Synthetic Biology Journal ›› 2024, Vol. 5 ›› Issue (4): 782-794.DOI: 10.12211/2096-8280.2023-101
• Invited Review • Previous Articles Next Articles
Bingyu CAI1,2, Xiangtian TAN1,2, Wei LI1,3,4
Received:
2023-12-01
Revised:
2024-03-12
Online:
2024-09-19
Published:
2024-08-31
Contact:
Wei LI
蔡冰玉1,2, 谭象天1,2, 李伟1,3,4
通讯作者:
李伟
作者简介:
基金资助:
CLC Number:
Bingyu CAI, Xiangtian TAN, Wei LI. Advances in synthetic biology for engineering stem cell[J]. Synthetic Biology Journal, 2024, 5(4): 782-794.
蔡冰玉, 谭象天, 李伟. 合成生物学在干细胞工程化改造中的研究进展[J]. 合成生物学, 2024, 5(4): 782-794.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2023-101
工程化干细胞改造技术 | ||||||
---|---|---|---|---|---|---|
基因编辑技术 | 合成受体 | |||||
条件性基因敲除系统 | ZFN系统 | TALEN系统 | CRISPR/Cas系统 | 合成传感器 + 天然致动器 | 天然传感器 + 合成致动器 | 合成传感器 + 合成致动器 |
CARs、SyCyR | Tango、ChaCha | synNotch、SNIPR、MESA | ||||
工程化干细胞改造策略 | ||||||
细胞命运决定 | 细胞通信 | 类器官结构功能优化 | 强化细胞治疗功能 | 监测并消除致瘤细胞 |
Table 1 Applications of synthetic biology in stem cells
工程化干细胞改造技术 | ||||||
---|---|---|---|---|---|---|
基因编辑技术 | 合成受体 | |||||
条件性基因敲除系统 | ZFN系统 | TALEN系统 | CRISPR/Cas系统 | 合成传感器 + 天然致动器 | 天然传感器 + 合成致动器 | 合成传感器 + 合成致动器 |
CARs、SyCyR | Tango、ChaCha | synNotch、SNIPR、MESA | ||||
工程化干细胞改造策略 | ||||||
细胞命运决定 | 细胞通信 | 类器官结构功能优化 | 强化细胞治疗功能 | 监测并消除致瘤细胞 |
1 | JACOBSON L O, SIMMONS E L, MARKS E K, et al. Recovery from radiation injury[J]. Science, 1951, 113(2940): 510-511. |
2 | TILL J E, MCCULLOCH E A. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells[J]. Radiation Research, 1961, 14: 213-222. |
3 | EVANS M J, KAUFMAN M H. Establishment in culture of pluripotential cells from mouse embryos[J]. Nature, 1981, 292(5819): 154-156. |
4 | THOMSON J A, ITSKOVITZ-ELDOR J, SHAPIRO S S, et al. Embryonic stem cell lines derived from human blastocysts[J]. Science, 1998, 282(5391): 1145-1147. |
5 | TAKAHASHI K, TANABE K, OHNUKI M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007, 131(5): 861-872. |
6 | GUAN J Y, WANG G, WANG J L, et al. Chemical reprogramming of human somatic cells to pluripotent stem cells[J]. Nature, 2022, 605(7909): 325-331. |
7 | SCHWARTZ S D, REGILLO C D, LAM B L, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies[J]. Lancet, 2015, 385(9967): 509-516. |
8 | KAMAO H, MANDAI M, OKAMOTO S, et al. Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application[J]. Stem Cell Reports, 2014, 2(2): 205-218. |
9 | PAGLIUCA F W, MILLMAN J R, GÜRTLER M, et al. Generation of functional human pancreatic β cells in vitro [J]. Cell, 2014, 159(2): 428-439. |
10 | SATO T, VRIES R G, SNIPPERT H J, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature, 2009, 459(7244): 262-265. |
11 | SPENCE J R, MAYHEW C N, RANKIN S A, et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro [J]. Nature, 2011, 470(7332): 105-109. |
12 | MCCRACKEN K W, CATÁ E M, CRAWFORD C M, et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids[J]. Nature, 2014, 516(7531): 400-404. |
13 | MONZEL A S, SMITS L M, HEMMER K, et al. Derivation of human midbrain-specific organoids from neuroepithelial stem cells[J]. Stem Cell Reports, 2017, 8(5): 1144-1154. |
14 | MUGURUMA K, NISHIYAMA A, KAWAKAMI H, et al. Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells[J]. Cell Reports, 2015, 10(4): 537-550. |
