Synthetic Biology Journal ›› 2022, Vol. 3 ›› Issue (3): 487-499.DOI: 10.12211/2096-8280.2022-027
• Invited Review • Previous Articles Next Articles
Tao TU, Huiying LUO, Bin YAO
Received:
2022-05-06
Revised:
2022-05-28
Online:
2022-07-13
Published:
2022-06-30
Contact:
Bin YAO
涂涛, 罗会颖, 姚斌
通讯作者:
姚斌
作者简介:
基金资助:
CLC Number:
Tao TU, Huiying LUO, Bin YAO. Progress in the application of protein engineering in the developing of feed enzymes[J]. Synthetic Biology Journal, 2022, 3(3): 487-499.
涂涛, 罗会颖, 姚斌. 蛋白质工程在饲料用酶研发中的应用研究进展[J]. 合成生物学, 2022, 3(3): 487-499.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2022-027
软件 | 描述 | 网址 | 参考文献 |
---|---|---|---|
Consensus Finder | 基于共识分析构建共识序列 | http://kazlab.umn.edu/ | [ |
Disulfide by Design 2.0 | 基于高B因子参数引入二硫键提高热稳定性 | http://cptweb.cpt.wayne.edu/DbD2/ | [ |
EASE-MM | 综合多种机器学习模型预测点突变引起的稳定性变化 | http://sparks-lab.org/server/ease-mm/ | [ |
Eris | 基于Medusa模型预测突变位点引起的蛋白质稳定性变化 | https://dokhlab.med.psu.edu/eris/login.php | [ |
ETSS | 基于酶表面电荷优化的策略 | [ | |
FireProt | 基于能量和进化信息的热稳定性多点突变体设计 | https://loschmidt.chemi.muni.cz/fireprot/ | [ |
FoldX | 基于折叠自由能计算酶不稳定区域 | https://foldxsuite.crg.eu/ | [ |
I-Mutant | 基于神经网络预测单点突变引起的稳定性变化 | https://folding.biofold.org/i-mutant/i-mutant2.0.html | [ |
mCSM | 基于图形特征预测突变位点对蛋白质稳定性的影响 | http://biosig.unimelb.edu.au/mcsm/stability | [ |
PoPMuSiC | 基于突变位点的溶剂可及性预测其对蛋白质稳定性的影响 | https://soft.dezyme.com/ | [ |
PremPS | 基于解折叠自由能的计算评估单点突变对对酶稳定性的影响 | https://lilab.jysw.suda.edu.cn/research/PremPS/ | [ |
Prethermut | 基于机器学习的方法预测单点或多点突变引起的酶热稳定性变化 | http://www.mobioinfor.cn/prethermut | [ |
PROSS | 基于结构和序列的自动化蛋白质高表达和稳定性设计 | http://pross.weizmann.ac.il | [ |
Rosetta | 基于蒙特卡洛模拟退火的优化方法寻找突变位点提高蛋白质稳定性 | https://www.rosettacommons.org/software | [ |
Tab. 1 Summary for the software used for designing thermo-toler enzymes
软件 | 描述 | 网址 | 参考文献 |
---|---|---|---|
Consensus Finder | 基于共识分析构建共识序列 | http://kazlab.umn.edu/ | [ |
Disulfide by Design 2.0 | 基于高B因子参数引入二硫键提高热稳定性 | http://cptweb.cpt.wayne.edu/DbD2/ | [ |
EASE-MM | 综合多种机器学习模型预测点突变引起的稳定性变化 | http://sparks-lab.org/server/ease-mm/ | [ |
Eris | 基于Medusa模型预测突变位点引起的蛋白质稳定性变化 | https://dokhlab.med.psu.edu/eris/login.php | [ |
ETSS | 基于酶表面电荷优化的策略 | [ | |
FireProt | 基于能量和进化信息的热稳定性多点突变体设计 | https://loschmidt.chemi.muni.cz/fireprot/ | [ |
FoldX | 基于折叠自由能计算酶不稳定区域 | https://foldxsuite.crg.eu/ | [ |
I-Mutant | 基于神经网络预测单点突变引起的稳定性变化 | https://folding.biofold.org/i-mutant/i-mutant2.0.html | [ |
mCSM | 基于图形特征预测突变位点对蛋白质稳定性的影响 | http://biosig.unimelb.edu.au/mcsm/stability | [ |
PoPMuSiC | 基于突变位点的溶剂可及性预测其对蛋白质稳定性的影响 | https://soft.dezyme.com/ | [ |
PremPS | 基于解折叠自由能的计算评估单点突变对对酶稳定性的影响 | https://lilab.jysw.suda.edu.cn/research/PremPS/ | [ |
Prethermut | 基于机器学习的方法预测单点或多点突变引起的酶热稳定性变化 | http://www.mobioinfor.cn/prethermut | [ |
PROSS | 基于结构和序列的自动化蛋白质高表达和稳定性设计 | http://pross.weizmann.ac.il | [ |
Rosetta | 基于蒙特卡洛模拟退火的优化方法寻找突变位点提高蛋白质稳定性 | https://www.rosettacommons.org/software | [ |
Fig. 2 Strategies for adjusting the pKa value of catalytic residues in feeding enzymes[42](1) Electrostatic interactions: Introducing the negatively or positively charged amino acids around catalytic residues to increase or decrease the pKa value; (2) Hydrogen-bond interactions: Acting as the hydrogen acceptor or donor of catalytic residues to increase or decrease the pKa value; (3) Hydrophobic interactions: Deprotonation of the carboxyl group of catalytic residues to increase the pKa value.
