Meng Chai1,2, Feng-Qing Wang1,2,3, Dong-Zhi Wei1,2,3
Received:
2024-01-23
Revised:
2024-04-24
Published:
2024-04-28
Contact:
Feng-Qing Wang, Dong-Zhi Wei
柴猛1,2, 王风清1,2,3, 魏东芝1,2,3
通讯作者:
王风清,魏东芝
作者简介:
基金资助:
CLC Number:
Meng Chai, Feng-Qing Wang, Dong-Zhi Wei. Synthesis of organic acids from lignocellulose by biotransformation[J]. Synthetic Biology Journal, DOI: 10.12211/2096-8280.2024-011.
柴猛, 王风清, 魏东芝. 综合利用木质纤维素生物转化合成有机酸[J]. 合成生物学, DOI: 10.12211/2096-8280.2024-011.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2024-011
预处理类型 | 预处理技术 | 优点 | 缺点 | 参考 文献 |
---|---|---|---|---|
物理法 | 机械预处理 | 没有抑制物的产生且操作简单 | 设备昂贵且耗能高 | [ |
超声波预处理 | 处理效率高且无抑制剂产生 | 能耗较高且选择性较低 | [ | |
微波预处理 | 反应迅速且选择性较高 | 设备昂贵且运行成本较高 | [ | |
射线预处理 | 工艺方便、环保且经济 | 需要结合额外的物理或化学法预处理 | [ | |
脉冲电场预处理 | 反应快速且节能,需要简单的非热设备 | 需要多个脉冲发生器,且可能产生有毒化学物质 | [ | |
超临界CO2爆破 | 所需处理温度较低且廉价的CO2 | 需要较高的CO2压力,设备成本较高 | [ | |
等离子体预处理 | 过程中不产生有毒或污染化学物 | 能耗较高 | [ | |
化学法 | 酸处理 | 对糖的转化率较高,反应时间短 | 强酸毒性较大、腐蚀性强且处理过程会产生抑制物 | [ |
碱处理 | 工艺简单且条件温和,抑制物产生相对较少 | 下游回收过程复杂 | [ | |
氧化剂预处理 | 选择性高 | 容易导致抑制物的产生 | [ | |
离子溶液预处理 | 可回收重复使用,且热稳定性较好 | 成本较高且再生条件较高 | [ | |
有机溶剂预处理 | 反应时间短 | 部分有机溶剂的腐蚀性和毒性较大,且具有易燃性和挥发性 | [ | |
深共晶溶剂预处理 | 成本和毒性较高 | 粘稠度较高 | [ | |
生物法 | 真菌预处理 | 反应温和且能耗低 | 反应周期较长,回收率需要进一步提高 | [ |
细菌预处理 | 反应温和且能耗低 | 反应周期较长 | [ | |
白蚁预处理 | 反应温和且能耗低 | 反应周期较长 | [ | |
物理-化学共处理 | 蒸气爆破处理 | 处理方式环保 | 能耗较高,对软木的处理效果较差 | [ |
热碱处理 | 处理成本低 | 需要较高的温度和压力 | [ | |
氨纤维爆破预处理 | 条件温和且无抑制产生 | 反应能耗较高,且污染环境 | [ | |
化学-生物共处理 | 铜绿假单胞菌与 稀酸共处理 | 处理效率提高 | 需要进一步优化细菌的处理条件 | [ |
鞘氨醇杆菌与NaOH共处理 | 提高了纤维素水解物的得率 | 需要进一步优化条件 | [ |
Table 1 Common pretreatment processes of lignocellulose and their advantages and disadvantages
预处理类型 | 预处理技术 | 优点 | 缺点 | 参考 文献 |
---|---|---|---|---|
物理法 | 机械预处理 | 没有抑制物的产生且操作简单 | 设备昂贵且耗能高 | [ |
超声波预处理 | 处理效率高且无抑制剂产生 | 能耗较高且选择性较低 | [ | |
微波预处理 | 反应迅速且选择性较高 | 设备昂贵且运行成本较高 | [ | |
射线预处理 | 工艺方便、环保且经济 | 需要结合额外的物理或化学法预处理 | [ | |
脉冲电场预处理 | 反应快速且节能,需要简单的非热设备 | 需要多个脉冲发生器,且可能产生有毒化学物质 | [ | |
超临界CO2爆破 | 所需处理温度较低且廉价的CO2 | 需要较高的CO2压力,设备成本较高 | [ | |
等离子体预处理 | 过程中不产生有毒或污染化学物 | 能耗较高 | [ | |
化学法 | 酸处理 | 对糖的转化率较高,反应时间短 | 强酸毒性较大、腐蚀性强且处理过程会产生抑制物 | [ |
碱处理 | 工艺简单且条件温和,抑制物产生相对较少 | 下游回收过程复杂 | [ | |
氧化剂预处理 | 选择性高 | 容易导致抑制物的产生 | [ | |
离子溶液预处理 | 可回收重复使用,且热稳定性较好 | 成本较高且再生条件较高 | [ | |
有机溶剂预处理 | 反应时间短 | 部分有机溶剂的腐蚀性和毒性较大,且具有易燃性和挥发性 | [ | |
深共晶溶剂预处理 | 成本和毒性较高 | 粘稠度较高 | [ | |
生物法 | 真菌预处理 | 反应温和且能耗低 | 反应周期较长,回收率需要进一步提高 | [ |
细菌预处理 | 反应温和且能耗低 | 反应周期较长 | [ | |
白蚁预处理 | 反应温和且能耗低 | 反应周期较长 | [ | |
物理-化学共处理 | 蒸气爆破处理 | 处理方式环保 | 能耗较高,对软木的处理效果较差 | [ |
热碱处理 | 处理成本低 | 需要较高的温度和压力 | [ | |
氨纤维爆破预处理 | 条件温和且无抑制产生 | 反应能耗较高,且污染环境 | [ | |
化学-生物共处理 | 铜绿假单胞菌与 稀酸共处理 | 处理效率提高 | 需要进一步优化细菌的处理条件 | [ |
鞘氨醇杆菌与NaOH共处理 | 提高了纤维素水解物的得率 | 需要进一步优化条件 | [ |
脱毒分类 | 脱毒方法 | 适用范围 | 参考文献 |
---|---|---|---|
物理脱毒 | 吸附剂脱毒 | 呋喃、脂肪酸和 酚类物质 | [ |
膜脱毒法 | 酸法预处理抑制物 | [ | |
化学脱毒 | 碱法脱毒 | 酸类与呋喃类 | [ |
还原剂脱毒 | 呋喃类与酚类 | [ | |
氨基酸脱毒 | 呋喃类与醛类 | [ | |
生物脱毒 | 酶法脱毒 | 酚类 | [ |
高耐受抑制物的菌株 | 糠醛类与呋喃类 | [ | |
复合脱毒方法 | 离子交换树脂与 活性炭 | 酚类与呋喃类 | [ |
Table 2 Main detoxification methods and their applicable scopes
脱毒分类 | 脱毒方法 | 适用范围 | 参考文献 |
---|---|---|---|
物理脱毒 | 吸附剂脱毒 | 呋喃、脂肪酸和 酚类物质 | [ |
膜脱毒法 | 酸法预处理抑制物 | [ | |
化学脱毒 | 碱法脱毒 | 酸类与呋喃类 | [ |
还原剂脱毒 | 呋喃类与酚类 | [ | |
氨基酸脱毒 | 呋喃类与醛类 | [ | |
生物脱毒 | 酶法脱毒 | 酚类 | [ |
高耐受抑制物的菌株 | 糠醛类与呋喃类 | [ | |
复合脱毒方法 | 离子交换树脂与 活性炭 | 酚类与呋喃类 | [ |
生产菌株 | 底物 | 改造策略 | 发酵条件优化 | 生产方式 | 产量 | 产率 | 生产 强度 | 参考文献 |
---|---|---|---|---|---|---|---|---|
E. coli NZN111 | 木薯淀粉和生木薯 | 敲除pflB、ldhA | 优化发酵温度以及底物添加量等条件 | 好氧-厌氧 两阶段发酵 | 127.1 g/L | — | — | [ |
E. coli AFP111 | 葡萄糖 | 在ptsG突变的菌株中敲除pflB和ldhA | 控制葡萄糖的补加量以及菌体生长速度 | 好氧-厌氧 两阶段发酵 | 99.2 g/L | 110% (摩尔转化率) | 1.30 g/L/h | [ |
E. coli SD121 | 葡萄糖 | 过表达ppc,敲除pflB、ldhA和ptsG | 控制溶氧以及生物量 | 好氧-厌氧 两阶段发酵 | 116.2 g/L | 1.73 mol/mol | 1.55 g/L/h | [ |
E. col AFP111/pTrcC-cscA | 蔗糖和糖蜜 | 在E. coli AFP111的基础上,融合表达CscA与OmpC的锚定基序 | 控制pH以及底物添加量 | 好氧-厌氧 两阶段发酵 | 79.0 g/L | 1.20 mol/mol | 1.05 g/L/h | [ |
C. glutamicum S071/pGEX4-NCgl0275 | 葡萄糖 | 过表达Ncgl0275、pycP458S、pck、ppc、fdh和gapA | 优化葡萄糖的补加量以及生物量 | 好氧-厌氧 两阶段发酵 | 152.2 g/L | 1.67 mol/mol | 1.11 g/L/h | [ |
C. glutamicum ΔldhA-pCRA717 | 葡萄糖 | 过表达pyc,敲除ldhA | 优化碳酸氢盐浓度,溶氧以及pH | 好氧-厌氧 两阶段发酵 | 146.0 g/L | 1.40 mol/mol | 3.2 g/L/h | [ |
S. cerevisiae PMCFfg | 葡萄糖 | 敲除fum1、gpd1、pdc1、pdc5和pdc6,过表达pyc2、mdh3、fumC和frds1 | 控制尿素、碳酸钙和生物素的浓度 | 好氧发酵 | 12.9 g/L | 0.21 mol/mol | — | [ |
Y. lipolytica Hi-SA2 | 葡萄糖 | 合理分配亚细胞区室还原性TCA循环的代谢流 | 控制葡萄糖添加量 | 好氧发酵 | 111.9 g/L | 0.79 g/g | 1.79 g/L/h | [ |
A. succinogenes 130Z-pMDH | 葡萄糖和 木糖 | 过表达mdh | 优化温度以及pH | 厌氧发酵 | 34.2 g/L | 0.71 g/g | 0.36 g/L/h | [ |
Y. lipolytica PGC01003 | 甘油 | 敲除Ylsdh5 | 优化pH、通气量以及底物添加量 | 好氧发酵 | 160.2 g/L | 0.40 g/g | 0.40 g/L/h | [ |
A. succinogenes CGMCC1593 | 玉米秸秆 | — | 优化稀碱预处理、底物浓度、酶负荷和发酵温度 | 同步糖化和发酵(SSF) | 47.4 g/L | 0.72 g/g | 0.99 g/L/h | [ |
E. coli XW136 | 半纤维素 水解液 | 以E.coli KJ122为出发菌株在木糖AM1培养基中连续传代,得到SA滴度提高5倍的突变体,敲除yqhD引入ackA::P yadC fucO-ucpAadhE::fucO | 优化半纤维素水解液的制备,以及发酵过程pH 的控制 | 分批发酵 | 32.0 g/L | 0.90 g/g | — | [ |
T. thermosaccharolyticum M5和A. succinogenes 130Z | 木聚糖 | — | 优化底物浓度、pH、MgCO3浓度以及接种时间 | 联合生物处理(CBP) | 32.5 g/L | 0.39 g/g | — | [ |
