Synthetic Biology Journal ›› 2022, Vol. 3 ›› Issue (4): 638-657.DOI: 10.12211/2096-8280.2022-032

• Invited Review • Previous Articles     Next Articles

Biosynthesis of high-performance protein materials and their applications

Jingjing LI1, Chao MA2, Fan WANG1, Hongjie ZHANG1,2, Kai LIU1,2   

  1. 1.The Changchun Institute of Applied Chemistry (CIAC),Chinese Academy of Sciences,Changchun 130022,Jilin,China
    2.The Department of Chemistry,Tsinghua University,Beijing 100084,China
  • Received:2022-06-01 Revised:2022-07-18 Online:2022-09-08 Published:2022-08-31
  • Contact: Kai LIU

生物合成高性能蛋白及材料应用

李敬敬1, 马超2, 王帆1, 张洪杰1,2, 刘凯1,2   

  1. 1.中国科学院长春应用化学研究所,吉林 长春 130022
    2.清华大学化学系,北京 100084
  • 通讯作者: 刘凯
  • 作者简介:李敬敬(1990—),女,博士,副研究员,主要研究方向为蛋白分子的定向改造、蛋白材料的构建与应用。E-mail:jjingli@ciac.ac.cn
    刘凯(1983—),男,博士,研究员/教授,主要研究方向为高性能生物大分子(核酸、蛋白)材料、生物-稀土杂化材料的合成与应用。E-mail:kailiu@mail.tsinghua.edu.cn
  • 基金资助:
    国家自然科学基金(22125701)

Abstract:

Biomaterials, derived from high-performance structural proteins such as elastin, spidroin, and resilin, exhibit broad applications in high-tech fields from wearable devices, biomedicine to military scenarios. Advanced synthetic biology tools including genetic recombination, site-directed mutagenesis, and metabolic pathway optimization enable the generation of recombinant structural proteins with customized properties. Additionally, such recombinant proteins could further assemble into disordered aggregates or ordered hierarchies to fulfill multiple functionalities. In particular, two or more independently natural structure proteins have been connected to produce recombinant proteins as scaffolds with superior mechanical properties. The mechanical performance has surpassed chemically synthesized polymers. By harnessing the power of metabolic pathway optimization, engineered microbes could enable the large production of high-molecular-weight proteins as renewable materials. Furthermore, through the integration of synthetic biology and materials science, programmable materials with multiple composition and sophisticated spatial organization have been fabricated, with diverse functionalities including self-repair, information storage, impact resistance, wound healing, etc. The protein-based materials established a new niche for current material systems. Despite recent advances, there are still huge challenges to be addressed in rational design, scalable production, and systematic integration for recombinant proteins. Synthetic biology, coupling with advanced techniques in materials science, provides a feasible route to tackle the aforementioned challenges and promote the innovation in bioinspired protein materials. In this review, we outline key advances in the design and fabrication of biosynthetic protein-based materials. First, we highlight the achievements in protein design, structural reconstruction and programmable assembly of novel biomaterials. Next, we discuss the developments of typical advanced protein materials, including biofibers and bioadhesives. Finally, we envision the ideal biosynthetic platforms, which would enable the rational de novo design and mass production for protein-based materials in the future.

Key words: biomaterials, synthetic biology, protein engineering, fibers, adhesives

摘要:

源自高性能生物结构蛋白的新一代材料体系在高技术领域具有广阔的应用前景。随着基因组装、定点突变和合成改造等合成生物学工具的发展,具有新特性的人工高性能蛋白及其多级材料体系获得了极大拓展。然而,目前在人工蛋白的高效生物合成、理性功能设计和跨尺度体外组装等方面仍面临严峻挑战。本文综述了利用合成生物学方法设计合成高性能蛋白材料的研究进展,强调了合成生物学技术在人工蛋白定向优化、结构改造和可编程材料组装等方面的作用,并突出了高性能蛋白及组装体在构建高强蛋白纤维和黏合材料领域的应用。最后,面向高性能蛋白材料理性设计和规模化制备的重大需求,对具有发展潜力的新型蛋白分子和技术平台进行了总结和展望,为今后该领域的应用基础研究提供了可借鉴的思路。

关键词: 生物材料, 合成生物学, 蛋白工程, 纤维, 黏合剂

CLC Number: