Synthetic Biology Journal ›› 2024, Vol. 5 ›› Issue (4): 883-897.DOI: 10.12211/2096-8280.2023-105
• Invited Review • Previous Articles Next Articles
Ke’er HU1, Hanqi WANG1,2, Ruqi HUANG1,2, Canyang ZHANG1,3, Xinhui XING1,3,4, Shaohua MA1,2,3
Received:
2023-12-04
Revised:
2024-02-26
Online:
2024-09-19
Published:
2024-08-31
Contact:
Canyang ZHANG, Shaohua MA
Supported by:
胡可儿1, 王汉奇1,2, 黄儒麒1,2, 张灿阳1,3, 邢新会1,3,4, 马少华1,2,3
通讯作者:
张灿阳,马少华
作者简介:
基金资助:
CLC Number:
Ke’er HU, Hanqi WANG, Ruqi HUANG, Canyang ZHANG, Xinhui XING, Shaohua MA. Integrated design strategies for engineered organoids and organ-on-a-chip technologies[J]. Synthetic Biology Journal, 2024, 5(4): 883-897.
胡可儿, 王汉奇, 黄儒麒, 张灿阳, 邢新会, 马少华. 整合设计策略下的工程化类器官与类器官芯片技术[J]. 合成生物学, 2024, 5(4): 883-897.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2023-105
1 | ROSSI G, MANFRIN A, LUTOLF M P. Progress and potential in organoid research[J]. Nature Reviews Genetics, 2018, 19: 671-687. |
2 | WU L, AI Y J, XIE R X, et al. Organoids/organs-on-a-chip: new frontiers of intestinal pathophysiological models[J]. Lab on a Chip, 2023, 23(5): 1192-1212. |
3 | 孟倩, 尹聪, 黄卫人. 肿瘤类器官及其在合成生物学中的研究进展[J]. 合成生物学, 2024, 5(1): 191-201. |
MENG Q, YIN C, HUANG W R. Tumor organoids and research progress in synthetic biology[J]. Synthetic Biology Journal, 2024, 5(1): 191-201. | |
4 | KOGLER S, KØMURCU K S, OLSEN C, et al. Organoids, organ-on-a-chip, separation science and mass spectrometry: an update[J]. TrAC Trends in Analytical Chemistry, 2023, 161: 116996. |
5 | TUVESON D, CLEVERS H. Cancer modeling meets human organoid technology[J]. Science, 2019, 364(6444): 952-955. |
6 | PICOLLET-D’HAHAN N, LAPERROUSAZ B, PORTE S, et al. Encapsulated organoids & organ-on-a-chip platform for cancer modeling[C/OL]// 2017 IEEE International Electron Devices Meeting (IEDM). IEEE, 2017: 10.6.1-10.6.4[2023-12-01]. . |
7 | DORNHOF J, KIENINGER J, MAURER J, et al. Next generation organ-on-chip system for directional control of culture conditions and metabolic monitoring of tumor organoids[C/OL]// 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors ⅩⅩⅩⅢ (TRANSDUCERS & EUROSENSORS ⅩⅩⅩⅢ). IEEE, 2019: 1106-1108 [2023-12-01]. . |
8 | KIM J H, KOO B K, KNOBLICH J A. Human organoids: model systems for human biology and medicine[J]. Nature Reviews Molecular Cell Biology, 2020, 21(10): 571-584. |
9 | YOUSEF YENGEJ F A, JANSEN J, ROOKMAAKER M B, et al. Kidney organoids and tubuloids[J]. Cells, 2020, 9(6): 1326. |
10 | 徐灿丽, 何文星, 汪磊, 等. 肝脏类器官研究的文献计量学分析[J]. 中国组织工程研究, 2024, 28: 1099-1104. |
XU C L, HE W X, WANG L, et al. Bibliometric analysis of researches on liver organoids[J]. Chinese Journal of Tissue Engineering Research, 2024, 28: 1099-1104. | |
11 | TANG X Y, WU S S, WANG D, et al. Human organoids in basic research and clinical applications[J]. Signal Transduction and Targeted Therapy, 2022, 7(1): 168. |
12 | LITTLE M H, COMBES A N. Kidney organoids: accurate models or fortunate accidents[J]. Genes & Development, 2019, 33(19/20): 1319-1345. |
13 | YOSHIHARA E, O′CONNOR C, GASSER E, et al. Immune-evasive human islet-like organoids ameliorate diabetes[J]. Nature, 2020, 586(7830): 606-611. |
14 | YUKI K, CHENG N, NAKANO M, et al. Organoid models of tumor immunology[J]. Trends in Immunology, 2020, 41(8): 652-664. |
15 | HOFER M, LUTOLF M P. Engineering organoids[J]. Nature Reviews Materials, 2021, 6(5): 402-420. |
16 | JACOB F, SALINAS R D, ZHANG D Y, et al. A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity[J]. Cell, 2020, 180(1): 188-204. e22. |