Table 3 Research progress in the bio-synthesis of succinic acid (SA) from lignocellulosic biomass
生产菌株 | 底物 | 改造策略 | 发酵条件优化 | 生产方式 | 产量 | 产率 | 生产 强度 | 参考文献 |
---|---|---|---|---|---|---|---|---|
E. coli NZN111 | 木薯淀粉和生木薯 | 敲除pflB、ldhA | 优化发酵温度以及底物添加量等条件 | 好氧-厌氧 两阶段发酵 | 127.1 g/L | — | — | [ |
E. coli AFP111 | 葡萄糖 | 在ptsG突变的菌株中敲除pflB和ldhA | 控制葡萄糖的补加量以及菌体生长速度 | 好氧-厌氧 两阶段发酵 | 99.2 g/L | 110% (摩尔转化率) | 1.30 g/L/h | [ |
E. coli SD121 | 葡萄糖 | 过表达ppc,敲除pflB、ldhA和ptsG | 控制溶氧以及生物量 | 好氧-厌氧 两阶段发酵 | 116.2 g/L | 1.73 mol/mol | 1.55 g/L/h | [ |
E. col AFP111/pTrcC-cscA | 蔗糖和糖蜜 | 在E. coli AFP111的基础上,融合表达CscA与OmpC的锚定基序 | 控制pH以及底物添加量 | 好氧-厌氧 两阶段发酵 | 79.0 g/L | 1.20 mol/mol | 1.05 g/L/h | [ |
C. glutamicum S071/pGEX4-NCgl0275 | 葡萄糖 | 过表达Ncgl0275、pycP458S、pck、ppc、fdh和gapA | 优化葡萄糖的补加量以及生物量 | 好氧-厌氧 两阶段发酵 | 152.2 g/L | 1.67 mol/mol | 1.11 g/L/h | [ |
C. glutamicum ΔldhA-pCRA717 | 葡萄糖 | 过表达pyc,敲除ldhA | 优化碳酸氢盐浓度,溶氧以及pH | 好氧-厌氧 两阶段发酵 | 146.0 g/L | 1.40 mol/mol | 3.2 g/L/h | [ |
S. cerevisiae PMCFfg | 葡萄糖 | 敲除fum1、gpd1、pdc1、pdc5和pdc6,过表达pyc2、mdh3、fumC和frds1 | 控制尿素、碳酸钙和生物素的浓度 | 好氧发酵 | 12.9 g/L | 0.21 mol/mol | — | [ |
Y. lipolytica Hi-SA2 | 葡萄糖 | 合理分配亚细胞区室还原性TCA循环的代谢流 | 控制葡萄糖添加量 | 好氧发酵 | 111.9 g/L | 0.79 g/g | 1.79 g/L/h | [ |
A. succinogenes 130Z-pMDH | 葡萄糖和 木糖 | 过表达mdh | 优化温度以及pH | 厌氧发酵 | 34.2 g/L | 0.71 g/g | 0.36 g/L/h | [ |
Y. lipolytica PGC01003 | 甘油 | 敲除Ylsdh5 | 优化pH、通气量以及底物添加量 | 好氧发酵 | 160.2 g/L | 0.40 g/g | 0.40 g/L/h | [ |
A. succinogenes CGMCC1593 | 玉米秸秆 | — | 优化稀碱预处理、底物浓度、酶负荷和发酵温度 | 同步糖化和发酵(SSF) | 47.4 g/L | 0.72 g/g | 0.99 g/L/h | [ |
E. coli XW136 | 半纤维素 水解液 | 以E.coli KJ122为出发菌株在木糖AM1培养基中连续传代,得到SA滴度提高5倍的突变体,敲除yqhD引入ackA::P yadC fucO-ucpAadhE::fucO | 优化半纤维素水解液的制备,以及发酵过程pH 的控制 | 分批发酵 | 32.0 g/L | 0.90 g/g | — | [ |
T. thermosaccharolyticum M5和A. succinogenes 130Z | 木聚糖 | — | 优化底物浓度、pH、MgCO3浓度以及接种时间 | 联合生物处理(CBP) | 32.5 g/L | 0.39 g/g | — | [ |
Fig. 2 Three common pathways for 3-hydroxypropionic acid (3-HP) synthesis in microorganisms(PduP: Propionaldehyde dehydrogenase; PduL: Phosphotransferase; XylA: Xylose isomerase; XylB: Xylulokinase; AspA: Aspartate ammonia-lyase; PDH: Pyruvate dehydrogenase; BAPAT: β-alanine pyruvate transaminase; ACC: Acetyl-CoA carboxylase; PanD: Aspartate-α-decarboxylase; MCR: Malonyl-CoA reductase; PudP: Propionaldehyde dehydrogenase; PduL: Phosphotransacylase)
生产菌株 | 底物 | 改造策略 | 发酵条件优化 | 生产方式 | 产量 | 得率 | 生产 强度 | 参考 文献 |
---|---|---|---|---|---|---|---|---|
R. toruloides MCR-ALD6-g2945 | 葡萄糖和 木糖 | 外源表达A. pseudoterreus来源的羧酸转运体 | 优化培养基的 碳氮比 | 补料分 批发酵 | 45.4 g/L | 0.11 g/g | 0.44 g/L/h | [ |
O. polymorpha XFML | 葡萄糖和 木糖 | 优化葡萄糖和木糖共利用系统以及重塑中枢代谢途径 | 控制补糖速度 | 补料分 批发酵 | 79.6 g/L | 0.35 g/ga | 0.41 g/L/ha | [ |
A. niger An3HP9/pyc2/ald6a∆/3HP-6 | 玉米秸秆 水解物 | 优化3-HP代谢途径关键基因的表达,提高前体供应水平以及强化外排转运蛋白 | 优化发酵温度 以及培养基成份 | 分批发酵 | 36.0 g/L | 0.48 g/g | 0.21 g/L/h | [ |
C. glutamicum MH15 | 葡萄糖和 木糖 | 构建甘油利用途径,并微室化定位甘油合成途径,弱化乳酸和乙酸等副产物合成以及构建糖转运转运利用系统 | 控制补糖速度和底物浓度 | 补料分 批发酵 | 62.6 g/L | 0.51 g/g | — | [ |
Table 4 Research progress in the bio-synthesis of 3-hydroxypropionic acid (3-HP) from lignocellulosic biomass
生产菌株 | 底物 | 改造策略 | 发酵条件优化 | 生产方式 | 产量 | 得率 | 生产 强度 | 参考 文献 |
---|---|---|---|---|---|---|---|---|
R. toruloides MCR-ALD6-g2945 | 葡萄糖和 木糖 | 外源表达A. pseudoterreus来源的羧酸转运体 | 优化培养基的 碳氮比 | 补料分 批发酵 | 45.4 g/L | 0.11 g/g | 0.44 g/L/h | [ |
O. polymorpha XFML | 葡萄糖和 木糖 | 优化葡萄糖和木糖共利用系统以及重塑中枢代谢途径 | 控制补糖速度 | 补料分 批发酵 | 79.6 g/L | 0.35 g/ga | 0.41 g/L/ha | [ |
A. niger An3HP9/pyc2/ald6a∆/3HP-6 | 玉米秸秆 水解物 | 优化3-HP代谢途径关键基因的表达,提高前体供应水平以及强化外排转运蛋白 | 优化发酵温度 以及培养基成份 | 分批发酵 | 36.0 g/L | 0.48 g/g | 0.21 g/L/h | [ |
C. glutamicum MH15 | 葡萄糖和 木糖 | 构建甘油利用途径,并微室化定位甘油合成途径,弱化乳酸和乙酸等副产物合成以及构建糖转运转运利用系统 | 控制补糖速度和底物浓度 | 补料分 批发酵 | 62.6 g/L | 0.51 g/g | — | [ |
生产菌株 | 底物 | 改造策略 | 发酵条件优化 | 生产方式 | 产量 | 得率 | 生产强度 | 参考文献 |
---|---|---|---|---|---|---|---|---|
E.coli GX2xMA | 葡萄糖和木糖 | 引入木糖代谢途径并优化葡萄糖利用途径 | 优化底物浓度 | 分批发酵 | 4.09 g/L | 0.31 g/g | — | [ |
P. putida LC224 | 葡萄糖和木糖 | 敲除hexR并优化木糖异构酶途径,结合代谢模型和适应性进化工程策略 | 控制补糖速度以及溶氧 | 补料分批发酵 | 33.7 g/L | 46%(摩尔转化率) | 0.18 g/L/h | [ |
S. cerevisiae TN22 | 葡萄糖和木糖 | 解除芳香氨基酸对莽草酸合成途径的反馈抑制,消除乙醇积累和优化辅因子供给 | 添加聚丙烯乙二醇4000提取MA | 补料分批发酵 | 4.5 g/L | — | — | [ |
C. glutamicum MA-2 | 葡萄糖和儿茶酚 | 敲除MA环异构酶(CatB)并过表达儿茶酚1,2-二氧酶(CatA) | 控制补料速度和溶氧 | 补料分批发酵 | 85.0 g/L | — | 1.42 g/L/ha | [ |
P. putida MA-1 | 葡萄糖和儿茶酚 | 敲除catBC | 控制溶氧和pH,用氮气对儿茶酚进行脱气以防止其氧化 | 补料分批发酵 | 64.2 g/L | — | 4.50 g/L/h | [ |
Table 5 Research progress in the bio-synthesis of cis, cis-muconic acid (MA) from lignocellulosic biomass
生产菌株 | 底物 | 改造策略 | 发酵条件优化 | 生产方式 | 产量 | 得率 | 生产强度 | 参考文献 |
---|---|---|---|---|---|---|---|---|
E.coli GX2xMA | 葡萄糖和木糖 | 引入木糖代谢途径并优化葡萄糖利用途径 | 优化底物浓度 | 分批发酵 | 4.09 g/L | 0.31 g/g | — | [ |
P. putida LC224 | 葡萄糖和木糖 | 敲除hexR并优化木糖异构酶途径,结合代谢模型和适应性进化工程策略 | 控制补糖速度以及溶氧 | 补料分批发酵 | 33.7 g/L | 46%(摩尔转化率) | 0.18 g/L/h | [ |
S. cerevisiae TN22 | 葡萄糖和木糖 | 解除芳香氨基酸对莽草酸合成途径的反馈抑制,消除乙醇积累和优化辅因子供给 | 添加聚丙烯乙二醇4000提取MA | 补料分批发酵 | 4.5 g/L | — | — | [ |
C. glutamicum MA-2 | 葡萄糖和儿茶酚 | 敲除MA环异构酶(CatB)并过表达儿茶酚1,2-二氧酶(CatA) | 控制补料速度和溶氧 | 补料分批发酵 | 85.0 g/L | — | 1.42 g/L/ha | [ |
