine maternal mRNA stability in Zebrafish[J]. Molecular Cell, 2016, 61(6): 874-885. |
72 | NAPOLITANO M G, LANDON M, GREGG C J, et al. Emergent rules for codon choice elucidated by editing rare arginine codons in Escherichia coli [J]. PNAS, 2016, 113(38): E5588-E5597. |
73 | KUDLA G, MURRAY A W, TOLLERVEY D, et al. Coding-sequence determinants of gene expression in Escherichia coli [J]. Science, 2009, 324(5924): 255-258. |
74 | ZHOU Z, DANG Y, ZHOU M, et al. Codon usage is an important determinant of gene expression levels largely through its effects on transcription[J]. PNAS, 2016, 113(41): E6117-E6125. |
75 | CHEN S, LI K, CAO W, et al. Codon-resolution analysis reveals a direct and context-dependent impact of individual synonymous mutations on mRNA level[J]. Molecular Biology and Evolution, 2017, 34(11): 2944-2958. |
76 | SORENSEN M A, KURLAND C G, PEDERSEN S. Codon usage determines translation rate in Escherichia coli [J]. Journal of Molecular Biology, 1989, 207(2): 365-377. |
77 | SORENSEN M A, PEDERSEN S. Absolute in vivo translation rates of individual codons in Escherichia coli. The two glutamic acid codons GAA and GAG are translated with a threefold difference in rate[J]. Journal of Molecular Biology, 1991, 222(2): 265-280. |
78 | TSAI C J, SAUNA Z E, KIMCHI-SARFATY C, et al. Synonymous mutations and ribosome stalling can lead to altered folding pathways and distinct minima[J]. Journal of Molecular Biology, 2008, 383(2): 281-291. |
79 | BUHR F, JHA S, THOMMEN M, et al. Synonymous codons direct cotranslational folding toward different protein conformations[J]. Molecular Cell, 2016, 61(3): 341-351. |
80 | ZALUCKI Y M, BEACHAM I R, JENNINGS M P. Biased codon usage in signal peptides: a role in protein export[J]. Trends Microbiol, 2009, 17(4): 146-150. |
81 | ZALUCKI Y M, BEACHAM I R, JENNINGS M P. Coupling between codon usage, translation and protein export in Escherichia coli [J]. Biotechnol J., 2011, 6(6): 660-667. |
82 | PECHMANN S, CHARTRON J W, FRYDMAN J. Local slowdown of translation by nonoptimal codons promotes nascent-chain recognition by SRP in vivo [J]. Nature Structure & Molecular Biology, 2014, 21(12): 1100-1105. |
83 | WANNIER T M, KUNJAPUR A M, RICE D P, et al. Adaptive evolution of genomically recoded Escherichia coli [J]. PNAS, 2018, 115(12): 3090-3095. |
84 | WANG K, FREDENS J, BRUNNER S F, et al. Defining synonymous codon compression schemes by genome recoding[J]. Nature, 2016, 539(7627): 59-64. |
85 | GOODMAN D B, CHURCH G M, KOSURI S. Causes and effects of N-terminal codon bias in bacterial genes[J]. Science, 2013, 342(6157): 475-479. |
86 | OSTROV N, LANDON M, GUELL M, et al. Design, synthesis, and testing toward a 57-codon genome[J]. Science, 2016, 353(6301): 819-822. |
87 | FREDENS J, WANG K, DE LA TORRE D, et al. Total synthesis of Escherichia coli with a recoded genome[J]. Nature, 2019, 569(7757): 514-518. |
88 | VENETZ J E, MEDICO L DEL, WÖLFLE A, et al. Chemical synthesis rewriting of a bacterial genome to achieve design flexibility and biological functionality[J]. PNAS, 2019, 116(16): 8070-8079. |
89 | HOSHIKA S, LEAL N A, KIM M J, et al. Hachimoji DNA and RNA: a genetic system with eight building blocks[J]. Science, 2019, 363(6429): 884-887. |
90 | MALYSHEV D A, DHAMI K, LAVERGNE T, et al. A semi-synthetic organism with an expanded genetic alphabet[J]. Nature, 2014, 509: 385-388. |
91 | ZHANG Y, PTACIN J L, FISCHER E C, et al. A semi-synthetic organism that stores and retrieves increased genetic information[J]. Nature, 2017, 551: 644. |