17 | TAKEBE T, WELLS J M. Organoids by design[J]. Science, 2019, 364(6444): 956-959. |
18 | AISENBREY E A, MURPHY W L. Synthetic alternatives to Matrigel[J]. Nature Reviews Materials, 2020, 5(7): 539-551. |
19 | DIJKSTRA K K, MONKHORST K, SCHIPPER L J, et al. Challenges in establishing pure lung cancer organoids limit their utility for personalized medicine[J]. Cell Reports, 2020, 31(5): 107588. |
20 | CAPELING M M, HUANG S, CHILDS C J, et al. Suspension culture promotes serosal mesothelial development in human intestinal organoids[J]. Cell Reports, 2022, 38(7): 110379. |
21 | HOFBAUER P, JAHNEL S M, PAPAI N, et al. Cardioids reveal self-organizing principles of human cardiogenesis[J]. Cell, 2021, 184(12): 3299-3317. e22. |
22 | GANGULI A, MOSTAFA A, SAAVEDRA C, et al. Three-dimensional microscale hanging drop arrays with geometric control for drug screening and live tissue imaging[J]. Science Advances, 2021, 7(17): eabc1323. |
23 | FREY O, MISUN P M, FLURI D A, et al. Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis[J]. Nature Communications, 2014, 5: 4250. |
24 | LI Y E, JODAT Y A, SAMANIPOUR R, et al. Toward a neurospheroid niche model: optimizing embedded 3D bioprinting for fabrication of neurospheroid brain-like co-culture constructs[J]. Biofabrication, 2020, 13(1): 015014. |
25 | BERTHENET K, CASTILLO FERRER C, FANFONE D, et al. Failed apoptosis enhances melanoma cancer cell aggressiveness[J]. Cell Reports, 2020, 31(10): 107731. |
26 | CHRISNANDY A, BLONDEL D, REZAKHANI S, et al. Synthetic dynamic hydrogels promote degradation-independent in vitro organogenesis[J]. Nature Materials, 2022, 21(4): 479-487. |
27 | KERMANY D S, GOLDBAUM M, CAI W J, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning[J]. Cell, 2018, 172(5): 1122-1131. e9. |
28 | ZHANG S, WAN Z P, KAMM R D. Vascularized organoids on a chip: strategies for engineering organoids with functional vasculature[J]. Lab on a Chip, 2021, 21(3): 473-488. |
29 | LANCASTER M A, RENNER M, MARTIN C A, et al. Cerebral organoids model human brain development and microcephaly[J]. Nature, 2013, 501(7467): 373-379. |
30 | TAKEBE T, SEKINE K, ENOMURA M, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant[J]. Nature, 2013, 499(7459): 481-484. |
31 | BROUTIER L, MASTROGIOVANNI G, VERSTEGEN M M, et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening[J]. Nature Medicine, 2017, 23: 1424-1435. |
32 | LUCKETT K A, GANESH K. Engineering the immune microenvironment into organoid models[J]. Annual Review of Cancer Biology, 2023, 7: 171-187. |
33 | 高坚钧, 秦伟, 王浩, 等. 类器官技术在肿瘤研究中的应用与展望[J]. 中国组织工程研究, 2019, 23(7): 1136-1141. |
GAO J J, QIN W, WANG H, et al. Application and prospect of organoid technique in cancer research[J]. Chinese Journal of Tissue Engineering Research, 2019, 23(7): 1136-1141. | |
34 | DUESTER G. Retinoic acid synthesis and signaling during early organogenesis[J]. Cell, 2008, 134(6): 921-931. |
35 | KIM M S, MUN H M, SUNG C O, et al. Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening[J]. Nature Communications, 2019, 10(1): 3991. |
36 | SHAH S B, SINGH A. Cellular self-assembly and biomaterials-based organoid models of development and diseases[J]. Acta Biomaterialia, 2017, 53: 29-45. |
37 | HUBERT C G, RIVERA M, SPANGLER L C, et al. A three-dimensional organoid culture system derived from human glioblastomas recapitulates the hypoxic gradients and cancer stem cell heterogeneity of tumors found in vivo [J]. Cancer Research, 2016, 76(8): 2465-2477. |