P. putida MA-1 | 葡萄糖和儿茶酚 | 敲除catBC | 控制溶氧和pH,用氮气对儿茶酚进行脱气以防止其氧化 | 补料分批发酵 | 64.2 g/L | — | 4.50 g/L/h | [ |
Fig. 3 Enzymatic methods for synthesis of 2,5-furandicarboxylic acid (FDCA) from 5-hydroxymethylfurfural(a)Synthesis of 2, 5-furandicarboxylic acid (FDCA) using fungal-derived aryl alcohol oxidase (AAO) and non-specific peroxidase (UPO)(b)Galactose oxidase mutant (GOaseM3-5), aldehyde oxidase (PaoABC) and catalase (CAL) cascade catalyzes the synthesis of 2,5-furandicarboxylic acid (FDCA) from 5-hydroxymethylfurfural (HMF)(c)2,5-Furandicarboxylic acid (FDCA) route synthesized based on the introduction of peroxidase (HRP) in (b)(d)Hydroxymethylfurfural and furfural oxidoreductase (HmfH/HMFO) catalyze the synthesis of 2,5-furandicarboxylic acid (FDCA) from 5-hydroxymethylfurfural (HMF)
Fig. 4 Synthetic pathway of 2-pyrone-4,6-dicarboxylic acid (PDC)(G: guaiacyl monomer; S: syringyl monomer; H: p-hydroxyphenyl monomer; LigAB: PCA 4,5-dioxygenase; LigC: 4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase)
生产菌株 | 底物 | 改造策略 | 发酵条件优化 | 生产方式 | 产量 | 得率 | 生产强度 | 参考 文献 |
---|---|---|---|---|---|---|---|---|
E.coli GYT7 | 葡萄糖 | 过表达抗反馈抑制的3-脱氧-D-阿拉伯庚酮糖-7-磷酸合成酶,提高前体和优化辅因子的供应水平,并结合计算机模拟分析代谢流 | 偶联pH进行补料 | 补料分 批发酵 | 16.7 g/L | 0.20 g/g | 0.17 g/L/h | [ |
E. coli WJ060、E. coli BL21(DE3)- pET30a-AbquiC和E. coli BL21(DE3)-pRSF-2ABC | 葡萄糖 | 模块化工程,利用葡萄糖合成DHS,接着合成为PCA,最后被催化为PDC | 优化全细胞催化的pH以及负载量等条件 | 补料分 批发酵 | 49.2 g/L | 27.2% (摩尔 转化率) | — | [ |
P. putida KT- PDC2 | 对香豆酸 | 引入PDC合成途径,增强前体PCA的供应 | 控制溶氧 | 补料分 批发酵 | 22.7 g/L | 1.0 mol/mol | 0.21 g/L/h | [ |
P. putida PpY1100-pDVZ21X | 葡萄糖和香草酸 | 引入利用香草酸合成PDC的途径 | 优化培养基成份,控制pH | 补料分 批发酵 | 99.9 g/L | 99% (摩尔 转化率) | 1.69 g/L/h | [ |
Table 6 Research progress of bio-synthesis of 2-pyrone-4,6-dicarboxylic acid (PDC)
生产菌株 | 底物 | 改造策略 | 发酵条件优化 | 生产方式 | 产量 | 得率 | 生产强度 | 参考 文献 |
---|---|---|---|---|---|---|---|---|
E.coli GYT7 | 葡萄糖 | 过表达抗反馈抑制的3-脱氧-D-阿拉伯庚酮糖-7-磷酸合成酶,提高前体和优化辅因子的供应水平,并结合计算机模拟分析代谢流 | 偶联pH进行补料 | 补料分 批发酵 | 16.7 g/L | 0.20 g/g | 0.17 g/L/h | [ |
E. coli WJ060、E. coli BL21(DE3)- pET30a-AbquiC和E. coli BL21(DE3)-pRSF-2ABC | 葡萄糖 | 模块化工程,利用葡萄糖合成DHS,接着合成为PCA,最后被催化为PDC | 优化全细胞催化的pH以及负载量等条件 | 补料分 批发酵 | 49.2 g/L | 27.2% (摩尔 转化率) | — | [ |
P. putida KT- PDC2 | 对香豆酸 | 引入PDC合成途径,增强前体PCA的供应 | 控制溶氧 | 补料分 批发酵 | 22.7 g/L | 1.0 mol/mol | 0.21 g/L/h | [ |
P. putida PpY1100-pDVZ21X | 葡萄糖和香草酸 | 引入利用香草酸合成PDC的途径 | 优化培养基成份,控制pH | 补料分 批发酵 | 99.9 g/L | 99% (摩尔 转化率) | 1.69 g/L/h | [ |
1 | SEWWANDI M, WIJESEKARA H, RAJAPAKSHA A U, et al. Microplastics and plastics-associated contaminants in food and beverages; Global trends, concentrations, and human exposure[J]. Environmental Pollution, 2023, 317: 120747. |
2 | SINGH JADAUN J, BANSAL S, SONTHALIA A, et al. Biodegradation of plastics for sustainable environment[J]. Bioresource Technology, 2022, 347: 126697. |
3 | WANG S Y, CHENG A H, LIU F H, et al. Catalytic conversion network for lignocellulosic biomass valorization: a panoramic view[J]. Industrial Chemistry & Materials, 2023, 1(2): 188-206. |
4 | PEI F Y, LIU L J, ZHU H E, et al. Recent advances in lignocellulose-based monomers and their polymerization[J]. Polymers, 2023, 15(4): 829. |
5 | IDRIS S N, AMELIA T S M, BHUBALAN K, et al. The degradation of single-use plastics and commercially viable bioplastics in the environment: a review[J]. Environmental Research, 2023, 231(Pt 1): 115988. |
6 | BACHA A U R, NABI I, ZAHEER M, et al. Biodegradation of macro- and micro-plastics in environment: a review on mechanism, toxicity, and future perspectives[J]. The Science of the Total Environment, 2023, 858(Pt 3): 160108. |
7 | ZIA K M, NOREEN A, ZUBER M, et al. Recent developments and future prospects on bio-based polyesters derived from renewable resources: a review[J]. International Journal of Biological Macromolecules, 2016, 82: 1028-1040. |
8 | 陈龙, 余强, 庄新姝, 等. 木质纤维素类生物基材料研究进展[J]. 材料导报, 2018, 32(S2): 223-228. |
CHEN L, YU Q, ZHUANG X S, et al. Research progress in lignocellulose bio-based materials[J]. Materials Reports, 2018, 32(S2): 223-228. | |
9 | ZHAO L, SUN Z F, ZHANG C C, et al. Advances in pretreatment of lignocellulosic biomass for bioenergy production: Challenges and perspectives[J]. Bioresource Technology, 2022, 343: 126123. |
10 | LIU H, LIU Z H, ZHANG R K, et al. Bacterial conversion routes for lignin valorization[J]. Biotechnology Advances, 2022, 60: 108000. |
11 | 陈沁, 杜杰毫, 谢海波, 等. 生物基可聚合单体及其聚合物制备与性能研究进展[J]. 高分子学报, 2016(10): 1330-1358. |
CHEN Q, DU J H, XIE H B, et al. Studies on preparation and properties of bio-based polymeric monomers and their bio-based polymers[J]. Acta Polymerica Sinica, 2016(10): 1330-1358. | |
12 | HAN X, LIU J Q, TIAN S, et al. Microbial cell factories for bio-based biodegradable plastics production[J]. iScience, 2022, 25(11): 105462. |
13 | 支睿, 卢艳波, 王敏, 等. 生物可降解塑料单体二元羧酸的生物合成研究进展[J]. 生物工程学报, 2023, 39(5): 2081-2094. |
ZHI R, LU Y B, WANG M, et al. Recent progress in the biosynthesis of dicarboxylic acids, a monomer of biodegradable plastics[J]. Chinese Journal of Biotechnology, 2023, 39(5): 2081-2094. | |
