Synthetic Biology Journal ›› 2024, Vol. 5 ›› Issue (4): 700-718.DOI: 10.12211/2096-8280.2023-094
• Invited Review • Previous Articles Next Articles
Zongyong AI1,2, Chengting ZHANG1,2, Baohua NIU1,2, Yu YIN1,2, Jie YANG1, Tianqing LI1,2
Received:
2023-11-30
Revised:
2024-02-04
Online:
2024-09-19
Published:
2024-08-31
Contact:
Tianqing LI
艾宗勇1,2, 张成庭1,2, 牛宝华1,2, 尹宇1,2, 杨洁1, 李天晴1,2
通讯作者:
李天晴
作者简介:
基金资助:
CLC Number:
Zongyong AI, Chengting ZHANG, Baohua NIU, Yu YIN, Jie YANG, Tianqing LI. Early human embryo development and stem cells[J]. Synthetic Biology Journal, 2024, 5(4): 700-718.
艾宗勇, 张成庭, 牛宝华, 尹宇, 杨洁, 李天晴. 人胚胎早期发育与干细胞[J]. 合成生物学, 2024, 5(4): 700-718.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2023-094
1 | MAÎTRE J L, TURLIER H, ILLUKKUMBURA R, et al. Asymmetric division of contractile domains couples cell positioning and fate specification[J]. Nature, 2016, 536(7616): 344-348. |
2 | JOHNSON M, ZIOMEK C A. The foundation of two distinct cell lineages within the mouse morula[J]. Cell, 1981, 24(1): 71-80. |
3 | JOHNSON M H, MCCONNELL J M L. Lineage allocation and cell polarity during mouse embryogenesis[J]. Seminars in Cell & Developmental Biology, 2004, 15(5): 583-597. |
4 | SASAKI H. Position- and polarity-dependent Hippo signaling regulates cell fates in preimplantation mouse embryos[J]. Seminars in Cell & Developmental Biology, 2015, 47-48: 80-87. |
5 | GERRI C, MCCARTHY A, ALANIS-LOBATO G, et al. Initiation of a conserved trophectoderm program in human, cow and mouse embryos[J]. Nature, 2020, 587(7834): 443-447. |
6 | ZENKER J, WHITE M D, GASNIER M, et al. Expanding actin rings zipper the mouse embryo for blastocyst formation[J]. Cell, 2018, 173(3): 776-791.e17. |
7 | CHAN C J, COSTANZO M, RUIZ-HERRERO T, et al. Hydraulic control of mammalian embryo size and cell fate[J]. Nature, 2019, 571(7763): 112-116. |
8 | ZHANG Y D, LI X, GAO S, et al. Genetic reporter for live tracing fluid flow forces during cell fate segregation in mouse blastocyst development[J]. Cell Stem Cell, 2023, 30(8): 1110-1123.e9. |
9 | BOROVIAK T, LOOS R, LOMBARD P, et al. Lineage-specific profiling delineates the emergence and progression of naive pluripotency in mammalian embryogenesis[J]. Developmental Cell, 2015, 35(3): 366-382. |
10 | LINNEBERG-AGERHOLM M, WONG Y F, ROMERO HERRERA J A, et al. Naïve human pluripotent stem cells respond to Wnt, Nodal and LIF signalling to produce expandable naïve extra-embryonic endoderm[J]. Development, 2019, 146(24): dev180620. |
11 | MEISTERMANN D, BRUNEAU A, LOUBERSAC S, et al. Integrated pseudotime analysis of human pre-implantation embryo single-cell transcriptomes reveals the dynamics of lineage specification[J]. Cell Stem Cell, 2021, 28(9): 1625-1640.e6. |
12 | YANAGIDA A, CORUJO-SIMON E, REVELL C K, et al. Cell surface fluctuations regulate early embryonic lineage sorting[J]. Cell, 2022, 185(5): 777-793.e20. |
13 | GELLERSEN B, BROSENS J J. Cyclic decidualization of the human endometrium in reproductive health and failure[J]. Endocrine Reviews, 2014, 35(6): 851-905. |
14 | RAWLINGS T M, MAKWANA K, TAYLOR D M, et al. Modelling the impact of decidual senescence on embryo implantation in human endometrial assembloids[J]. eLife, 2021, 10: e69603. |