1 | SINHA R, SHUKLA P. Current trends in protein engineering: updates and progress[J]. Current Protein & Peptide Science, 2019, 20(5): 398-407. |
2 | PONGSUPASA V, ANUWAN P, MAENPUEN S, et al. Rational-design engineering to improve enzyme thermostability[J]. Methods in Molecular Biology, 2022, 2397: 159-178. |
3 | 冯定远. 酶制剂在饲料养殖中发挥替代抗生素作用的领域及其机理[J]. 饲料工业, 2020, 41(12): 1-10. |
FENG D Y. The different fields and their mechanism of enzymes for replacing antibiotic in feeds and feeding[J]. Feed Industry, 2020, 41(12): 1-10. | |
4 | VICTORINO DA SILVA AMATTO I, GONSALES DA ROSA-GARZON N, ANTÔNIO DE OLIVEIRA SIMÕES F, et al. Enzyme engineering and its industrial applications[J]. Biotechnology and Applied Biochemistry, 2022, 69(2): 389-409. |
5 | 范振港, 陈东, 王祚, 等. 粉碎、制粒工艺对饲料营养成分和单胃动物生产性能的影响[J]. 粮食与饲料工业, 2020(1): 32-36. |
FAN Z G, CHEN D, WANG Z, et al. Effects of crushing and pelletizing technology on nutrient composition of feed and production performance of monogastric animals[J]. Cereal & Feed Industry, 2020(1): 32-36. | |
6 | MRUDULA VASUDEVAN U, JAISWAL A K, KRISHNA S, et al. Thermostable phytase in feed and fuel industries[J]. Bioresource Technology, 2019, 278: 400-407. |
7 | JONES B J, LIM H Y, HUANG J, et al. Comparison of five protein engineering strategies for stabilizing an α/β-hydrolase[J]. Biochemistry, 2017, 56(50): 6521-6532. |
8 | CRAIG D B, DOMBKOWSKI A A. Disulfide by Design 2.0: a web-based tool for disulfide engineering in proteins[J]. BMC Bioinformatics, 2013, 14: 346. |
9 | FOLKMAN L, STANTIC B, SATTAR A, et al. EASE-MM: Sequence-based prediction of mutation-induced stability changes with feature-based multiple models[J]. Journal of Molecular Biology, 2016, 428(6): 1394-1405. |
10 | YIN S Y, DING F, DOKHOLYAN N V. Eris: an automated estimator of protein stability[J]. Nature Methods, 2007, 4(6): 466-467. |
11 | ZHANG L J, TANG X M, CUI D B, et al. A method to rationally increase protein stability based on the charge-charge interaction, with application to lipase LipK107[J]. Protein Science: a Publication of the Protein Society, 2014, 23(1): 110-116. |
12 | KHAN R T, MUSIL M, STOURAC J, et al. Fully automated ancestral sequence reconstruction using FireProtASR [J]. Current Protocols, 2021, 1(2): e30. |
13 | SCHYMKOWITZ J, BORG J, STRICHER F, et al. The FoldX web server: an online force field[J]. Nucleic Acids Research, 2005, 33(Web Server issue): W382-W388. |
14 | CAPRIOTTI E, FARISELLI P, CASADIO R. I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure[J]. Nucleic Acids Research, 2005, 33(s2): W306-W310. |
15 | PIRES D E V, ASCHER D B, BLUNDELL T L. mCSM: predicting the effects of mutations in proteins using graph-based signatures[J]. Bioinformatics, 2014, 30(3): 335-342. |
16 | DEHOUCK Y, KWASIGROCH J M, GILIS D, et al. PoPMuSiC 2.1: a web server for the estimation of protein stability changes upon mutation and sequence optimality[J]. BMC Bioinformatics, 2011, 12: 151. |
17 | CHEN Y T, LU H Y, ZHANG N, et al. PremPS: Predicting the impact of missense mutations on protein stability[J]. PLoS Computational Biology, 2020, 16(12): e1008543. |
18 | TIAN J, WU N F, CHU X Y, et al. Predicting changes in protein thermostability brought about by single- or multi-site mutations[J]. BMC Bioinformatics, 2010, 11: 370. |