14 | WANG J, SHIRVANI H, ZHAO H, et al. Lignocellulosic biomass valorization via bio-photo/electro hybrid catalytic systems[J]. Biotechnology Advances, 2023, 66: 108157. |
15 | 刘宽庆,张以恒. 木质素的生物降解和生物利用 [J]. 合成生物学, 2024, 5(6): |
LIU K Q, ZHANG Y H. Biological degradation and utilization of lignin[J]. Synthetic Biology Journal, 2024, 5(6): | |
16 | BECKER J, WITTMANN C. A field of dreams: Lignin valorization into chemicals, materials, fuels, and health-care products[J]. Biotechnology Advances, 2019, 37(6): 107360. |
17 | 曹玉连, 庄伟, 唐成伦, 等. 木质纤维素预处理实现组分综合利用[J]. 生物加工过程, 2024, 22(2): 119-130. |
CAO Y L, ZHUANG W, TANG C L, et al. Advances on comprehensive utilization of lignocellulose through pretreatment technology[J]. Chinese Journal of Bioprocess Engineering, 2024, 22(2): 119-130. | |
18 | ROY R, RAHMAN M S, RAYNIE D E. Recent advances of greener pretreatment technologies of lignocellulose[J]. Current Research in Green and Sustainable Chemistry, 2020, 3: 100035. |
19 | SOHN Y J, SON J, LIM H J, et al. Valorization of lignocellulosic biomass for polyhydroxyalkanoate production: Status and perspectives[J]. Bioresource Technology, 2022, 360: 127575. |
20 | BAI X P, WANG G H, YU Y, et al. Changes in the physicochemical structure and pyrolysis characteristics of wheat straw after rod-milling pretreatment[J]. Bioresource Technology, 2018, 250: 770-776. |
21 | DHARMARAJA J, SHOBANA S, ARVINDNARAYAN S, et al. Lignocellulosic biomass conversion via greener pretreatment methods towards biorefinery applications[J]. Bioresource Technology, 2023, 369: 128328. |
22 | SUBHEDAR P B, RAY P, GOGATE P R. Intensification of delignification and subsequent hydrolysis for the fermentable sugar production from lignocellulosic biomass using ultrasonic irradiation[J]. Ultrasonics Sonochemistry, 2018, 40(Pt B): 140-150. |
23 | MANKAR A R, PANDEY A, MODAK A, et al. Pretreatment of lignocellulosic biomass: a review on recent advances[J]. Bioresource Technology, 2021, 334: 125235. |
24 | SHANGDIAR S, LIN Y C, PONNUSAMY V K, et al. Pretreatment of lignocellulosic biomass from sugar bagasse under microwave assisted dilute acid hydrolysis for biobutanol production[J]. Bioresource Technology, 2022, 361: 127724. |
25 | HUANG Y F, CHIUEH P T, KUAN W H, et al. Microwave pyrolysis of lignocellulosic biomass: Heating performance and reaction kinetics[J]. Energy, 2016, 100: 137-144. |
26 | SCHNABEL T, HUBER H, GRÜNEWALD T A, et al. Changes in mechanical and chemical wood properties by electron beam irradiation[J]. Applied Surface Science, 2015, 332: 704-709. |
27 | SU X J, ZHANG C Y, LI W J, et al. Radiation-induced structural changes of Miscanthus biomass[J]. Applied Sciences, 2020, 10(3): 1130. |
28 | KUMAR P, BARRETT D M, DELWICHE M J, et al. Pulsed electric field pretreatment of switchgrass and wood chip species for biofuel production[J]. Industrial & Engineering Chemistry Research, 2011, 50(19): 10996-11001. |
29 | KOVAČIĆ Đ, RUPČIĆ S, KRALIK D, et al. Pulsed electric field: an emerging pretreatment technology in a biogas production[J]. Waste Management, 2021, 120: 467-483. |
30 | ESCOBAR E L N, SILVA T A DA, PIRICH C L, et al. Supercritical fluids: a promising technique for biomass pretreatment and fractionation[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 252. |
31 | VANNESTE J, ENNAERT T, VANHULSEL A, et al. Unconventional pretreatment of lignocellulose with low-temperature plasma[J]. ChemSusChem, 2017, 10(1): 14-31. |
32 | GONZALES R R, SIVAGURUNATHAN P, KIM S H. Effect of severity on dilute acid pretreatment of lignocellulosic biomass and the following hydrogen fermentation[J]. International Journal of Hydrogen Energy, 2016, 41(46): 21678-21684. |
33 | BOLADO-RODRÍGUEZ S, TOQUERO C, MARTÍN-JUÁREZ J, et al. Effect of thermal, acid, alkaline and alkaline-peroxide pretreatments on the biochemical methane potential and kinetics of the anaerobic digestion of wheat straw and sugarcane bagasse[J]. Bioresource Technology, 2016, 201: 182-190. |
34 | DONG L L, CAO G L, ZHAO L, et al. Alkali/urea pretreatment of rice straw at low temperature for enhanced biological hydrogen production[J]. Bioresource Technology, 2018, 267: 71-76. |
35 | SANTOS L C D, ADARME O F H, BAÊTA B E L, et al. Production of biogas (methane and hydrogen) from anaerobic digestion of hemicellulosic hydrolysate generated in the oxidative pretreatment of coffee husks[J]. Bioresource Technology, 2018, 263: 601-612. |
36 | ZHAO C, DING W M, CHEN F, et al. Effects of compositional changes of AFEX-treated and H-AFEX-treated corn stover on enzymatic digestibility[J]. Bioresource Technology, 2014, 155: 34-40. |
37 | ZHANG J X, ZHANG X, YANG M K, et al. Transforming lignocellulosic biomass into biofuels enabled by ionic liquid pretreatment[J]. Bioresource Technology, 2021, 322: 124522. |
38 | KUMAR B, BHARDWAJ N, AGRAWAL K, et al. Current perspective on pretreatment technologies using lignocellulosic biomass: an emerging biorefinery concept[J]. Fuel Processing Technology, 2020, 199: 106244. |