15 | GARCIA-ALONSO L, HANDFIELD L F, ROBERTS K, et al. Mapping the temporal and spatial dynamics of the human endometrium in vivo and in vitro [J]. Nature Genetics, 2021, 53(12): 1698-1711. |
16 | WANG W X, VILELLA F, ALAMA P, et al. Single-cell transcriptomic atlas of the human endometrium during the menstrual cycle[J]. Nature Medicine, 2020, 26(10): 1644-1653. |
17 | RUANE P T, GARNER T, PARSONS L, et al. Trophectoderm differentiation to invasive syncytiotrophoblast is promoted by endometrial epithelial cells during human embryo implantation[J]. Human Reproduction, 2022, 37(4): 777-792. |
18 | HAIDER S, MEINHARDT G, SALEH L, et al. Notch1 controls development of the extravillous trophoblast lineage in the human placenta[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(48): E7710-E7719. |
19 | KAGAWA H, JAVALI A, KHOEI H H, et al. Human blastoids model blastocyst development and implantation[J]. Nature, 2022, 601(7894): 600-605. |
20 | ENDERS A C, BLANKENSHIP T N, FAZLEABAS A T, et al. Structure of anchoring villi and the trophoblastic shell in the human, baboon and macaque placenta[J]. Placenta, 2001, 22(4): 284-303. |
21 | VENTO-TORMO R, EFREMOVA M, BOTTING R A, et al. Single-cell reconstruction of the early maternal-fetal interface in humans[J]. Nature, 2018, 563(7731): 347-353. |
22 | LIU Y W, FAN X Y, WANG R, et al. Single-cell RNA-seq reveals the diversity of trophoblast subtypes and patterns of differentiation in the human placenta[J]. Cell Research, 2018, 28(8): 819-832. |
23 | ARUTYUNYAN A, ROBERTS K, TROULÉ K, et al. Spatial multiomics map of trophoblast development in early pregnancy[J]. Nature, 2023, 616(7955): 143-151. |
24 | DEGLINCERTI A, CROFT G F, PIETILA L N, et al. Self-organization of the in vitro attached human embryo[J]. Nature, 2016, 533(7602): 251-254. |
25 | SHAHBAZI M N, JEDRUSIK A, VUORISTO S, et al. Self-organization of the human embryo in the absence of maternal tissues[J]. Nature Cell Biology, 2016, 18: 700-708. |
26 | XIANG L F, YIN Y, ZHENG Y, et al. A developmental landscape of 3D-cultured human pre-gastrulation embryos[J]. Nature, 2020, 577(7791): 537-542. |
27 | GASSER R F, CORK R J. The virtual human embryo[EB/OL].[2023-11-01]. . |
28 | ZHENG Y, XUE X F, SHAO Y, et al. Controlled modelling of human epiblast and amnion development using stem cells[J]. Nature, 2019, 573(7774): 421-425. |
29 | AI Z Y, NIU B H, YIN Y, et al. Dissecting peri-implantation development using cultured human embryos and embryo-like assembloids[J]. Cell Research, 2023, 33(9): 661-678. |
30 | BEDZHOV I, ZERNICKA-GOETZ M. Self-organizing properties of mouse pluripotent cells initiate morphogenesis upon implantation[J]. Cell, 2014, 156(5): 1032-1044. |
31 | COUCOUVANIS E, MARTIN G R. Signals for death and survival: a two-step mechanism for cavitation in the vertebrate embryo[J]. Cell, 1995, 83(2): 279-287. |
32 | TANIGUCHI K, SHAO Y, TOWNSHEND R F, et al. Lumen formation is an intrinsic property of isolated human pluripotent stem cells[J]. Stem Cell Reports, 2015, 5(6): 954-962. |