38 | HOMAN K A, KOLESKY D B, SKYLAR-SCOTT M A, et al. Bioprinting of 3D convoluted renal proximal tubules on perfusable chips[J]. Scientific Reports, 2016, 6: 34845. |
39 | GRASSI L, ALFONSI R, FRANCESCANGELI F, et al. Organoids as a new model for improving regenerative medicine and cancer personalized therapy in renal diseases[J]. Cell Death & Disease, 2019, 10(3): 201. |
40 | CALANDRINI C, SCHUTGENS F, OKA R, et al. An organoid biobank for childhood kidney cancers that captures disease and tissue heterogeneity[J]. Nature Communications, 2020, 11(1): 1310. |
41 | LANCASTER M A, KNOBLICH J A. Organogenesis in a dish: modeling development and disease using organoid technologies[J]. Science, 2014, 345(6194): 1247125. |
42 | SATO T, VRIES R G, SNIPPERT H J, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature, 2009, 459(7244): 262-265. |
43 | LANCASTER M A, KNOBLICH J A. Generation of cerebral organoids from human pluripotent stem cells[J]. Nature Protocols, 2014, 9(10): 2329-2340. |
44 | ZHAO Z, CHEN X, DOWBAJ A M, et al. Organoids[J]. Nature Reviews Methods Primers, 2022, 2: 94. |
45 | YANG H, WANG Y N, WANG P, et al. Tumor organoids for cancer research and personalized medicine[J]. Cancer Biology and Medicine, 2022, 19(3): 319-332. |
46 | DUTTA D, HEO I, CLEVERS H. Disease modeling in stem cell-derived 3D organoid systems[J]. Trends in Molecular Medicine, 2017, 23(5): 393-410. |
47 | LEE J Y, RABBANI C C, GAO H Y, et al. Hair-bearing human skin generated entirely from pluripotent stem cells[J]. Nature, 2020, 582(7812): 399-404. |
48 | YANG R F, ZHENG Y, BURROWS M, et al. Generation of folliculogenic human epithelial stem cells from induced pluripotent stem cells[J]. Nature Communications, 2014, 5: 3071. |
49 | 吴迪, 王守宝, 杜冠华. 心脏类器官的研究进展及在药物发现研究中的应用[J]. 药学学报, 2023, 58(4): 884-890. |
WU D, WANG S B, DU G H. Advances in research of heart organoid and its application in drug discovery[J]. Acta Pharmaceutica Sinica, 2023, 58(4): 884-890. | |
50 | KARZBRUN E, KSHIRSAGAR A, COHEN S R, et al. Human brain organoids on a chip reveal the physics of folding[J]. Nature Physics, 2018, 14(5): 515-522. |
51 | YIN X L, MEAD B, SAFAEE H, et al. Engineering stem cell organoids[J]. Cell Stem Cell, 2016, 18(1): 25-38. |
52 | CLEVERS H. The intestinal crypt, a prototype stem cell compartment[J]. Cell, 2013, 154(2): 274-284. |
53 | WANG X S. Stem cells in tissues, organoids, and cancers[J]. Cellular and Molecular Life Sciences, 2019, 76: 4043-4070. |
54 | SASAI Y. Next-generation regenerative medicine: organogenesis from stem cells in 3D culture[J]. Cell Stem Cell, 2013, 12(5): 520-530. |
55 | BRASSARD J A, LUTOLF M P. Engineering stem cell self-organization to build better organoids[J]. Cell Stem Cell, 2019, 24(6): 860-876. |
56 | BEYDAG-TASÖZ B S, YENNEK S, GRAPIN-BOTTON A. Towards a better understanding of diabetes mellitus using organoid models[J]. Nature Reviews Endocrinology, 2023, 19(4): 232-248. |
57 | KASSIS T, HERNANDEZ-GORDILLO V, LANGER R, et al. OrgaQuant: human intestinal organoid localization and quantification using deep convolutional neural networks[J]. Scientific Reports, 2019, 9(1): 12479. |
58 | FIORINI E, VEGHINI L, CORBO V. Modeling cell communication in cancer with organoids: making the complex simple[J]. Frontiers in Cell and Developmental Biology, 2020, 8: 166. |