39 | ABBOTT A P, CAPPER G, DAVIES D L, et al. Novel solvent properties of choline chloride/urea mixtures[J]. Chemical Communications, 2003(1): 70-71. |
40 | KALHOR P, GHANDI K. Deep eutectic solvents for pretreatment, extraction, and catalysis of biomass and food waste[J]. Molecules, 2019, 24(22): 4012. |
41 | ANDLAR M, REZIĆ T, MARĐETKO N, et al. Lignocellulose degradation: an overview of fungi and fungal enzymes involved in lignocellulose degradation[J]. Engineering in Life Sciences, 2018, 18(11): 768-778. |
42 | XU W Y, FU S F, YANG Z M, et al. Improved methane production from corn straw by microaerobic pretreatment with a pure bacteria system[J]. Bioresource Technology, 2018, 259: 18-23. |
43 | LI H J, YELLE D J, LI C, et al. Lignocellulose pretreatment in a fungus-cultivating termite[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(18): 4709-4714. |
44 | AGBOR V B, CICEK N, SPARLING R, et al. Biomass pretreatment: fundamentals toward application[J]. Biotechnology Advances, 2011, 29(6): 675-685. |
45 | SOARES RODRIGUES C I, JACKSON J J, MONTROSS M D. A molar basis comparison of calcium hydroxide, sodium hydroxide, and potassium hydroxide on the pretreatment of switchgrass and miscanthus under high solids conditions[J]. Industrial Crops and Products, 2016, 92: 165-173. |
46 | MOKOMELE T, COSTA SOUSA L DA, BALAN V, et al. Incorporating anaerobic co-digestion of steam exploded or ammonia fiber expansion pretreated sugarcane residues with manure into a sugarcane-based bioenergy-livestock nexus[J]. Bioresource Technology, 2019, 272: 326-336. |
47 | YAN X, WANG Z R, ZHANG K J, et al. Bacteria-enhanced dilute acid pretreatment of lignocellulosic biomass[J]. Bioresource Technology, 2017, 245(Pt A): 419-425. |
48 | LIU Z H, OLSON M L, SHINDE S, et al. Synergistic maximization of the carbohydrate output and lignin processability by combinatorial pretreatment[J]. Green Chemistry, 2017, 19(20): 4939-4955. |
49 | 杨莉, 谭丽萍, 刘同军. 木质纤维素预处理抑制物产生及脱除方法的研究进展[J]. 生物工程学报, 2021, 37(1): 15-29. |
YANG L, TAN L P, LIU T J. Progress in detoxification of inhibitors generated during lignocellulose pretreatment[J]. Chinese Journal of Biotechnology, 2021, 37(1): 15-29. | |
50 | CARTER B, SQUILLACE P, GILCREASE P C, et al. Detoxification of a lignocellulosic biomass slurry by soluble polyelectrolyte adsorption for improved fermentation efficiency[J]. Biotechnology and Bioengineering, 2011, 108(9): 2053-2060. |
51 | ZHANG Y Q, LI M, WANG Y F, et al. Simultaneous concentration and detoxification of lignocellulosic hydrolyzates by vacuum membrane distillation coupled with adsorption[J]. Bioresource Technology, 2015, 197: 276-283. |
52 | HAQ I, ARSHAD Y, NAWAZ A, et al. Removal of phenolic compounds through overliming for enhanced saccharification of wheat straw[J]. Journal of Chemical Technology & Biotechnology, 2018, 93(10): 3011-3017. |
53 | SOUDHAM V P, BRANDBERG T, MIKKOLA J P, et al. Detoxification of acid pretreated spruce hydrolysates with ferrous sulfate and hydrogen peroxide improves enzymatic hydrolysis and fermentation[J]. Bioresource Technology, 2014, 166: 559-565. |
54 | XIE R, TU M B, CARVIN J, et al. Detoxification of biomass hydrolysates with nucleophilic amino acids enhances alcoholic fermentation[J]. Bioresource Technology, 2015, 186: 106-113. |
55 | TRAMONTINA R, BRENELLI L B, SOUSA A, et al. Designing a cocktail containing redox enzymes to improve hemicellulosic hydrolysate fermentability by microorganisms[J]. Enzyme and Microbial Technology, 2020, 135: 109490. |
56 | LIU Z L, MA M G. Pathway-based signature transcriptional profiles as tolerance phenotypes for the adapted industrial yeast Saccharomyces cerevisiae resistant to furfural and HMF[J]. Applied Microbiology and Biotechnology, 2020, 104(8): 3473-3492. |
57 | SANTOS J C, MARTON J M, FELIPE M G A. Continuous system of combined columns of ion exchange resins and activated charcoal as a new approach for the removal of toxics from sugar cane bagasse hemicellulosic hydrolysate[J]. Industrial & Engineering Chemistry Research, 2014, 53(42): 16494-16501. |
58 | LI X, XU Y, ALORKU K, et al. A review of lignin-first reductive catalytic fractionation of lignocellulose[J]. Molecular Catalysis, 2023, 550: 113551. |
59 | PARSELL T, YOHE S, DEGENSTEIN J, et al. A synergistic biorefinery based on catalytic conversion of lignin prior to cellulose starting from lignocellulosic biomass[J]. Green Chemistry, 2015, 17(3): 1492-1499. |
60 | LI Y L, YU Y Y, LOU Y H, et al. Hydrogen-transfer reductive catalytic fractionation of lignocellulose: high monomeric yield with switchable selectivity[J]. Angewandte Chemie International Edition, 2023, 62(32): e202307116. |
61 | FACAS G G, BRANDNER D G, BUSSARD J R, et al. Interdependence of solvent and catalyst selection on low pressure hydrogen-free reductive catalytic fractionation[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(12): 4517-4522. |