33 | SHAO Y, TANIGUCHI K, TOWNSHEND R F, et al. A pluripotent stem cell-based model for post-implantation human amniotic sac development[J]. Nature Communications, 2017, 8(1): 208. |
34 | SHAO Y, TANIGUCHI K, GURDZIEL K, et al. Self-organized amniogenesis by human pluripotent stem cells in a biomimetic implantation-like niche[J]. Nature Materials, 2017, 16(4): 419-425. |
35 | ENDERS A C, SCHLAFKE S, HENDRICKX A G. Differentiation of the embryonic disc, amnion, and yolk sac in the rhesus monkey[J]. American Journal of Anatomy, 1986, 177(2): 161-185. |
36 | ENDERS A C, LANTZ K C, SCHLAFKE S. Differentiation of the inner cell mass of the baboon blastocyst[J]. The Anatomical Record, 1990, 226(2): 237-248. |
37 | ROSS C, BOROVIAK T E. Origin and function of the yolk sac in primate embryogenesis[J]. Nature Communications, 2020, 11(1): 3760. |
38 | THOMAS P, BEDDINGTON R. Anterior primitive endoderm may be responsible for patterning the anterior neural plate in the mouse embryo[J]. Current Biology, 1996, 6(11): 1487-1496. |
39 | RIVERA-PÉREZ J A, MAGER J, MAGNUSON T. Dynamic morphogenetic events characterize the mouse visceral endoderm[J]. Developmental Biology, 2003, 261(2): 470-487. |
40 | MOLÈ M A, COORENS T H H, SHAHBAZI M N, et al. A single cell characterisation of human embryogenesis identifies pluripotency transitions and putative anterior hypoblast centre[J]. Nature Communications, 2021, 12(1): 3679. |
41 | SHAHBAZI M N, ZERNICKA-GOETZ M. Deconstructing and reconstructing the mouse and human early embryo[J]. Nature Cell Biology, 2018, 20(8): 878-887. |
42 | BOROVIAK T, NICHOLS J. Primate embryogenesis predicts the hallmarks of human naïve pluripotency[J]. Development, 2017, 144(2): 175-186. |
43 | JIANG X X, ZHAI J L, XIAO Z Y, et al. Identifying a dynamic transcriptomic landscape of the cynomolgus macaque placenta during pregnancy at single-cell resolution[J]. Developmental Cell, 2023, 58(9): 806-821.e7. |
44 | AI Z Y, YIN Y, NIU B H, et al. Deconstructing human peri-implantation embryogenesis based on embryos and embryoids[J]. Biology of Reproduction, 2022, 107(1): 212-225. |
45 | SAITOU M, BARTON S C, SURANI M A. A molecular programme for the specification of germ cell fate in mice[J]. Nature, 2002, 418(6895): 293-300. |
46 | OHINATA Y, PAYER B, O’CARROLL D, et al. Blimp1 is a critical determinant of the germ cell lineage in mice[J]. Nature, 2005, 436(7048): 207-213. |
47 | KOBAYASHI T, ZHANG H X, TANG W W C, et al. Principles of early human development and germ cell program from conserved model systems[J]. Nature, 2017, 546(7658): 416-420. |
48 | SASAKI K, NAKAMURA T, OKAMOTO I, et al. The germ cell fate of Cynomolgus monkeys is specified in the nascent amnion[J]. Developmental Cell, 2016, 39(2): 169-185. |
49 | TYSER R C V, MAHAMMADOV E, NAKANOH S, et al. Single-cell transcriptomic characterization of a gastrulating human embryo[J]. Nature, 2021, 600(7888): 285-289. |
50 | WITSCHI E. Migration of the germ cells of human embryos from the yolk sac to the primitive gonadal fold[J]. Contributions to Embryology, 1948, 32: 67-80. |
51 | CHEN D, SUN N, HOU L, et al. Human primordial germ cells are specified from lineage-primed progenitors[J]. Cell Reports, 2019, 29(13): 4568-4582.e5. |
