Synthetic Biology Journal ›› 2024, Vol. 5 ›› Issue (1): 77-87.DOI: 10.12211/2096-8280.2023-001
• Invited Review • Previous Articles Next Articles
Ruiqi WANG1, Luonan CHEN2,3
Received:
2022-12-31
Revised:
2023-07-04
Online:
2024-03-20
Published:
2024-02-29
Contact:
Luonan CHEN
王瑞琦1, 陈洛南2,3
通讯作者:
陈洛南
作者简介:
基金资助:
CLC Number:
Ruiqi WANG, Luonan CHEN. Synthetic biology based on dynamical analysis[J]. Synthetic Biology Journal, 2024, 5(1): 77-87.
王瑞琦, 陈洛南. 基于动力学分析的合成生物学研究[J]. 合成生物学, 2024, 5(1): 77-87.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2023-001
Fig. 1 Common switching dynamics for the intervals Ⅰ and Ⅲ, the system is monostable, but for the interval Ⅱ, the system is bistable (a), and periodic oscillations (b)
1 | GARDNER T S, CANTOR C R, COLLINS J J. Construction of a genetic toggle switch in Escherichia coli [J]. Nature, 2000, 403(6767): 339-342. |
2 | ELOWITZ M B, LEIBLER S. A synthetic oscillatory network of transcriptional regulators[J]. Nature, 2000, 403(6767): 335-338. |
3 | SLUSARCZYK A L, LIN A, WEISS R. Foundations for the design and implementation of synthetic genetic circuits[J]. Nature Reviews Genetics, 2012, 13(6): 406-420. |
4 | KOBAYASHI T, CHEN L N, AIHARA K. Modeling genetic switches with positive feedback loops[J]. Journal of Theoretical Biology, 2003, 221(3): 379-399. |
5 | WANG R Q, JING Z J, CHEN L N. Modelling periodic oscillation in gene regulatory networks by cyclic feedback systems[J]. Bulletin of Mathematical Biology, 2005, 67(2): 339-367. |
6 | GOLDBETER A. A model for circadian oscillations in the Drosophila period protein (PER)[J]. Proceedings of the Royal Society of London. Series B: Biological Sciences, 1995, 261(1362): 319-324. |
7 | SMOLEN P, BAXTER D A, BYRNE J H. Frequency selectivity, multistability, and oscillations emerge from models of genetic regulatory systems[J]. The American Journal of Physiology, 1998, 274(2): C531-C542. |
8 | WOLF D M, EECKMAN F H. On the relationship between genomic regulatory element organization and gene regulatory dynamics[J]. Journal of Theoretical Biology, 1998, 195(2): 167-186. |
9 | LIPSHTAT A, LOINGER A, BALABAN N Q, et al. Genetic toggle switch without cooperative binding[J]. Physical Review Letters, 2006, 96(18): 188101. |
10 | WIGGINS S. Introduction to applied nonlinear dynamical systems and chaos[M/OL]. New York, NY: Springer New York, 1990[2022-12-30]. . |
11 | CHEN L N, WANG R Q, LI C G, et al. Modeling biomolecular networks in cells: structures and dynamics[M/OL]. London: Springer, 2010[2022-12-30]. . |
12 | SNOUSSI H EL, THOMAS R. Logical identification of all steady states: the concept of feedback loop characteristic states[J]. Bulletin of Mathematical Biology, 1993, 55(5): 973-991. |
13 | THOMAS R. The role of feedback circuits: positive feedback circuits are a necessary condition for positive real eigenvalues of the Jacobian matrix[J]. Berichte der Bunsengesellschaft Für Physikalische Chemie, 1994, 98(9): 1148-1151. |
14 | ANGELI D, FERRELL J E JR, SONTAG E D. Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(7): 1822-1827. |
15 | GOSSEN M, BUJARD H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters[J]. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(12): 5547-5551. |
16 | LOU C B, LIU X L, NI M, et al. Synthesizing a novel genetic sequential logic circuit: a push-on push-off switch[J]. Molecular Systems Biology, 2010, 6: 350. |
17 | CHEN S B, ZHANG H Q, SHI H D, et al. Automated design of genetic toggle switches with predetermined bistability[J]. ACS Synthetic Biology, 2012, 1(7): 284-290. |
18 | ZHU R J, DEL RIO-SALGADO J M, GARCIA-OJALVO J, et al. Synthetic multistability in mammalian cells[J]. Science, 2022, 375(6578): eabg9765. |
19 | DEANS T L, CANTOR C R, COLLINS J J. A tunable genetic switch based on RNAi and repressor proteins for regulating gene expression in mammalian cells[J]. Cell, 2007, 130(2): 363-372. |
20 | FRANKO N, TEIXEIRA A P, XUE S, et al. Design of modular autoproteolytic gene switches responsive to anti-coronavirus drug candidates[J]. Nature Communications, 2021, 12: 6786. |