19 | GOLDENZWEIG A, GOLDSMITH M, HILL S E, et al. Automated structure-and sequence-based design of proteins for high bacterial expression and stability[J]. Molecular Cell, 2016, 63(2): 337-346. |
20 | KELLOGG E H, LEAVER-FAY A, BAKER D. Role of conformational sampling in computing mutation-induced changes in protein structure and stability[J]. Proteins, 2011, 79(3): 830-838. |
21 | DOTSENKO A S, DENISENKO Y A, ROZHKOVA A M, et al. Enhancement of thermostability of GH10 xylanase E Penicillium canescens directed by ΔΔG calculations and structure analysis[J]. Enzyme and Microbial Technology, 2021, 152: 109938. |
22 | NAVONE L, VOGL T, LUANGTHONGKAM P, et al. Disulfide bond engineering of AppA phytase for increased thermostability requires co-expression of protein disulfide isomerase in Pichia pastoris [J]. Biotechnology for Biofuels, 2021, 14(1): 80. |
23 | SANCHEZ-RUIZ J M. Protein kinetic stability[J]. Biophysical Chemistry, 2010, 148(1/2/3): 1-15. |
24 | CHAKRAVARTY A K, FNASc. Thermodynamic stability of biomolecules and evolution[J]. Journal of Theoretical Biology, 2017, 427: 8-9. |
25 | XIE Y, AN J, YANG G Y, et al. Enhanced enzyme kinetic stability by increasing rigidity within the active site[J]. Journal of Biological Chemistry, 2014, 289(11): 7994-8006. |
26 | CHADHA B S, KAUR B, BASOTRA N, et al. Thermostable xylanases from thermophilic fungi and bacteria: current perspective[J]. Bioresource Technology, 2019, 277: 195-203. |
27 | WANG X C, YOU S P, ZHANG J X, et al. Rational design of a thermophilic β-mannanase from Bacillus subtilis TJ-102 to improve its thermostability[J]. Enzyme and Microbial Technology, 2018, 118: 50-56. |
28 | NING X Y, ZHANG Y L, YUAN T T, et al. Enhanced thermostability of glucose oxidase through computer-aided molecular design[J]. International Journal of Molecular Sciences, 2018, 19(2): 425. |
29 | LI G L, FANG X R, SU F, et al. Enhancing the thermostability of Rhizomucor miehei lipase with a limited screening library by rational-design point mutations and disulfide bonds[J]. Applied and Environmental Microbiology, 2018, 84(2): e02129-e02117. |
30 | TU T, WANG Z Y, LUO Y, et al. Structural insights into the mechanisms underlying the kinetic stability of GH28 endo-polygalacturonase[J]. Journal of Agricultural and Food Chemistry, 2021, 69(2): 815-823. |
31 | WANG S, MENG K, SU X Y, et al. Cysteine engineering of an endo-polygalacturonase from Talaromyces leycettanus JCM 12802 to improve its thermostability[J]. Journal of Agricultural and Food Chemistry, 2021, 69(22): 6351-6359. |
32 | LIU W N, TU T, GU Y, et al. Insight into the thermophilic mechanism of a glycoside hydrolase family 5 β-mannanase[J]. Journal of Agricultural and Food Chemistry, 2019, 67(1): 473-483. |
33 | ZHENG F, VERMAAS J V, ZHENG J, et al. Activity and thermostability of GH5 endoglucanase chimeras from mesophilic and thermophilic parents[J]. Applied and Environmental Microbiology, 2019, 85(5): e02079-e02018. |
34 | BU Y F, CUI Y L, PENG Y, et al. Engineering improved thermostability of the GH11 xylanase from Neocallimastix patriciarum via computational library design[J]. Applied Microbiology and Biotechnology, 2018, 102(8): 3675-3685. |
35 | 刘娇, 陈志敏, 郑爱娟, 等. 葡萄糖氧化酶对大肠杆菌攻毒肉鸭生长性能、免疫功能及肠道健康的影响[J]. 中国农业科学, 2021, 54(22): 4917-4930. |