52 | VICENTE C. An interview with Lewis Wolpert[J]. Development, 2015, 142(15): 2547-2548. |
53 | DALEY G Q, HYUN I, APPERLEY J F, et al. Setting global standards for stem cell research and clinical translation: the 2016 ISSCR guidelines[J]. Stem Cell Reports, 2016, 6(6): 787-797. |
54 | YANG R, GOEDEL A, KANG Y, et al. Amnion signals are essential for mesoderm formation in Primates[J]. Nature Communications, 2021, 12(1): 5126. |
55 | ARTZT K. Mammalian developmental genetics in the twentieth century[J]. Genetics, 2012, 192(4): 1151-1163. |
56 | HERTIG A T, ROCK J, ADAMS E C. A description of 34 human ova within the first 17 days of development[J]. American Journal of Anatomy, 1956, 98(3): 435-493. |
57 | HERTIG A T. On the development of the amnion and exoccelomic membrane in the previllous human ovum[J]. The Yale Journal of Biology and Medicine, 1945, 18: 107-115. |
58 | HERTIG A T. Angiogenesis in the early human chorion and in the primary placenta of the Macque monkey[J]. Contributions to Embryology, 1935, 25: 37-82. |
59 | BOYD J D, HAMILTON W J. The Human Placenta[M]. Combridge: Heffer, 1970, 217. |
60 | ZENG B, LIU Z Y, LU Y F, et al. The single-cell and spatial transcriptional landscape of human gastrulation and early brain development[J]. Cell Stem Cell, 2023, 30(6): 851-866.e7. |
61 | TAM P P L, LOEBEL D A F. Gene function in mouse embryogenesis: get set for gastrulation[J]. Nature Reviews Genetics, 2007, 8: 368-381. |
62 | YANG Y, LIU B, XU J, et al. Derivation of pluripotent stem cells with in vivo embryonic and extraembryonic potency[J]. Cell, 2017, 169(2): 243-257.e25. |
63 | GAO X F, NOWAK-IMIALEK M, CHEN X, et al. Establishment of porcine and human expanded potential stem cells[J]. Nature Cell Biology, 2019, 21(6): 687-699. |
64 | GUO G, STIRPARO G G, STRAWBRIDGE S E, et al. Human naive epiblast cells possess unrestricted lineage potential[J]. Cell Stem Cell, 2021, 28(6): 1040-1056.e6. |
65 | IO S, KABATA M, IEMURA Y, et al. Capturing human trophoblast development with naive pluripotent stem cells in vitro [J]. Cell Stem Cell, 2021, 28(6): 1023-1039.e13. |
66 | STIRPARO G G, BOROVIAK T, GUO G, et al. Integrated analysis of single-cell embryo data yields a unified transcriptome signature for the human pre-implantation epiblast[J]. Development, 2018, 145(3): dev158501. |
67 | GUO G, VON MEYENN F, ROSTOVSKAYA M, et al. Epigenetic resetting of human pluripotency[J]. Development, 2017, 144(15): 2748-2763. |
68 | MAZID M A, WARD C, LUO Z W, et al. Rolling back human pluripotent stem cells to an eight-cell embryo-like stage[J]. Nature, 2022, 605(7909): 315-324. |
69 | TAUBENSCHMID-STOWERS J, ROSTOVSKAYA M, SANTOS F, et al. 8C-like cells capture the human zygotic genome activation program in vitro [J]. Cell Stem Cell, 2022, 29(3): 449-459.e6. |
70 | MOYA-JÓDAR M, ULLATE-AGOTE A, BARLABÉ P, et al. Revealing cell populations catching the early stages of human embryo development in naive pluripotent stem cell cultures[J]. Stem Cell Reports, 2023, 18(1): 64-80. |