15 | DYE B R, HILL D R, FERGUSON M A, et al. In vitro generation of human pluripotent stem cell derived lung organoids[J]. eLife, 2015, 4: e05098. |
16 | CAMP J G, SEKINE K, GERBER T, et al. Multilineage communication regulates human liver bud development from pluripotency[J]. Nature, 2017, 546(7659): 533-538. |
17 | TAKEBE T, SEKINE K, ENOMURA M, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant[J]. Nature, 2013, 499(7459): 481-484. |
18 | TAKASATO M, ER P X, BECROFT M, et al. Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney[J]. Nature Cell Biology, 2014, 16(1): 118-126. |
19 | TAKEBE T, ENOMURA M, YOSHIZAWA E, et al. Vascularized and complex organ buds from diverse tissues via mesenchymal cell-driven condensation[J]. Cell Stem Cell, 2015, 16(5): 556-565. |
20 | KOIKE H, IWASAWA K, OUCHI R, et al. Modelling human hepato-biliary-pancreatic organogenesis from the foregut-midgut boundary[J]. Nature, 2019, 574(7776): 112-116. |
21 | MIURA K, OKADA Y, AOI T, et al. Variation in the safety of induced pluripotent stem cell lines[J]. Nature Biotechnology, 2009, 27(8): 743-745. |
22 | The International Stem Cell Initiative. Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage[J]. Nature Biotechnology, 2011, 29(12): 1132-1144. |
23 | OSAFUNE K, CARON L, BOROWIAK M, et al. Marked differences in differentiation propensity among human embryonic stem cell lines[J]. Nature Biotechnology, 2008, 26(3): 313-315. |
24 | MACFARLAN T S, GIFFORD W D, DRISCOLL S, et al. Embryonic stem cell potency fluctuates with endogenous retrovirus activity[J]. Nature, 2012, 487(7405): 57-63. |
25 | ZHAO T B, ZHANG Z N, RONG Z L, et al. Immunogenicity of induced pluripotent stem cells[J]. Nature, 2011, 474(7350): 212-215. |
26 | DEUSE T, HU X M, AGBOR-ENOH S, et al. De novo mutations in mitochondrial DNA of iPSCs produce immunogenic neoepitopes in mice and humans[J]. Nature Biotechnology, 2019, 37(10): 1137-1144. |
27 | CAMP J G, BADSHA F, FLORIO M, et al. Human cerebral organoids recapitulate gene expression programs of fetal neocortex development[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(51): 15672-15677. |
28 | BAXTER M, WITHEY S, HARRISON S, et al. Phenotypic and functional analyses show stem cell-derived hepatocyte-like cells better mimic fetal rather than adult hepatocytes[J]. Journal of Hepatology, 2015, 62(3): 581-589. |
29 | GORDON A, YOON S J, TRAN S S, et al. Long-term maturation of human cortical organoids matches key early postnatal transitions[J]. Nature Neuroscience, 2021, 24(3): 331-342. |
30 | KITADA T, DIANDRETH B, TEAGUE B, et al. Programming gene and engineered-cell therapies with synthetic biology[J]. Science, 2018, 359(6376): eaad1067. |
31 | TOLLE F, STÜCHELI P, FUSSENEGGER M. Genetic circuitry for personalized human cell therapy[J]. Current Opinion in Biotechnology, 2019, 59: 31-38. |
32 | MANSOURI M, FUSSENEGGER M. Therapeutic cell engineering: designing programmable synthetic genetic circuits in mammalian cells[J]. Protein & Cell, 2022, 13(7): 476-489. |
33 | KIM Y G, CHA J, CHANDRASEGARAN S. Hybrid restriction enzymes: zinc finger fusions to Fok Ⅰ cleavage domain[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(3): 1156-1160. |
34 | CHRISTIAN M, CERMAK T, DOYLE E L, et al. Targeting DNA double-strand breaks with TAL effector nucleases[J]. Genetics, 2010, 186(2): 757-761. |