LIU J, CHEN Z M, ZHENG A J, et al. Effects of glucose oxidase on growth performance, immune functions and intestinal health of ducks challenged by Escherichia coli [J]. Scientia Agricultura Sinica, 2021, 54(22): 4917-4930. | |
36 | LIANG Z Q, YAN Y R, ZHANG W, et al. Review of glucose oxidase as a feed additive: production, engineering, applications, growth-promoting mechanisms, and outlook[J]. Critical Reviews in Biotechnology, 2022. DOI: 10.1080/07388551.2022.2057275 . |
37 | LIU Z M, YUAN M X, ZHANG X Y, et al. A thermostable glucose oxidase from Aspergillus heteromophus CBS 117.55 with broad pH stability and digestive enzyme resistance[J]. Protein Expression and Purification, 2020, 176: 105717. |
38 | TU T, WANG Y, HUANG H Q, et al. Improving the thermostability and catalytic efficiency of glucose oxidase from Aspergillus niger by molecular evolution[J]. Food Chemistry, 2019, 281: 163-170. |
39 | JIANG X, WANG Y R, WANG Y, et al. Exploiting the activity-stability trade-off of glucose oxidase from Aspergillus niger using a simple approach to calculate thermostability of mutants[J]. Food Chemistry, 2021, 342: 128270. |
40 | 胡炜恒, 郑文才, 廖星毅, 等. 益生菌有机酸复合添加剂对AA肉鸡血清生化指标和消化道pH值的影响[J]. 广东饲料, 2014, 23(12): 30-34. |
HU W H, ZHENG W C, LIAO X Y, et al. Effects of probiotic organic acid compound additive on serum biochemical indices and digestive pH value of AA broilers[J]. Guangdong Feed, 2014, 23(12): 30-34. | |
41 | ABBASI KHEIRABADI M, SAFFAR B, HEMMATI R, et al. Thermally stable and acidic pH tolerant mutant phytases with high catalytic efficiency from Yersinia intermedia for potential application in feed industries[J]. Environmental Science and Pollution Research International, 2022, 29(22): 33713-33724. |
42 | LI S F, CHENG F, WANG Y J, et al. Strategies for tailoring pH performances of glycoside hydrolases[J]. Critical Reviews in Biotechnology, 2021: 1-21. DOI: 10.1080/07388551.2021.2004084 . |
43 | ANANDAKRISHNAN R, AGUILAR B, ONUFRIEV A V. H++ 3.0: Automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations[J]. Nucleic Acids Research, 2012, 40(W1): W537-W541. |
44 | MONGAN J, CASE D A, MCCAMMON J A. Constant pH molecular dynamics in generalized Born implicit solvent[J]. Journal of Computational Chemistry, 2004, 25(16): 2038-2048. |
45 | TYNAN-CONNOLLY B M, NIELSEN J E. Redesigning protein pKa values[J]. Protein Science, 2007, 16(2): 239-249. |
46 | ROSTKOWSKI M, OLSSON M H M, SØNDERGAARD C R, et al. Graphical analysis of pH-dependent properties of proteins predicted using PROPKA[J]. BMC Structural Biology, 2011, 11: 6. |
47 | COCKBURN D W, CLARKE A J. Modulating the pH-activity profile of cellulase A from Cellulomonas fimi by replacement of surface residues[J]. Protein Engineering, Design and Selection, 2011, 24(5): 429-437. |
48 | WANG C H, LIU X L, HUANG R B, et al. Enhanced acidic adaptation of Bacillus subtilis Ca-independent α-amylase by rational engineering of pKa values[J]. Biochemical Engineering Journal, 2018, 139: 146-153. |
49 | LUDWICZEK M L, D'ANGELO I, YALLOWAY G N, et al. Strategies for modulating the pH-dependent activity of a family 11 glycoside hydrolase[J]. Biochemistry, 2013, 52(18): 3138-3156. |
50 | FUSHINOBU S, UNO T, KITAOKA M, et al. Mutational analysis of fungal family 11 xylanases on pH optimum determination[J]. Journal of Applied Glycoscience, 2011, 58(3): 107-114. |