21 | 娄春波, 杜沛, 孟凡康, 等. 人工基因线路的研究进展和未来挑战[J]. 中国科学院院刊, 2018, 33(11): 1158-1165. |
LOU C B, DU P, MENG F K, et al. Development and challenges of synthetic genetic circuits[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(11): 1158-1165. | |
22 | STRICKER J, COOKSON S, BENNETT M R, et al. A fast, robust and tunable synthetic gene oscillator[J]. Nature, 2008, 456(7221): 516-519. |
23 | THOMAS R, THIEFFRY D, KAUFMAN M. Dynamical behaviour of biological regulatory networks—Ⅰ. Biological role of feedback loops and practical use of the concept of the loop-characteristic state[J]. Bulletin of Mathematical Biology, 1995, 57(2): 247-276. |
24 | MACDONALD N. Biological delay systems: linear stability theory[M/OL]. Cambridge: Cambridge University Press, 1989[2022-12-30]. . |
25 | WANG R Q, CHEN L N, AIHARA K. Construction of genetic oscillators with interlocked feedback networks[J]. Journal of Theoretical Biology, 2006, 242(2): 454-463. |
26 | GONZE D, RUOFF P. The Goodwin oscillator and its legacy[J]. Acta Biotheoretica, 2021, 69(4): 857-874. |
27 | O'BRIEN E L, VAN ITALLIE E, BENNETT M R. Modeling synthetic gene oscillators[J]. Mathematical Biosciences, 2012, 236(1): 1-15. |
28 | NOVÁK B, TYSON J J. Design principles of biochemical oscillators[J]. Nature Reviews Molecular Cell Biology, 2008, 9(12): 981-991. |
29 | TSAI T Y C, CHOI Y S, MA W Z, et al. Robust, tunable biological oscillations from interlinked positive and negative feedback loops[J]. Science, 2008, 321(5885): 126-129. |
30 | MAEDA K, KURATA H. Long negative feedback loop enhances period tunability of biological oscillators[J]. Journal of Theoretical Biology, 2018, 440: 21-31. |
31 | WANG R Q, CHEN L N, AIHARA K. Detection of cellular rhythms and global stability within interlocked feedback systems[J]. Mathematical Biosciences, 2007, 209(1): 171-189. |
32 | HASTY J, ISAACS F, DOLNIK M, et al. Designer gene networks: towards fundamental cellular control[J]. Chaos, 2001, 11(1): 207-220. |
33 | CHEN L N, AIHARA K. A model of periodic oscillation for genetic regulatory systems[J]. IEEE Transactions on Circuits and Systems Ⅰ: Fundamental Theory and Applications, 2002, 49(10): 1429-1436. |
34 | WANG R, ZHOU T, JING Z, et al. Modelling periodic oscillation of biological systems with multiple timescale networks[J]. Systems Biology, 2004, 1(1): 71-84. |
35 | CILIBERTO A, CAPUANI F, TYSON J J. Modeling networks of coupled enzymatic reactions using the total quasi-steady state approximation[J]. PLoS Computational Biology, 2007, 3(3): e45. |
36 | TURANYI T, TOMLIN A S, PILLING M J. On the error of the quasi-steady-state approximation[J]. The Journal of Physical Chemistry, 1993, 97(1): 163-172. |
37 | STELLING J, SAUER U, SZALLASI Z, et al. Robustness of cellular functions[J]. Cell, 2004, 118(6): 675-685. |
38 | PURCELL O, SAVERY N J, GRIERSON C S, et al. A comparative analysis of synthetic genetic oscillators[J]. Journal of the Royal Society, Interface, 2010, 7(52): 1503-1524. |
39 | LI Z D, LIU S X, YANG Q. Incoherent inputs enhance the robustness of biological oscillators[J]. Cell Systems, 2017, 5(1): 72-81.e4. |
40 | STELLING J, GILLES E D, F J Ⅲ DOYLE. Robustness properties of circadian clock architectures[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(36): 13210-13215. |
41 | BAUM K, POLITI A Z, KOFAHL B, et al. Feedback, mass conservation and reaction kinetics impact the robustness of cellular oscillations[J]. PLoS Computational Biology, 2016, 12(12): e1005298. |
42 | HU C Y, MURRAY R M. Layered feedback control overcomes performance trade-off in synthetic biomolecular networks[J]. Nature Communications, 2022, 13: 5393. |
43 | KUZNETSOV Y A. Elements of applied bifurcation theory[M/OL]. New York, NY: Springer New York, 1995[2022-12-30]. . |
44 | MILLER M B, BASSLER B L. Quorum sensing in bacteria[J]. Annual Review of Microbiology, 2001, 55: 165-199. |
45 | WANG R Q, LI C G, CHEN L N, et al. Modeling and analyzing biological oscillations in molecular networks[J]. Proceedings of the IEEE, 2008, 96(8): 1361-1385. |