62 | ZHAN Q W, LIN Q X, WU Y, et al. A fractionation strategy of cellulose, hemicellulose, and lignin from wheat straw via the biphasic pretreatment for biomass valorization[J]. Bioresource Technology, 2023, 376: 128887. |
63 | GUO T Y, LI X C, LIU X H, et al. Catalytic transformation of lignocellulosic biomass into arenes, 5-hydroxymethylfurfural, and furfural[J]. ChemSusChem, 2018, 11(16): 2758-2765. |
64 | SUN Z H, BOTTARI G, AFANASENKO A, et al. Complete lignocellulose conversion with integrated catalyst recycling yielding valuable aromatics and fuels[J]. Nature Catalysis, 2018, 1: 82-92. |
65 | LU J S, LI J W, GAO H, et al. Recent progress on bio-succinic acid production from lignocellulosic biomass[J]. World Journal of Microbiology & Biotechnology, 2021, 37(1): 16. |
66 | LIU S Y, LIU Y J, FENG Y G, et al. Construction of consolidated bio-saccharification biocatalyst and process optimization for highly efficient lignocellulose solubilization[J]. Biotechnology for Biofuels, 2019, 12: 35. |
67 | LIU X T, ZHAO G, SUN S J, et al. Biosynthetic pathway and metabolic engineering of succinic acid[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 843887. |
68 | AHN J H, JANG Y S, LEE S Y. Production of succinic acid by metabolically engineered microorganisms[J]. Current Opinion in Biotechnology, 2016, 42: 54-66. |
69 | NARISETTY V, OKIBE M C, AMULYA K, et al. Technological advancements in valorization of second generation (2G) feedstocks for bio-based succinic acid production[J]. Bioresource Technology, 2022, 360: 127513. |
70 | ZHU L W, TANG Y J. Current advances of succinate biosynthesis in metabolically engineered Escherichia coli [J]. Biotechnology Advances, 2017, 35(8): 1040-1048. |
71 | STOLS L, KULKARNI G, HARRIS B G, et al. Expression of Ascaris suum malic enzyme in a mutant Escherichia coli allows production of succinic acid from glucose[J]. Applied Biochemistry and Biotechnology, 1997, 63-65: 153-158. |
72 | CHEN C X, DING S P, WANG D Z, et al. Simultaneous saccharification and fermentation of cassava to succinic acid by Escherichia coli NZN111[J]. Bioresource Technology, 2014, 163: 100-105. |
73 | VEMURI G N, EITEMAN M A, ALTMAN E. Succinate production in dual-phase Escherichia coli fermentations depends on the time of transition from aerobic to anaerobic conditions[J]. Journal of Industrial Microbiology & Biotechnology, 2002, 28(6): 325-332. |
74 | WANG D, LI Q, SONG Z Y, et al. High cell density fermentation via a metabolically engineered Escherichia coli for the enhanced production of succinic acid[J]. Journal of Chemical Technology & Biotechnology, 2011, 86(4): 512-518. |
75 | MA J F, LI F, LIU R M, et al. Succinic acid production from sucrose and molasses by metabolically engineered E. coli using a cell surface display system[J]. Biochemical Engineering Journal, 2014, 91: 240-249. |
76 | CHUNG S C, PARK J S, YUN J E, et al. Improvement of succinate production by release of end-product inhibition in Corynebacterium glutamicum [J]. Metabolic Engineering, 2017, 40: 157-164. |
77 | OKINO S, NOBURYU R, SUDA M, et al. An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain[J]. Applied Microbiology and Biotechnology, 2008, 81(3): 459-464. |
78 | YAN D J, WANG C X, ZHOU J M, et al. Construction of reductive pathway in Saccharomyces cerevisiae for effective succinic acid fermentation at low pH value[J]. Bioresource Technology, 2014, 156: 232-239. |
79 | CUI Z Y, ZHONG Y T, SUN Z J, et al. Reconfiguration of the reductive TCA cycle enables high-level succinic acid production by Yarrowia lipolytica [J]. Nature Communications, 2023, 14(1): 8480. |
80 | GUARNIERI M T, CHOU Y C, SALVACHÚA D, et al. Metabolic engineering of Actinobacillus succinogenes provides insights into succinic acid biosynthesis[J]. Applied and Environmental Microbiology, 2017, 83(17): e00996-17. |
81 | GAO C J, YANG X F, WANG H M, et al. Robust succinic acid production from crude glycerol using engineered Yarrowia lipolytica [J]. Biotechnology for Biofuels, 2016, 9(1): 179. |
82 | ZHENG P, FANG L, XU Y, et al. Succinic acid production from corn stover by simultaneous saccharification and fermentation using Actinobacillus succinogenes [J]. Bioresource Technology, 2010, 101(20): 7889-7894. |
83 | WANG X, YOMANO L P, LEE J Y, et al. Engineering furfural tolerance in Escherichia coli improves the fermentation of lignocellulosic sugars into renewable chemicals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(10): 4021-4026. |
84 | LU J S, LV Y, JIANG Y J, et al. Consolidated bioprocessing of hemicellulose-enriched lignocellulose to succinic acid through a microbial cocultivation system[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(24): 9035-9045. |
85 | LYND L R, VAN ZYL W H, MCBRIDE J E, et al. Consolidated bioprocessing of cellulosic biomass: an update[J]. Current Opinion in Biotechnology, 2005, 16(5): 577-583. |