92 | DIEN V T, HOLCOMB M, FELDMAN A W, et al. Progress toward a semi-synthetic organism with an unrestricted expanded genetic alphabet[J]. Journal of the American Chemical Society, 2018, 140(47): 16115-16123. |
93 | ZHOU A X Z, SHENG K, FELDMAN A W, et al. Progress toward eukaryotic semisynthetic organisms: translation of unnatural codons[J]. Journal of the American Chemical Society, 2019, 141(51): 20166-20170. |
94 | ZHANG Y, LAMB B M, FELDMAN A W, et al. A semisynthetic organism engineered for the stable expansion of the genetic alphabet[J]. PNAS, 2017, 114(6): 1317-1322. |
95 | ROMESBERG F E. Synthetic biology: the chemist's approach[J]. Israel Journal of Chemistry, 2019, 59(1/2): 91-94. |
96 | BROWNING D F, GODFREY R E, RICHARDS K L, et al. Exploitation of the Escherichia coli lac operon promoter for controlled recombinant protein production[J]. Biochemical Society Transaction, 2019, 47(2): 755-763. |
97 | SUZUKI T, ASAMI M, PATEL S G, et al. Switchable genome editing via genetic code expansion[J]. Scientific Report, 2018, 8(1): 10051. |
98 | HEMPHILL J, BORCHARDT E K, BROWN K, et al. Optical control of CRISPR/Cas9 gene editing[J]. Journal of the American Chemical Society, 2015, 137(17): 5642-5645. |
99 | EDWARDS W F, YOUNG D D, DEITERS A. Light-activated Cre recombinase as a tool for the spatial and temporal control of gene function in mammalian cells[J]. ACS Chemistry Biology, 2009, 4(6): 441-445. |
100 | BROWN W, LIU J, TSANG M, et al. Cell-lineage tracing in zebrafish embryos with an expanded genetic code[J]. ChemBioChem, 2018, 19(12): 1244-1249. |
101 | WANG J, LIU Y, LIU Y, et al. Time-resolved protein activation by proximal decaging in living systems[J]. Nature, 2019, 569(7757): 509-513. |
102 | MOK J, KIM P M, LAM H Y, et al. Deciphering protein kinase specificity through large-scale analysis of yeast phosphorylation site motifs[J]. Sci. Signal., 2010, 3(109): ra12. |
103 | PARK H S, HOHN M J, UMEHARA T, et al. Expanding the genetic code of Escherichia coli with phosphoserine[J]. Science, 2011, 333(6046): 1151-1154. |
104 | PIRMAN N L, BARBER K W, AERNI H R, et al. A flexible codon in genomically recoded Escherichia coli permits programmable protein phosphorylation[J]. Nature Communications, 2015, 6: 8130. |
105 | ROGERSON D T, SACHDEVA A, WANG K, et al. Efficient genetic encoding of phosphoserine and its nonhydrolyzable analog[J]. Nature Chemical Biology, 2015, 11(7): 496-503. |
106 | YANG A, HA S, AHN J, et al. A chemical biology route to site-specific authentic protein modifications[J]. Science, 2016, 354(6312): 623-626. |
107 | ZHANG M S, BRUNNER S F, HUGUENIN-DEZOT N, et al. Biosynthesis and genetic encoding of phosphothreonine through parallel selection and deep sequencing[J]. Nature Methods, 2017, 14(7): 729-736. |
108 | LUO X, FU G, WANG R E, et al. Genetically encoding phosphotyrosine and its nonhydrolyzable analog in bacteria[J]. Nature Chemical Biology, 2017, 13(8): 845-849. |
109 | WANG Z A, KURRA Y, WANG X, et al. A versatile approach for site-specific lysine acylation in proteins[J]. Angewandte Chemie International Edition, 2017, 56(6): 1643-1647. |
110 | TSIEN R Y. The green fluorescent protein[J]. Annu. Rev. Biochem., 1998, 67: 509-544. |
111 | CAMPBELL R E, TOUR O, PALMER A E, et al. A monomeric red fluorescent protein[J]. PNAS, 2002, 99(12): 7877-7882. |
112 | LANG K, DAVIS L, TORRES-KOLBUS J, et al. Genetically encoded norbornene directs site-specific cellular protein labelling via a rapid bioorthogonal reaction[J]. Nat. Chem., 2012, 4(4): 298-304. |