46 | YOU L C, COX R S, WEISS R, et al. Programmed population control by cell–cell communication and regulated killing[J]. Nature, 2004, 428(6985): 868-871. |
47 | WINFREE A T. Biological rhythms and the behavior of populations of coupled oscillators[J]. Journal of Theoretical Biology, 1967, 16(1): 15-42. |
48 | PIKOVSKY A, ROSENBLUM M, KURTHS J. Synchronization: a universal concept in nonlinear sciences[M/OL]. Cambridge: Cambridge University Press, 2001[2022-12-30]. . |
49 | ZHOU T S, CHEN L N, AIHARA K. Molecular communication through stochastic synchronization induced by extracellular fluctuations[J]. Physical Review Letters, 2005, 95(17): 178103. |
50 | CHEN L N, WANG R Q, ZHOU T S, et al. Noise-induced cooperative behavior in a multicell system[J]. Bioinformatics, 2005, 21(11): 2722-2729. |
51 | WANG R Q, CHEN L N. Synchronizing genetic oscillators by signaling molecules[J]. Journal of Biological Rhythms, 2005, 20(3): 257-269. |
52 | WANG R Q, CHEN L N, AIHARA K. Synchronizing a multicellular system by external input: an artificial control strategy[J]. Bioinformatics, 2006, 22(14): 1775-1781. |
53 | DANINO T, MONDRAGÓN-PALOMINO O, TSIMRING L, et al. A synchronized quorum of genetic clocks[J]. Nature, 2010, 463(7279): 326-330. |
54 | MCMILLEN D, KOPELL N, HASTY J, et al. Synchronizing genetic relaxation oscillators by intercell signaling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(2): 679-684. |
55 | GARCIA-OJALVO J, ELOWITZ M B, STROGATZ S H. Modeling a synthetic multicellular clock: repressilators coupled by quorum sensing[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30): 10955-10960. |
56 | WAGEMAKERS A, BULDÚ J M, GARCÍA-OJALVO J, et al. Synchronization of electronic genetic networks[J]. Chaos, 2006, 16(1): 013127. |
57 | BASU S, GERCHMAN Y, COLLINS C H, et al. A synthetic multicellular system for programmed pattern formation[J]. Nature, 2005, 434(7037): 1130-1134. |
58 | MILO R, SHEN-ORR S, ITZKOVITZ S, et al. Network motifs: simple building blocks of complex networks[J]. Science, 2002, 298(5594): 824-827. |
59 | ALON U. Network motifs: theory and experimental approaches[J]. Nature Reviews Genetics, 2007, 8(6): 450-461. |
60 | MA W Z, TRUSINA A, EL-SAMAD H, et al. Defining network topologies that can achieve biochemical adaptation[J]. Cell, 2009, 138(4): 760-773. |
61 | ZHANG X P, LIU F, CHENG Z, et al. Cell fate decision mediated by p53 pulses[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(30): 12245-12250. |
62 | NASERI G, KOFFAS M A G. Application of combinatorial optimization strategies in synthetic biology[J]. Nature Communications, 2020, 11: 2446. |
63 | RADIVOJEVIĆ T, COSTELLO Z, WORKMAN K, et al. A machine learning Automated Recommendation Tool for synthetic biology[J]. Nature Communications, 2020, 11: 4879. |
64 | KARKARIA B D, Manhart A, FEDOREC A J H, et al. Chaos in synthetic microbial communities[J]. PLoS Computational Biology, 2022, 18(10): e1010548. |
[1] | Qian MENG, Cong YIN, Weiren HUANG. Tumor organoids and their research progress in synthetic biology [J]. Synthetic Biology Journal, 2024, 5(1): 191-201. |
[2] | Qingyun RUAN, Xin HUANG, Zijun MENG, Shu QUAN. Computational design and directed evolution strategies for optimizing protein stability [J]. Synthetic Biology Journal, 2023, 4(1): 5-29. |
[3] | Jianming LIU, Anping ZENG. Cell-free multi-enzyme machines for CO2 capture, utilization and its associated challenges [J]. Synthetic Biology Journal, 2022, 3(5): 825-832. |
[4] | Tao TU, Huiying LUO, Bin YAO. Progress in the application of protein engineering in the developing of feed enzymes [J]. Synthetic Biology Journal, 2022, 3(3): 487-499. |
[5] | Yuqi TANG, Songtao YE, Jia LIU, Xin ZHANG. Molecular chaperones promote protein stability and evolution [J]. Synthetic Biology Journal, 2022, 3(3): 445-464. |
[6] | Byuri SIM, Yilei ZHAO. Assessment on the pre-reaction state of enzyme: could we understand catalytic activity with near transition-state molecular dynamic simulation?-a review [J]. Synthetic Biology Journal, 2022, 3(3): 567-586. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||