86 | HEO W, KIM J H, KIM S, et al. Enhanced production of 3-hydroxypropionic acid from glucose and xylose by alleviation of metabolic congestion due to glycerol flux in engineered Escherichia coli [J]. Bioresource Technology, 2019, 285: 121320. |
87 | 詹元龙, 赵瑞英, 崔鸿亮, 等. 生物合成3-羟基丙酸的代谢工程研究进展[J]. 生物工程学报, 2020, 36(6): 1101-1112. |
ZHAN Y L, ZHAO R Y, CUI H L, et al. Progress in metabolic engineering of biosynthesis of 3-hydroxypropionic acid[J]. Chinese Journal of Biotechnology, 2020, 36(6): 1101-1112. | |
88 | WANG X D, CUI Z Z, SUN X, et al. Production of 3-hydroxypropionic acid from renewable substrates by metabolically engineered microorganisms: a review[J]. Molecules, 2023, 28(4): 1888. |
89 | LIU D, HWANG H J, OTOUPAL P B, et al. Engineering Rhodosporidium toruloides for production of 3-hydroxypropionic acid from lignocellulosic hydrolysate[J]. Metabolic Engineering, 2023, 78: 72-83. |
90 | GAO J Q, YU W, LI Y X, et al. Engineering co-utilization of glucose and xylose for chemical overproduction from lignocellulose[J]. Nature Chemical Biology, 2023, 19(12): 1524-1531. |
91 | DAI Z Y, POMRANING K R, DENG S, et al. Metabolic engineering to improve production of 3-hydroxypropionic acid from corn-stover hydrolysate in Aspergillus species[J]. Biotechnology for Biofuels and Bioproducts, 2023, 16(1): 53. |
92 | CHEN Z, HUANG J H, WU Y, et al. Metabolic engineering of Corynebacterium glutamicum for the production of 3-hydroxypropionic acid from glucose and xylose[J]. Metabolic Engineering, 2017, 39: 151-158. |
93 | ZHAO P, TIAN P F. Biosynthesis pathways and strategies for improving 3-hydroxypropionic acid production in bacteria[J]. World Journal of Microbiology and Biotechnology, 2021, 37(7): 117. |
94 | CHOI S, LEE H N, PARK E, et al. Recent advances in microbial production of cis, cis-muconic acid[J]. Biomolecules, 2020, 10(9): 1238. |
95 | NICOLAÏ T, DEPARIS Q, FOULQUIÉ-MORENO M R, et al. In-situ muconic acid extraction reveals sugar consumption bottleneck in a xylose-utilizing Saccharomyces cerevisiae strain[J]. Microbial Cell Factories, 2021, 20(1): 114. |
96 | WEILAND F, BARTON N, KOHLSTEDT M, et al. Systems metabolic engineering upgrades Corynebacterium glutamicum to high-efficiency cis, cis-muconic acid production from lignin-based aromatics[J]. Metabolic Engineering, 2023, 75: 153-169. |
97 | FUJIWARA R, NODA S, TANAKA T, et al. Metabolic engineering of Escherichia coli for shikimate pathway derivative production from glucose-xylose co-substrate[J]. Nature Communications, 2020, 11(1): 279. |
98 | LING C, PEABODY G L, SALVACHÚA D, et al. Muconic acid production from glucose and xylose in Pseudomonas putida via evolution and metabolic engineering[J]. Nature Communications, 2022, 13(1): 4925. |
99 | BECKER J, KUHL M, KOHLSTEDT M, et al. Metabolic engineering of Corynebacterium glutamicum for the production of cis, cis-muconic acid from lignin[J]. Microbial Cell Factories, 2018, 17(1): 115. |
100 | KOHLSTEDT M, STARCK S, BARTON N, et al. From lignin to nylon: Cascaded chemical and biochemical conversion using metabolically engineered Pseudomonas putida [J]. Metabolic Engineering, 2018, 47: 279-293. |
101 | WANG G K, ØZMERIH S, GUERREIRO R, et al. Improvement of cis, cis-muconic acid production in Saccharomyces cerevisiae through biosensor-aided genome engineering[J]. ACS Synthetic Biology, 2020, 9(3): 634-646. |
102 | LI X C, ZHANG Y Y, XIA Q N, et al. Acid-free conversion of cellulose to 5-(hydroxymethyl)furfural catalyzed by hot seawater[J]. Industrial & Engineering Chemistry Research, 2018, 57(10): 3545-3553. |
103 | 蔡佳伟, 李亢悔, 蒋涌泉, 等. HMF制备FDCA的新型催化工艺研究进展[J]. 生物质化学工程, 2022, 56(6): 61-70. |
CAI J W, LI K H, JIANG Y Q, et al. Novel catalytic process for preparing FDCA from HMF[J]. Biomass Chemical Engineering, 2022, 56(6): 61-70. | |
104 | 张雷, 孙启梅, 白富栋, 等. 2,5-呋喃二甲酸合成技术路线及应用前景[J]. 当代化工, 2021, 50(8): 1939-1943. |
ZHANG L, SUN Q M, BAI F D, et al. Synthetic technical route and application prospects of 2,5-furandicarboxylic acid[J]. Contemporary Chemical Industry, 2021, 50(8): 1939-1943. | |
105 | WANG Y B, YU K, LEI D, et al. Basicity-tuned hydrotalcite-supported Pd catalysts for aerobic oxidation of 5-hydroxymethyl-2-furfural under mild conditions[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(9): 4752-4761. |
106 | YUAN H B, LIU H L, DU J K, et al. Biocatalytic production of 2,5-furandicarboxylic acid: recent advances and future perspectives[J]. Applied Microbiology and Biotechnology, 2020, 104(2): 527-543. |
107 | CARRO J, FERREIRA P, RODRÍGUEZ L, et al. 5-hydroxymethylfurfural conversion by fungal aryl-alcohol oxidase and unspecific peroxygenase[J]. The FEBS Journal, 2015, 282(16): 3218-3229. |
108 | MCKENNA S M, LEIMKÜHLER S, HERTER S, et al. Enzyme cascade reactions: synthesis of furandicarboxylic acid (FDCA) and carboxylic acids using oxidases in tandem[J]. Green Chemistry, 2015, 17(6): 3271-3275. |
109 | MCKENNA S M, MINES P, LAW P, et al. The continuous oxidation of HMF to FDCA and the immobilisation and stabilisation of periplasmic aldehyde oxidase (PaoABC)[J]. Green Chemistry, 2017, 19(19): 4660-4665. |