113 | LUKINAVICIUS G, UMEZAWA K, OLIVIER N, et al. A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins[J]. Nat. Chem., 2013, 5(2): 132-139. |
114 | SIEVERS E L, SENTER P D. Antibody-drug conjugates in cancer therapy[J]. Annu. Rev. Med., 2013, 64: 15-29. |
115 | LAMBERT J M. Drug-conjugated antibodies for the treatment of cancer[J]. Br. J. Clin. Pharmacol., 2013, 76(2): 248-262. |
116 | WANG L, ZHANG Z, BROCK A, et al. Addition of the keto functional group to the genetic code of Escherichia coli [J]. PNAS, 2003, 100(1): 56-61. |
117 | KOLB H C, FINN M G, SHARPLESS K B. Click chemistry: diverse chemical function from a few good reactions[J]. Angewandte Chemie International Edition, 2001, 40(11): 2004-2021. |
118 | AGARWAL P, KUDIRKA R, ALBERS A E, et al. Hydrazino-Pictet-Spengler ligation as a biocompatible method for the generation of stable protein conjugates[J]. Bioconjug. Chem., 2013, 24(6): 846-851. |
119 | SCHMIDT M J, WEBER A, POTT M, et al. Structural basis of furan-amino acid recognition by a polyspecific aminoacyl-tRNA-synthetase and its genetic encoding in human cells[J]. ChemBioChem, 2014, 15(12): 1755-1760. |
120 | TEY S K. Adoptive T-cell therapy: adverse events and safety switches[J]. Clin. Transl. Immunology, 2014, 3(6): e17. |
121 | MA J S, KIM J Y, KAZANE S A, et al. Versatile strategy for controlling the specificity and activity of engineered T cells[J]. PNAS, 2016, 113(4): E450-E458. |
122 | JANG Y H, SEONG B L. Principles underlying rational design of live attenuated influenza vaccines[J]. Clin. Exp. Vaccine Res., 2012, 1(1): 35-49. |
123 | SI L, XU H, ZHOU X, et al. Generation of influenza A viruses as live but replication-incompetent virus vaccines[J]. Science, 2016, 354(6316): 1170-1173. |
124 | LI Q, WU Y J. A fluorescent, genetically engineered microorganism that degrades organophosphates and commits suicide when required[J]. Appl. Microbiol. Biotechnol., 2009, 82(4): 749-756. |
125 | RONCHEL M C, RAMOS J L. Dual system to reinforce biological containment of recombinant bacteria designed for rhizoremediation[J]. Appl. Environ. Microbiol., 2001, 67(6): 2649-2656. |
126 | WRIGHT O, STAN G B, ELLIS T. Building-in biosafety for synthetic biology[J]. Microbiology, 2013, 159(Pt 7): 1221-1235. |
127 | DIWO C, BUDISA N. Alternative biochemistries for alien life: basic concepts and requirements for the design of a robust biocontainment system in genetic isolation[J]. Genes (Basel), 2019, 10(1):17. |
128 | GAN F, LIU R, WANG F, et al. Functional replacement of histidine in proteins to generate noncanonical amino acid dependent organisms[J]. Journal of American Chemical Society, 2018, 140(11): 3829-3832. |
129 | MANDELL D J, LAJOIE M J, MEE M T, et al. Biocontainment of genetically modified organisms by synthetic protein design[J]. Nature, 2015, 518(7537): 55-60. |
130 | KOH M, YAO A, GLEASON P R, et al. A general strategy for engineering noncanonical amino acid dependent bacterial growth[J]. Journal of American Chemical Society, 2019, 141(41): 16213-16216. |
131 | ROVNER A J, HAIMOVICH A D, KATZ S R, et al. Recoded organisms engineered to depend on synthetic amino acids[J]. Nature, 2015, 518(7537): 89-93. |
132 | KATO Y. An engineered bacterium auxotrophic for an unnatural amino acid: a novel biological containment system[J]. PeerJ., 2015, 3: e1247. |
[1] | YUAN Feiyan, YU Yang, LI Chun. Artificial enzyme designs and its application based on non-natural structural elements [J]. Synthetic Biology Journal, 2020, 1(6): 685-696. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||