51 | TISHKOV V I, GUSAKOV A V, CHERKASHINA A S, et al. Engineering the pH-optimum of activity of the GH12 family endoglucanase by site-directed mutagenesis[J]. Biochimie, 2013, 95(9): 1704-1710. |
52 | POKHREL S, JOO J C, YOO Y J. Shifting the optimum pH of Bacillus circulans xylanase towards acidic side by introducing arginine[J]. Biotechnology and Bioprocess Engineering, 2013, 18(1): 35-42. |
53 | LI Z H, ZHANG X S, WANG Q Q, et al. Understanding the pH-dependent reaction mechanism of a glycoside hydrolase using high-resolution X-ray and neutron crystallography[J]. ACS Catalysis, 2018, 8(9): 8058-8069. |
54 | LI H, TURUNEN O. Effect of acidic amino acids engineered into the active site cleft of Thermopolyspora flexuosa GH11 xylanase[J]. Biotechnology and Applied Biochemistry, 2015, 62(4): 433-440. |
55 | LI Q F, JIANG T, LIU R, et al. Tuning the pH profile of β-glucuronidase by rational site-directed mutagenesis for efficient transformation of glycyrrhizin[J]. Applied Microbiology and Biotechnology, 2019, 103(12): 4813-4823. |
56 | XIA W, XU X X, QIAN L C, et al. Engineering a highly active thermophilic β-glucosidase to enhance its pH stability and saccharification performance[J]. Biotechnology for Biofuels, 2016, 9: 147. |
57 | ZHOU S J, LIU Z M, XIE W C, et al. Improving catalytic efficiency and maximum activity at low pH of Aspergillus neoniger phytase using rational design[J]. International Journal of Biological Macromolecules, 2019, 131: 1117-1124. |
58 | MA F Q, XIE Y, LUO M J, et al. Sequence homolog-based molecular engineering for shifting the enzymatic pH optimum[J]. Synthetic and Systems Biotechnology, 2016, 1(3): 195-206. |
59 | NIU C F, YANG P L, YAO B. Engineering protease-resistant and highly active phytases[J]. Methods in Molecular Biology, 2020, 2091: 155-162. |
60 | QIU Y X, WU X Y, XIE C F, et al. A rational design for improving the trypsin resistance of aflatoxin-detoxifizyme (ADTZ) based on molecular structure evaluation[J]. Enzyme and Microbial Technology, 2016, 86: 84-92. |
61 | NIU C F, YANG P L, LUO H Y, et al. Engineering the residual side chains of HAP phytases to improve their pepsin resistance and catalytic efficiency[J]. Scientific Reports, 2017, 7: 42133. |
62 | NIU C F, YANG P L, LUO H Y, et al. Engineering of Yersinia phytases to improve pepsin and trypsin resistance and thermostability and application potential in the food and feed industry[J]. Journal of Agricultural and Food Chemistry, 2017, 65(34): 7337-7344. |
63 | NIU C F, WAN X Y. Engineering a trypsin-resistant thermophilic α-galactosidase to enhance pepsin resistance, acidic tolerance, catalytic performance, and potential in the food and feed industry[J]. Journal of Agricultural and Food Chemistry, 2020, 68(39): 10560-10573. |
64 | NIU C F, LUO H Y, SHI P J, et al. N-glycosylation improves the pepsin resistance of histidine acid phosphatase phytases by enhancing their stability at acidic pHs and reducing pepsin's accessibility to its cleavage sites[J]. Applied and Environmental Microbiology, 2015, 82(4): 1004-1014. |
65 | HU W X, LIU X Y, LI Y F, et al. Rational design for the stability improvement of Armillariella tabescens β-mannanase MAN47 based on N-glycosylation modification[J]. Enzyme and Microbial Technology, 2017, 97: 82-89. |
66 | WANG H, LIN X N, LI S, et al. Rational molecular design for improving digestive enzyme resistance of β-glucosidase from Trichoderma viride based on inhibition of bound state formation[J]. Enzyme and Microbial Technology, 2020, 133: 109465. |