110 | KOOPMAN F, WIERCKX N, DE WINDE J H, et al. Identification and characterization of the furfural and 5-(hydroxymethyl)furfural degradation pathways of Cupriavidus basilensis HMF14[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(11): 4919-4924. |
111 | DIJKMAN W P, GROOTHUIS D E, FRAAIJE M W. Enzyme-catalyzed oxidation of 5-hydroxymethylfurfural to furan-2,5-dicarboxylic acid[J]. Angewandte Chemie International Edition, 2014, 53(25): 6515-6518. |
112 | DIJKMAN W P, BINDA C, FRAAIJE M W, et al. Structure-based enzyme tailoring of 5-hydroxymethylfurfural oxidase[J]. ACS Catalysis, 2015, 5(3): 1833-1839. |
113 | SCHÜÜRMANN J, QUEHL P, FESTEL G, et al. Bacterial whole-cell biocatalysts by surface display of enzymes: toward industrial application[J]. Applied Microbiology and Biotechnology, 2014, 98(19): 8031-8046. |
114 | KOOPMAN F, WIERCKX N, DE WINDE J H, et al. Efficient whole-cell biotransformation of 5-(hydroxymethyl)furfural into FDCA, 2,5-furandicarboxylic acid[J]. Bioresource Technology, 2010, 101(16): 6291-6296. |
115 | YANG C F, HUANG C R. Biotransformation of 5-hydroxy-methylfurfural into 2,5-furan-dicarboxylic acid by bacterial isolate using thermal acid algal hydrolysate[J]. Bioresource Technology, 2016, 214: 311-318. |
116 | YANG C F, HUANG C R. Isolation of 5-hydroxymethylfurfural biotransforming bacteria to produce 2, 5-furan dicarboxylic acid in algal acid hydrolysate[J]. Journal of Bioscience and Bioengineering, 2018, 125(4): 407-412. |
117 | YUAN H B, LI J H, SHIN H D, et al. Improved production of 2,5-furandicarboxylic acid by overexpression of 5-hydroxymethylfurfural oxidase and 5-hydroxymethylfurfural/furfural oxidoreductase in Raoultella ornithinolytica BF60[J]. Bioresource Technology, 2018, 247: 1184-1188. |
118 | YUAN H B, LIU Y F, LI J H, et al. Combinatorial synthetic pathway fine-tuning and comparative transcriptomics for metabolic engineering of Raoultella ornithinolytica BF60 to efficiently synthesize 2,5-furandicarboxylic acid[J]. Biotechnology and Bioengineering, 2018, 115(9): 2148-2155. |
119 | YUAN H B, LIU Y F, LV X Q, et al. Enhanced 2,5-furandicarboxylic acid (FDCA) production in Raoultella ornithinolytica BF60 by manipulation of the key genes in FDCA biosynthesis pathway[J]. Journal of Microbiology and Biotechnology, 2018, 28(12): 1999-2008. |
120 | MICHINOBU T, HISHIDA M, SATO M, et al. Polyesters of 2-pyrone-4,6-dicarboxylic acid (PDC) obtained from a metabolic intermediate of lignin[J]. Polymer Journal, 2008, 40(1): 68-75. |
121 | OTSUKA Y, NAKAMURA M, SHIGEHARA K, et al. Efficient production of 2-pyrone 4,6-dicarboxylic acid as a novel polymer-based material from protocatechuate by microbial function[J]. Applied Microbiology and Biotechnology, 2006, 71(5): 608-614. |
122 | MICHINOBU T, BITO M, TANIMURA M, et al. Synthesis and characterization of hybrid biopolymers of L-lactic acid and 2-pyrone-4, 6-dicarboxylic acid[J]. Journal of Macromolecular Science, Part A, 2010, 47(6): 564-570. |
123 | LUO Z W, KIM W J, LEE S Y. Metabolic engineering of Escherichia coli for efficient production of 2-pyrone-4,6-dicarboxylic acid from glucose[J]. ACS Synthetic Biology, 2018, 7(9): 2296-2307. |
124 | ZHOU D, WU F L, PENG Y F, et al. Multi-step biosynthesis of the biodegradable polyester monomer 2-pyrone-4, 6-dicarboxylic acid from glucose[J]. Biotechnology for Biofuels and Bioproducts, 2023, 16(1): 92. |
125 | LEE S, JUNG Y J, PARK S J, et al. Microbial production of 2-pyrone-4,6-dicarboxylic acid from lignin derivatives in an engineered Pseudomonas putida and its application for the synthesis of bio-based polyester[J]. Bioresource Technology, 2022, 352: 127106. |
126 | OTSUKA Y, ARAKI T, SUZUKI Y, et al. High-level production of 2-pyrone-4,6-dicarboxylic acid from vanillic acid as a lignin-related aromatic compound by metabolically engineered fermentation to realize industrial valorization processes of lignin[J]. Bioresource Technology, 2023, 377: 128956. |
127 | NOTONIER S, WERNER A Z, KUATSJAH E, et al. Metabolism of syringyl lignin-derived compounds in Pseudomonas putida enables convergent production of 2-pyrone-4,6-dicarboxylic acid[J]. Metabolic Engineering, 2021, 65: 111-122. |
128 | MORI K, KAMIMURA N, MASAI E. Identification of the protocatechuate transporter gene in Sphingobium sp. strain SYK-6 and effects of overexpression on production of a value-added metabolite[J]. Applied Microbiology and Biotechnology, 2018, 102(11): 4807-4816. |
129 | 魏珣, 林长喜. 我国生物基材料产业发展对策与建议[J]. 化学工业, 2022, 40(2): 6-11, 23. |
WEI X, LIN C X. The development strategies and suggestions of domestic bio-based materials industry[J]. Chemical Industry, 2022, 40(2): 6-11, 23. |
[1] | Liangbin XIONG, Lu SONG, Yunqiu ZHAO, Kun LIU, Yongjun LIU, Fengqing WANG, Dongzhi WEI. Green biomanufacturing of steroids: from biotransformation to de novo synthesis by microorganisms [J]. Synthetic Biology Journal, 2021, 2(6): 942-963. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||