71 | YU X, LIANG S Q, CHEN M Q, et al. Recapitulating early human development with 8C-like cells[J]. Cell Reports, 2022, 39(12): 110994. |
72 | YOSHIHARA M, KIRJANOV I, NYKÄNEN S, et al. Transient DUX4 expression in human embryonic stem cells induces blastomere-like expression program that is marked by SLC34A2[J]. Stem Cell Reports, 2022, 17(7): 1743-1756. |
73 | YOSHIHARA M, KERE J. Transcriptomic differences between human 8-cell-like cells reprogrammed with different methods[J]. Stem Cell Reports, 2023, 18(8): 1621-1628. |
74 | THOMSON J A, ITSKOVITZ-ELDOR J, SHAPIRO S S, et al. Embryonic stem cell lines derived from human blastocysts[J]. Science, 1998, 282(5391): 1145-1147. |
75 | TAKAHASHI K, TANABE K, OHNUKI M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007, 131(5): 861-872. |
76 | YU J Y, VODYANIK M A, SMUGA-OTTO K, et al. Induced pluripotent stem cell lines derived from human somatic cells[J]. Science, 2007, 318(5858): 1917-1920. |
77 | GAFNI O, WEINBERGER L, MANSOUR A A, et al. Derivation of novel human ground state naive pluripotent stem cells[J]. Nature, 2013, 504: 282-286. |
78 | AI Z Y, NIU B H, DUAN K, et al. Modulation of Wnt and Activin/Nodal supports efficient derivation, cloning and suspension expansion of human pluripotent stem cells[J]. Biomaterials, 2020, 249: 120015. |
79 | CHAN Y S, GÖKE J, NG J H, et al. Induction of a human pluripotent state with distinct regulatory circuitry that resembles preimplantation epiblast[J]. Cell Stem Cell, 2013, 13(6): 663-675. |
80 | NICHOLS J, SMITH A. Naive and primed pluripotent states[J]. Cell Stem Cell, 2009, 4(6): 487-492. |
81 | SMITH A. Formative pluripotency: the executive phase in a developmental continuum[J]. Development, 2017, 144(3): 365-373. |
82 | TAKASHIMA Y, GUO G, LOOS R, et al. Resetting transcription factor control circuitry toward ground-state pluripotency in human[J]. Cell, 2014, 158(6): 1254-1269. |
83 | THEUNISSEN T W, POWELL B E, WANG H Y, et al. Systematic identification of culture conditions for induction and maintenance of naive human pluripotency[J]. Cell Stem Cell, 2014, 15(4): 471-487. |
84 | BREDENKAMP N, YANG J, CLARKE J, et al. Wnt inhibition facilitates RNA-mediated reprogramming of human somatic cells to naive pluripotency[J]. Stem Cell Reports, 2019, 13(6): 1083-1098. |
85 | THEUNISSEN T W, FRIEDLI M, HE Y P, et al. Molecular criteria for defining the naive human pluripotent state[J]. Cell Stem Cell, 2016, 19(4): 502-515. |
86 | BAYERL J, AYYASH M, SHANI T, et al. Principles of signaling pathway modulation for enhancing human naive pluripotency induction[J]. Cell Stem Cell, 2021, 28(9): 1549-1565.e12. |
87 | ROSTOVSKAYA M, STIRPARO G G, SMITH A. Capacitation of human naïve pluripotent stem cells for multi-lineage differentiation[J]. Development, 2019, 146(7): dev172916. |
88 | DI STEFANO B, UEDA M, SABRI S, et al. Reduced MEK inhibition preserves genomic stability in naive human embryonic stem cells[J]. Nature Methods, 2018, 15(9): 732-740. |
89 | KALKAN T, SMITH A. Mapping the route from naive pluripotency to lineage specification[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2014, 369(1657): 20130540. |