67 | GOLDSMITH M, TAWFIK D S. Enzyme engineering: reaching the maximal catalytic efficiency peak[J]. Current Opinion in Structural Biology, 2017, 47: 140-150. |
68 | PINTO G P, CORBELLA M, DEMKIV A O, et al. Exploiting enzyme evolution for computational protein design[J]. Trends in Biochemical Sciences, 2022, 47(5): 375-389. |
69 | TU T, MENG K, LUO H Y, et al. New insights into the role of T3 loop in determining catalytic efficiency of GH28 endo-polygalacturonases[J]. PLoS One, 2015, 10(9): e0135413. |
70 | TU T, PAN X, MENG K, et al. Substitution of a non-active-site residue located on the T3 loop increased the catalytic efficiency of endo-polygalacturonases[J]. Process Biochemistry, 2016, 51(9): 1230-1238. |
71 | TU T, LI Y Q, LUO Y, et al. A key residue for the substrate affinity enhancement of a thermophilic endo-polygalacturonase revealed by computational design[J]. Applied Microbiology and Biotechnology, 2018, 102(10): 4457-4466. |
72 | YANG H, SHI P J, LIU Y, et al. Loop 3 of fungal endoglucanases of glycoside hydrolase family 12 modulates catalytic efficiency[J]. Applied and Environmental Microbiology, 2017, 83(6): e03123-16. |
73 | ZHENG F, TU T, WANG X Y, et al. Enhancing the catalytic activity of a novel GH5 cellulase Gt Cel5 from Gloeophyllum trabeum CBS 900.73 by site-directed mutagenesis on loop 6[J]. Biotechnology for Biofuels, 2018, 11: 76. |
74 | YU X R, TU T, LUO H Y, et al. Biochemical characterization and mutational analysis of a lactone hydrolase from Phialophora americana [J]. Journal of Agricultural and Food Chemistry, 2020, 68(8): 2570-2577. |
75 | SINGH S, KUMAR K, NATH P, et al. Role of glycine 256 residue in improving the catalytic efficiency of mutant endoglucanase of family 5 glycoside hydrolase from Bacillus amyloliquefaciens SS35[J]. Biotechnology and Bioengineering, 2020, 117(9): 2668-2682. |
76 | WANG L J, CAO K, PEDROSO M M, et al. Sequence- and structure-guided improvement of the catalytic performance of a GH11 family xylanase from Bacillus subtilis [J]. Journal of Biological Chemistry, 2021, 297(5): 101262. |
77 | DONG R Y, LIU X Q, WANG Y R, et al. Fusion of a proline-rich oligopeptide to the C-terminus of a ruminal xylanase improves catalytic efficiency[J]. Bioengineered, 2022, 13(4): 10482-10492. |
78 | RUBIO M V, TERRASAN C R F, CONTESINI F J, et al. Redesigning N-glycosylation sites in a GH3 β-xylosidase improves the enzymatic efficiency[J]. Biotechnology for Biofuels, 2019, 12: 269. |
79 | ZHANG D D, TU T, WANG Y, et al. Improving the catalytic performance of a Talaromyces leycettanus α-amylase by changing the linker length[J]. Journal of Agricultural and Food Chemistry, 2017, 65(24): 5041-5048. |
80 | KIM M K, AN Y J, SONG J M, et al. Structure-based investigation into the functional roles of the extended loop and substrate-recognition sites in an endo-β-1,4-D-mannanase from the Antarctic springtail, Cryptopygus antarcticus [J]. Proteins, 2014, 82(11): 3217-3223. |
81 | WANG K, LUO H Y, TIAN J, et al. Thermostability improvement of a streptomyces xylanase by introducing proline and glutamic acid residues[J]. Applied and Environmental Microbiology, 2014, 80(7): 2158-2165. |