59 | KRISHNA S, CHOUDHURY A, NI L J, et al. Tami-21. malignant gliomas remodel functional neural circuits through paracrine signaling which confers a negative prognosis[J]. Neuro-Oncology, 2020, 22(): ii217-ii218. |
60 | SAHIN U. Studying tumor-reactive T cells: a personalized organoid model[J]. Cell Stem Cell, 2018, 23(3): 318-319. |
61 | DROST J, VAN JAARSVELD R H, PONSIOEN B, et al. Sequential cancer mutations in cultured human intestinal stem cells[J]. Nature, 2015, 521: 43-47. |
62 | DROST J, CLEVERS H. Organoids in cancer research[J]. Nature Reviews Cancer, 2018, 18: 407-418. |
63 | TAKEBE T, WELLS J M, HELMRATH M A, et al. Organoid center strategies for accelerating clinical translation[J]. Cell Stem Cell, 2018, 22(6): 806-809. |
64 | ZHANG W J, LI D H, JIANG S W, et al. Microfluidic droplets as structural templates for matrigel to enable 1-week large organoid modeling[J]. Chemical Engineering Science, 2021, 238: 116632. |
65 | ZHANG W J, LI J W, ZHOU J Q, et al. Translational organoid technology - the convergence of chemical, mechanical, and computational biology[J]. Trends in Biotechnology, 2022, 40(9): 1121-1135. |
66 | PARK S E, GEORGESCU A, HUH D E. Organoids-on-a-chip[J]. Science, 2019, 364(6444): 960-965. |
67 | MAMMOTO T, INGBER D E. Mechanical control of tissue and organ development[J]. Development, 2010, 137(9): 1407-1420. |
68 | ROCA-CUSACHS P, CONTE V, TREPAT X. Quantifying forces in cell biology[J]. Nature Cell Biology, 2017, 19(7): 742-751. |
69 | ZHENG X, BETJES M A, ENDER P, et al. Organoid cell fate dynamics in space and time[J]. Science Advances, 2023, 9(33): eadd6480. |
70 | YANG Q T, LIBERALI P. Collective behaviours in organoids[J]. Current Opinion in Cell Biology, 2021, 72: 81-90. |
71 | SONTHEIMER-PHELPS A, HASSELL B A, INGBER D E. Modelling cancer in microfluidic human organs-on-chips[J]. Nature Reviews Cancer, 2019, 19(2): 65-81. |
72 | HUH D, MATTHEWS B D, MAMMOTO A, et al. Reconstituting organ-level lung functions on a chip[J]. Science, 2010, 328(5986): 1662-1668. |
73 | XING Y F, LIU J Y, GUO X J, et al. Engineering organoid microfluidic system for biomedical and health engineering: a review[J]. Chinese Journal of Chemical Engineering, 2021, 30: 244-254. |
74 | VELASCO V, SHARIATI S A, ESFANDYARPOUR R. Microtechnology-based methods for organoid models[J]. Microsystems & Nanoengineering, 2020, 6: 76. |
75 | HOMAN K A, GUPTA N, KROLL K T, et al. Flow-enhanced vascularization and maturation of kidney organoids in vitro [J]. Nature Methods, 2019, 16(3): 255-262. |
76 | NIKOLAEV M, MITROFANOVA O, BROGUIERE N, et al. Homeostatic mini-intestines through scaffold-guided organoid morphogenesis[J]. Nature, 2020, 585(7826): 574-578. |
77 | TAN S Y, FENG X H, CHENG L K W, et al. Vascularized human brain organoid on-chip[J]. Lab on a Chip, 2023, 23(12): 2693-2709. |
78 | PATTANAYAK P, SINGH S K, GULATI M, et al. Microfluidic chips: recent advances, critical strategies in design, applications and future perspectives[J]. Microfluidics and Nanofluidics, 2021, 25(12): 99. |
79 | ZHENG Y, CHEN J M, CRAVEN M, et al. In vitro microvessels for the study of angiogenesis and thrombosis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(24): 9342-9347. |
80 | WENSINK G E, ELIAS S G, MULLENDERS J, et al. Patient-derived organoids as a predictive biomarker for treatment response in cancer patients[J]. NPJ Precision Oncology, 2021, 5(1): 30. |
81 | DEISSEROTH K. Optogenetics[J]. Nature Methods, 2011, 8(1): 26-29. |