35 | CONG L, RAN F A, COX D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121): 819-823. |
36 | STRICKLETT P K, NELSON R D, KOHAN D E. Site-specific recombination using an epitope tagged bacteriophage P1 Cre recombinase[J]. Gene, 1998, 215(2): 415-423. |
37 | RAMÍREZ-SOLIS R, LIU P, BRADLEY A. Chromosome engineering in mice[J]. Nature, 1995, 378(6558): 720-724. |
38 | SU H, WANG X, BRADLEY A. Nested chromosomal deletions induced with retroviral vectors in mice[J]. Nature Genetics, 2000, 24(1): 92-95. |
39 | RIVENBARK A G, STOLZENBURG S, BELTRAN A S, et al. Epigenetic reprogramming of cancer cells via targeted DNA methylation[J]. Epigenetics, 2012, 7(4): 350-360. |
40 | KONERMANN S, BRIGHAM M D, TREVINO A, et al. Optical control of mammalian endogenous transcription and epigenetic states[J]. Nature, 2013, 500(7463): 472-476. |
41 | KEARNS N A, GENGA R M, ENUAMEH M S, et al. Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells[J]. Development, 2014, 141(1): 219-223. |
42 | GILBERT L A, LARSON M H, MORSUT L, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes[J]. Cell, 2013, 154(2): 442-451. |
43 | KONERMANN S, BRIGHAM M D, TREVINO A E, et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex[J]. Nature, 2015, 517(7536): 583-588. |
44 | LIU P, CHEN M, LIU Y X, et al. CRISPR-based chromatin remodeling of the endogenous Oct4 or Sox2 locus enables reprogramming to pluripotency[J]. Cell Stem Cell, 2018, 22(2): 252-261. e4. |
45 | CHAVEZ A, SCHEIMAN J, VORA S, et al. Highly efficient Cas9-mediated transcriptional programming[J]. Nature Methods, 2015, 12(4): 326-328. |
46 | LIU X S, WU H, KRZISCH M, et al. Rescue of fragile X syndrome neurons by DNA methylation editing of the FMR1 gene[J]. Cell, 2018, 172(5): 979-992. e6. |
47 | MANHAS J, EDELSTEIN H I, LEONARD J N, et al. The evolution of synthetic receptor systems[J]. Nature Chemical Biology, 2022, 18(3): 244-255. |
48 | BRENNER J, CHO J H, WONG W W. Synthetic biology: sensing with modular receptors[J]. Nature Chemical Biology, 2017, 13(2): 131-132. |
49 | LABANIEH L, MACKALL C L. CAR immune cells: design principles, resistance and the next generation[J]. Nature, 2023, 614(7949): 635-648. |
50 | CAPPELL K M, KOCHENDERFER J N. Long-term outcomes following CAR T cell therapy: what we know so far[J]. Nature Reviews Clinical Oncology, 2023, 20(6): 359-371. |
51 | ENGELOWSKI E, SCHNEIDER A, FRANKE M, et al. Synthetic cytokine receptors transmit biological signals using artificial ligands[J]. Nature Communications, 2018, 9(1): 2034. |
52 | ISHIZUKA S, LAI C Y, OTSU M, et al. Designing motif-engineered receptors to elucidate signaling molecules important for proliferation of hematopoietic stem cells[J]. ACS Synthetic Biology, 2018, 7(7): 1709-1714. |
53 | MOSSNER S, KUCHNER M, FAZEL MODARES N, et al. Synthetic interleukin 22 (IL-22) signaling reveals biological activity of homodimeric IL-10 receptor 2 and functional cross-talk with the IL-6 receptor gp130[J]. The Journal of Biological Chemistry, 2020, 295(35): 12378-12397. |
54 | SCHELLER L, STRITTMATTER T, FUCHS D, et al. Generalized extracellular molecule sensor platform for programming cellular behavior[J]. Nature Chemical Biology, 2018, 14(7): 723-729. |