82 | MIN K, KIM H, PARK H J, et al. Improving the catalytic performance of xylanase from Bacillus circulans through structure-based rational design[J]. Bioresource Technology, 2021, 340: 125737. |
83 | REN Y X, LUO H Y, HUANG H Q, et al. Improving the catalytic performance of Proteinase K from Parengyodontium album for use in feather degradation[J]. International Journal of Biological Macromolecules, 2020, 154: 1586-1595. |
84 | CHENG L, QI C L, YANG H X, et al. gutMGene: a comprehensive database for target genes of gut microbes and microbial metabolites[J]. Nucleic Acids Research, 2022, 50(D1): D795-D800. |
85 | CAO H, SUN L C, HUANG Y, et al. Structural insights into the dual-substrate recognition and catalytic mechanisms of a bifunctional acetyl ester-xyloside hydrolase from Caldicellulosiruptor lactoaceticus [J]. ACS Catalysis, 2019, 9(3): 1739-1747. |
86 | YOU S, LI J, ZHANG F, et al. Loop engineering of a thermostable GH10 xylanase to improve low-temperature catalytic performance for better synergistic biomass-degrading abilities[J]. Bioresource Technology, 2021, 342: 125962. |
87 | DING Z D, GUAN F F, XU G S, et al. MPEPE, a predictive approach to improve protein expression in E. coli based on deep learning[J]. Computational and Structural Biotechnology Journal, 2022, 20: 1142-1153. |
[1] | Wanqiu LIU, Xiangyang JI, Huiling XU, Yicong LU, Jian LI. Cell-free protein synthesis system enables rapid and efficient biosynthesis of restriction endonucleases [J]. Synthetic Biology Journal, 2023, 4(4): 840-851. |
[2] | Zhihang CHEN, Menglin JI, Yifei QI. Research progress of artificial intelligence in desiging protein structures [J]. Synthetic Biology Journal, 2023, 4(3): 464-487. |
[3] | Liya LIANG, Rongming LIU. Protein engineering of DNA targeting type Ⅱ CRISPR/Cas systems [J]. Synthetic Biology Journal, 2023, 4(1): 86-101. |
[4] | Yanping QI, Jin ZHU, Kai ZHANG, Tong LIU, Yajie WANG. Recent development of directed evolution in protein engineering [J]. Synthetic Biology Journal, 2022, 3(6): 1081-1108. |
[5] | Jingjing LI, Chao MA, Fan WANG, Hongjie ZHANG, Kai LIU. Biosynthesis of high-performance protein materials and their applications [J]. Synthetic Biology Journal, 2022, 3(4): 638-657. |
[6] | Huibin WANG, Changli CHE, Song YOU. Recent advances of enzymatic synthesis of organohalogens catalyzed by Fe/αKG-dependent halogenases [J]. Synthetic Biology Journal, 2022, 3(3): 545-566. |
[7] | Jiaqi HOU, Nan JIANG, Lianju MA, Yuan LU. Cell-free protein synthesis: from basic research to engineering applications [J]. Synthetic Biology Journal, 2022, 3(3): 465-486. |
[8] | Lu YANG, Xudong QU. Application of imine reductase in the synthesis of chiral amines [J]. Synthetic Biology Journal, 2022, 3(3): 516-529. |
[9] | Jiahao BIAN, Guangyu YANG. Artificial intelligence-assisted protein engineering [J]. Synthetic Biology Journal, 2022, 3(3): 429-444. |
[10] | Yichen WAN, Kongliang XU, Renchao ZHENG, Yuguo ZHENG. In vitro biosynthesis of chemicals: pathway design, component assembly and applications-a review [J]. Synthetic Biology Journal, 2021, 2(6): 886-901. |
[11] | Meixia LIU, Qiangzi LI, Dongdong MENG, Xinlei WEI, Chun YOU. Protein engineering of nicotinamide coenzyme-dependent oxidoreductases for coenzyme preference and its application in synthetic biology [J]. Synthetic Biology Journal, 2020, 1(5): 570-582. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||