82 | ZHANG K, DUAN L T, ONG Q, et al. Light-mediated kinetic control reveals the temporal effect of the Raf/MEK/ERK pathway in PC12 cell neurite outgrowth[J]. PLoS One, 2014, 9(3): e92917. |
83 | FEI K Y, ZHANG J Z, YUAN J, et al. Present application and perspectives of organoid imaging technology[J]. Bioengineering, 2022, 9(3): 121. |
84 | GABRIEL E, ALBANNA W, PASQUINI G, et al. Human brain organoids assemble functionally integrated bilateral optic vesicles[J]. Cell Stem Cell, 2021, 28(10): 1740-1757. e8. |
85 | MAO W, BUI H T D, CHO W, et al. Spectroscopic techniques for monitoring stem cell and organoid proliferation in 3D environments for therapeutic development[J]. Advanced Drug Delivery Reviews, 2023, 201: 115074. |
86 | POLSTEIN L R, GERSBACH C A. A light-inducible CRISPR-Cas9 system for control of endogenous gene activation[J]. Nature Chemical Biology, 2015, 11: 198-200. |
87 | SAMARAGE C R, WHITE M D, ÁLVAREZ Y D, et al. Cortical tension allocates the first inner cells of the mammalian embryo[J]. Developmental Cell, 2015, 34(4): 435-447. |
88 | XUE Y T, BROWNE A W, TANG W C, et al. Retinal organoids long-term functional characterization using two-photon fluorescence lifetime and hyperspectral microscopy[J]. Frontiers in Cellular Neuroscience, 2021, 15: 796903. |
89 | DELORIA A J, HAIDER S, DIETRICH B, et al. Ultra-high-resolution 3D optical coherence tomography reveals inner structures of human placenta-derived trophoblast organoids[J]. IEEE Transactions on Biomedical Engineering, 2021, 68(8): 2368-2376. |
90 | SCHOLLER J, GROUX K, GOUREAU O, et al. Dynamic full-field optical coherence tomography: 3D live-imaging of retinal organoids[J]. Light, Science & Applications, 2020, 9: 140. |
91 | BEGHIN A, GRENCI G, SAHNI G, et al. Automated high-speed 3D imaging of organoid cultures with multi-scale phenotypic quantification[J]. Nature Methods, 2022, 19(7): 881-892. |
92 | RAWAL P, TRIPATHI D M, RAMAKRISHNA S, et al. Prospects for 3D bioprinting of organoids[J]. Bio-Design and Manufacturing, 2021, 4(3): 627-640. |
93 | ZHANG Q Z, SHI B, DING J X, et al. Polymer scaffolds facilitate spinal cord injury repair[J]. Acta Biomaterialia, 2019, 88: 57-77. |
94 | HOANG P, MA Z. Biomaterial-guided organoid engineering for modeling development and diseases[J]. SSRN Electronic Journal, 2020: 3708575. |
95 | LAWLOR K T, VANSLAMBROUCK J M, HIGGINS J W, et al. Cellular extrusion bioprinting improves kidney organoid reproducibility and conformation[J]. Nature Materials, 2021, 20(2): 260-271. |
96 | KRATOCHVIL M J, SEYMOUR A J, LI T L, et al. Engineered materials for organoid systems[J]. Nature Reviews Materials, 2019, 4(9): 606-622. |
97 | BERNAL P N, BOUWMEESTER M, MADRID-WOLFF J, et al. Volumetric bioprinting of organoids and optically tuned hydrogels to build liver-like metabolic biofactories[J]. Advanced Materials, 2022, 34(15): e2110054. |
98 | YOON J K. Advanced 3D cell culture platform for tissue engineering[J]. Tissue Engineering and Regenerative Medicine, 2023, 20(4): 519-521. |
99 | MURPHY S V, ATALA A. 3D bioprinting of tissues and organs[J]. Nature Biotechnology, 2014, 32(8): 773-785. |
100 | CARVALHO V, GONÇALVES I, LAGE T, et al. 3D printing techniques and their applications to organ-on-a-chip platforms: a systematic review[J]. Sensors, 2021, 21(9): 3304. |
101 | BRASSARD J A, NIKOLAEV M, HÜBSCHER T, et al. Recapitulating macro-scale tissue self-organization through organoid bioprinting[J]. Nature Materials, 2021, 20(1): 22-29. |