55 | KROEZE W K, SASSANO M F, HUANG X P, et al. PRESTO-Tango as an open-source resource for interrogation of the druggable human GPCRome[J]. Nature Structural & Molecular Biology, 2015, 22(5): 362-369. |
56 | KIPNISS N H, DINGAL P C D P, ABBOTT T R, et al. Engineering cell sensing and responses using a GPCR-coupled CRISPR-Cas system[J]. Nature Communications, 2017, 8(1): 2212. |
57 | MORSUT L, ROYBAL K T, XIONG X, et al. Engineering customized cell sensing and response behaviors using synthetic Notch receptors[J]. Cell, 2016, 164(4): 780-791. |
58 | ZHU I, LIU R, GARCIA J M, et al. Modular design of synthetic receptors for programmed gene regulation in cell therapies[J]. Cell, 2022, 185(8): 1431-1443. e16. |
59 | DARINGER N M, DUDEK R M, SCHWARZ K A, et al. Modular extracellular sensor architecture for engineering mammalian cell-based devices[J]. ACS Synthetic Biology, 2014, 3(12): 892-902. |
60 | MALAGUTI M, PORTERO MIGUELES R, ANNOH J, et al. SyNPL: Synthetic Notch pluripotent cell lines to monitor and manipulate cell interactions in vitro and in vivo [J]. Development, 2022, 149(12): dev200226. |
61 | SAXENA P, BOJAR D, ZULEWSKI H, et al. Generation of glucose-sensitive insulin-secreting beta-like cells from human embryonic stem cells by incorporating a synthetic lineage-control network[J]. Journal of Biotechnology, 2017, 259: 39-45. |
62 | CAHAN P, LI H, MORRIS S A, et al. CellNet: network biology applied to stem cell engineering[J]. Cell, 2014, 158(4): 903-915. |
63 | TODA S, BLAUCH L R, TANG S K Y, et al. Programming self-organizing multicellular structures with synthetic cell-cell signaling[J]. Science, 2018, 361(6398): 156-162. |
64 | ZHANG S H, ZHAO H, LIU Z X, et al. Monitoring of cell-cell communication and contact history in mammals[J]. Science, 2022, 378(6623): eabo5503. |
65 | MA Y T, BUDDE M W, MAYALU M N, et al. Synthetic mammalian signaling circuits for robust cell population control[J]. Cell, 2022, 185(6): 967-979. e12. |
66 | CHAO G, WANNIER T M, GUTIERREZ C, et al. helixCAM: a platform for programmable cellular assembly in bacteria and human cells[J]. Cell, 2022, 185(19): 3551-3567. e39. |
67 | STEVENS A J, HARRIS A R, GERDTS J, et al. Programming multicellular assembly with synthetic cell adhesion molecules[J]. Nature, 2023, 614(7946): 144-152. |
68 | MIKI K, ENDO K, TAKAHASHI S, et al. Efficient detection and purification of cell populations using synthetic microRNA switches[J]. Cell Stem Cell, 2015, 16(6): 699-711. |
69 | JUILLERAT A, TKACH D, BUSSER B W, et al. Modulation of chimeric antigen receptor surface expression by a small molecule switch[J]. BMC Biotechnology, 2019, 19(1): 44. |
70 | ZAH E, LIN M Y, SILVA-BENEDICT A, et al. T cells expressing CD19/CD20 bispecific chimeric antigen receptors prevent antigen escape by malignant B cells[J]. Cancer Immunology Research, 2016, 4(6): 498-508. |
71 | FRY T J, SHAH N N, ORENTAS R J, et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy[J]. Nature Medicine, 2018, 24(1): 20-28. |
72 | STRATI P, BACHANOVA V, GOODMAN A, et al. Preliminary results of a phase Ⅰ trial of FT516, an off-the-shelf natural killer (NK) cell therapy derived from a clonal master induced pluripotent stem cell (iPSC) line expressing high-affinity, non-cleavable CD16 (hnCD16), in patients (pts) with relapsed/refractory (R/R) B-cell lymphoma (BCL)[J]. Journal of Clinical Oncology, 2021, 39(): 7541. |