90 | HAYASHI K, OHTA H, KURIMOTO K, et al. Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells[J]. Cell, 2011, 146(4): 519-532. |
91 | KINOSHITA M, BARBER M, MANSFIELD W, et al. Capture of mouse and human stem cells with features of formative pluripotency[J]. Cell Stem Cell, 2021, 28(3): 453-471.e8. |
92 | YU L Q, WEI Y L, SUN H X, et al. Derivation of intermediate pluripotent stem cells amenable to primordial germ cell specification[J]. Cell Stem Cell, 2021, 28(3): 550-567.e12. |
93 | KILENS S, MEISTERMANN D, MORENO D, et al. Parallel derivation of isogenic human primed and naive induced pluripotent stem cells[J]. Nature Communications, 2018, 9(1): 360. |
94 | AMITA M, ADACHI K, ALEXENKO A P, et al. Complete and unidirectional conversion of human embryonic stem cells to trophoblast by BMP4[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(13): E1212-E1221. |
95 | XU R H, CHEN X, LI D S, et al. BMP4 initiates human embryonic stem cell differentiation to trophoblast[J]. Nature Biotechnology, 2002, 20(12): 1261-1264. |
96 | WU Z, ZHANG W, CHEN G B, et al. Combinatorial signals of activin/nodal and bone morphogenic protein regulate the early lineage segregation of human embryonic stem cells[J]. Journal of Biological Chemistry, 2008, 283(36): 24991-25002. |
97 | CASTEL G, MEISTERMANN D, BRETIN B, et al. Induction of human trophoblast stem cells from somatic cells and pluripotent stem cells[J]. Cell Reports, 2020, 33(8): 108419. |
98 | BERNARDO A S, FAIAL T, GARDNER L, et al. BRACHYURY and CDX2 mediate BMP-induced differentiation of human and mouse pluripotent stem cells into embryonic and extraembryonic lineages[J]. Cell Stem Cell, 2011, 9(2): 144-155. |
99 | CHHABRA S, WARMFLASH A. BMP-treated human embryonic stem cells transcriptionally resemble amnion cells in the monkey embryo[J]. Biology Open, 2021, 10(9): bio058617. |
100 | KUNATH T, YAMANAKA Y, DETMAR J, et al. Developmental differences in the expression of FGF receptors between human and mouse embryos[J]. Placenta, 2014, 35(12): 1079-1088. |
101 | SONCIN F, NATALE D, PARAST M M. Signaling pathways in mouse and human trophoblast differentiation: a comparative review[J]. Cellular and Molecular Life Sciences, 2015, 72(7): 1291-1302. |
102 | OKAE H, TOH H, SATO T, et al. Derivation of human trophoblast stem cells[J]. Cell Stem Cell, 2018, 22(1): 50-63.e6. |
103 | DONG C, BELTCHEVA M, GONTARZ P, et al. Derivation of trophoblast stem cells from naïve human pluripotent stem cells[J]. eLife, 2020, 9: e52504. |
104 | LIU X D, OUYANG J F, ROSSELLO F J, et al. Reprogramming roadmap reveals route to human induced trophoblast stem cells[J]. Nature, 2020, 586(7827): 101-107. |
105 | CINKORNPUMIN J K, KWON S Y, GUO Y X, et al. Naive human embryonic stem cells can give rise to cells with a trophoblast-like transcriptome and methylome[J]. Stem Cell Reports, 2020, 15(1): 198-213. |
106 | WEI Y X, WANG T Y, MA L S, et al. Efficient derivation of human trophoblast stem cells from primed pluripotent stem cells[J]. Science Advances, 2021, 7(33): eabf4416. |
107 | SONCIN F, MOREY R, BUI T, et al. Derivation of functional trophoblast stem cells from primed human pluripotent stem cells[J]. Stem Cell Reports, 2022, 17(6): 1303-1317. |