102 | LEE G Y, KIM S J, PARK J K. Fabrication of a self-assembled and vascularized tumor array via bioprinting on a microfluidic chip[J]. Lab on a Chip, 2023, 23(18): 4079-4091. |
103 | GARRETA E, KAMM R D, CHUVA DE SOUSA LOPES S M, et al. Rethinking organoid technology through bioengineering[J]. Nature Materials, 2021, 20(2): 145-155. |
104 | YAO X R, KANG J H, KIM K P, et al. Production of highly uniform midbrain organoids from human pluripotent stem cells[J]. Stem Cells International, 2023, 2023: 3320211. |
105 | ZHUANG P, SUN A X, AN J, et al. 3D neural tissue models: from spheroids to bioprinting[J]. Biomaterials, 2018, 154: 113-133. |
106 | JIANG S W, ZHAO H R, ZHANG W J, et al. An automated organoid platform with inter-organoid homogeneity and inter-patient heterogeneity[J]. Cell Reports Medicine, 2020, 1(9): 100161. |
107 | CAO Y X, TAN J Y, ZHAO H R, et al. Bead-jet printing enabled sparse mesenchymal stem cell patterning augments skeletal muscle and hair follicle regeneration[J]. Nature Communications, 2022, 13(1): 7463. |
108 | FETAH K, TEBON P, GOUDIE M J, et al. The emergence of 3D bioprinting in organ-on-chip systems[J]. Progress in Biomedical Engineering, 2019, 1(1): 012001. |
109 | 王玥, 施慧琳, 靳晨琦, 等. 类器官领域发展现状及展望[J]. 中国生物工程杂志, 2023, 43(8): 1-10. |
WANG Y, SHI H L, JIN C Q, et al. Development status and prospects of organoids[J]. China Biotechnology, 2023, 43(8): 1-10. | |
110 | MÖLLER J, PÖRTNER R. Digital twins for tissue culture techniques — concepts, expectations, and state of the art[J]. Processes, 2021, 9(3): 447. |
111 | ONG H T, KARATAS E, GRENCI G, et al. Digitalized organoids: integrated pipeline for 3D high-speed analysis of organoid structures using multilevel segmentation and cellular topology[EB/OL]. bioRxiv, 2023: 2023. 2011. 2008. 566158[2023-12-01]. . |
112 | COOREY G, FIGTREE G A, FLETCHER D F, et al. The health digital twin to tackle cardiovascular disease-a review of an emerging interdisciplinary field[J]. NPJ Digital Medicine, 2022, 5(1): 126. |
113 | GONG J, LI M H, KANG J H, et al. Microfluidic techniques for next-generation organoid systems[J]. Advanced Materials Interfaces, 2022, 9(29): 2200846. |
114 | ROHAAN M W, WILGENHOF S, HAANEN J B A G. Adoptive cellular therapies: the current landscape[J]. Virchows Archiv, 2019, 474(4): 449-461. |
115 | FUHR A, KURTZ A, HIEPEN C, et al. Organoids as miniature twins—challenges for comparability and need for data standardization and access[J]. Organoids, 2022, 1(1): 28-36. |
[1] | Shikai LI, Dong′ao ZENG, Fangzhou DU, Jingzhong ZHANG, Shuang YU. The construction approaches and biomaterials for vascularized organoids [J]. Synthetic Biology Journal, 2024, 5(4): 851-866. |
[2] | Wei GUO, Yuhao FU, Yingying FAN, Jialing ZHOU, Xin LI, Ping WEI. Artificial control of mammalian cell chemotaxis and motility [J]. Synthetic Biology Journal, 2022, 3(6): 1109-1125. |
[3] | Can ZHANG, Liyang SHI, Jianwu DAI. Cultured meat from biomaterials: challenges and prospects [J]. Synthetic Biology Journal, 2022, 3(4): 676-689. |
[4] | Zhi LIN, Zhiwei HU, Xudong QU, Shuangjun LIN. Advances and challenges in microbial production of benzylisoquinoline alkaloids [J]. Synthetic Biology Journal, 2021, 2(5): 716-733. |
[5] | Ziyu ZHU, Guan WANG, Yingping ZHUANG. Present situation and prospect for large-scale mammalian cell culture engineering [J]. Synthetic Biology Journal, 2021, 2(4): 612-634. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||