73 | ITAKURA G, KAWABATA S, ANDO M, et al. Fail-safe system against potential tumorigenicity after transplantation of iPSC derivatives[J]. Stem Cell Reports, 2017, 8(3): 673-684. |
74 | KOJIMA K, MIYOSHI H, NAGOSHI N, et al. Selective ablation of tumorigenic cells following human induced pluripotent stem cell-derived neural stem/progenitor cell transplantation in spinal cord injury[J]. Stem Cells Translational Medicine, 2019, 8(3): 260-270. |
[1] | Zongyong AI, Chengting ZHANG, Baohua NIU, Yu YIN, Jie YANG, Tianqing LI. Early human embryo development and stem cells [J]. Synthetic Biology Journal, 2024, 5(4): 700-718. |
[2] | Ziling CHEN, Yangfei XIANG. Integrated development of organoid technology and synthetic biology [J]. Synthetic Biology Journal, 2024, 5(4): 795-812. |
[3] | Ke’er HU, Hanqi WANG, Ruqi HUANG, Canyang ZHANG, Xinhui XING, Shaohua MA. Integrated design strategies for engineered organoids and organ-on-a-chip technologies [J]. Synthetic Biology Journal, 2024, 5(4): 883-897. |
[4] | Shikai LI, Dong′ao ZENG, Fangzhou DU, Jingzhong ZHANG, Shuang YU. The construction approaches and biomaterials for vascularized organoids [J]. Synthetic Biology Journal, 2024, 5(4): 851-866. |
[5] | Bohang ZHANG, Xiaoxuan QI, Yan YUAN. Advancements in testicular organoids for in vitro spermatogenesis [J]. Synthetic Biology Journal, 2024, 5(4): 770-781. |
[6] | Qianwen CHEN, Siqi ZHAO, Yaojin PENG. Organoids: technological innovation and ethical controversies [J]. Synthetic Biology Journal, 2024, 5(4): 898-907. |
[7] | Yuan HONG, Yan LIU. Research progress of brain organoids in regenerative medicine [J]. Synthetic Biology Journal, 2024, 5(4): 754-769. |
[8] | Rongkai CAO, Jianhua QIN, Yaqing WANG. Advances in placenta-on-a-chip for reproductive medicine research [J]. Synthetic Biology Journal, 2024, 5(4): 831-850. |
[9] | Xiyue CHEN, Yaqing WANG, Fang BAO, Jianhua QIN. Advances in the application of liver on a chip in biomedical research [J]. Synthetic Biology Journal, 2024, 5(4): 813-830. |
[10] | Huang XIE, Yilei ZHENG, Yiting SU, Jingyi RUAN, Yongquan LI. An overview on reconstructing the biosynthetic system of actinomycetes for polyketides production [J]. Synthetic Biology Journal, 2024, 5(3): 612-630. |
[11] | Wenlong ZHA, Lan BU, Jiachen ZI. Advances in synthetic biology for producing potent pharmaceutical ingredients of traditional Chinese medicine [J]. Synthetic Biology Journal, 2024, 5(3): 631-657. |
[12] | Zhen HUI, Xiaoyu TANG. Applications of the CRISPR/Cas9 editing system in the study of microbial natural products [J]. Synthetic Biology Journal, 2024, 5(3): 658-671. |
[13] | Xiaonan LIU, Jing LI, Xiaoxi ZHU, Zishuo XU, Jian QI, Huifeng JIANG. Research advances on paclitaxel biosynthesis [J]. Synthetic Biology Journal, 2024, 5(3): 527-547. |
[14] | Xuejing MA, Chang GUO, Zhaolin HUA, Baidong HOU. Dawn of the rational design of nanoparticle vaccines aided by the advance of synthetic biology techniques [J]. Synthetic Biology Journal, 2024, 5(2): 353-368. |
[15] | Busen WANG, Jinghan XU, Zhiqiang GAO, Lihua HOU. Advances in virus-vectored vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 281-293. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||