108 | VIUKOV S, SHANI T, BAYERL J, et al. Human primed and naïve PSCs are both able to differentiate into trophoblast stem cells[J]. Stem Cell Reports, 2022, 17(11): 2484-2500. |
109 | ZORZAN I, BETTO R M, ROSSIGNOLI G, et al. Chemical conversion of human conventional PSCs to TSCs following transient naive gene activation[J]. EMBO Reports, 2023, 24(4): e55235. |
110 | SEETHARAM A S, VU H T H, CHOI S, et al. The product of BMP-directed differentiation protocols for human primed pluripotent stem cells is placental trophoblast and not amnion[J]. Stem Cell Reports, 2022, 17(6): 1289-1302. |
111 | MACKINLAY K M, WEATHERBEE B A, SOUZA ROSA V, et al. An in vitro stem cell model of human epiblast and yolk sac interaction[J]. eLife, 2021, 10: e63930. |
112 | PHAM T X A, PANDA A, KAGAWA H, et al. Modeling human extraembryonic mesoderm cells using naive pluripotent stem cells[J]. Cell Stem Cell, 2022, 29(9): 1346-1365.e10. |
113 | WEI Y L, ZHANG E, YU L Q, et al. Dissecting embryonic and extraembryonic lineage crosstalk with stem cell co-culture[J]. Cell, 2023, 186(26): 5859-5875.e24. |
114 | OKUBO T, RIVRON N, KABATA M, et al. Hypoblast from human pluripotent stem cells regulates epiblast development[J]. Nature, 2024, 626: 357-366. |
115 | FU J P, WARMFLASH A, LUTOLF M P. Stem-cell-based embryo models for fundamental research and translation[J]. Nature Materials, 2021, 20(2): 132-144. |
116 | ZERNICKA-GOETZ M. The evolution of embryo models[J]. Nature Methods, 2023, 20(12): 1844-1848. |
117 | MARTYN I, KANNO T Y, RUZO A, et al. Self-organization of a human organizer by combined Wnt and Nodal signalling[J]. Nature, 2018, 558: 132-135. |
118 | SIMUNOVIC M, METZGER J J, ETOC F, et al. A 3D model of a human epiblast reveals BMP4-driven symmetry breaking[J]. Nature Cell Biology, 2019, 21(7): 900-910. |
119 | SIMUNOVIC M, SIGGIA E D, BRIVANLOU A H. In vitro attachment and symmetry breaking of a human embryo model assembled from primed embryonic stem cells[J]. Cell Stem Cell, 2022, 29(6): 962-972.e4. |
120 | YU L Q, LOGSDON D, PINZON-ARTEAGA C A, et al. Large-scale production of human blastoids amenable to modeling blastocyst development and maternal-fetal cross talk[J]. Cell Stem Cell, 2023, 30(9): 1246-1261.e9. |
121 | SPEMANN H, MANGOLD H. Induction of embryonic primordia by implantation of organizers from a different species. 1923[J]. The International Journal of Developmental Biology, 2001, 45(1): 13-38. |
122 | TURING A M. The chemical basis of morphogenesis. 1953[J]. Bulletin of Mathematical Biology, 1990, 52(1/2): 153-197. |
123 | WOLPERT L. Positional information and the spatial pattern of cellular differentiation[J]. Journal of Theoretical Biology, 1969, 25(1): 1-47. |
124 | YAMANAKA Y, HAMIDI S, YOSHIOKA-KOBAYASHI K, et al. Reconstituting human somitogenesis in vitro [J]. Nature, 2023, 614(7948): 509-520. |
125 | MIAO Y C, DJEFFAL Y, SIMONE A D, et al. Reconstruction and deconstruction of human somitogenesis in vitro [J]. Nature, 2023, 614(7948): 500-508. |
126 | OLDAK B, WILDSCHUTZ E, BONDARENKO V, et al. Complete human day 14 post-implantation embryo models from naive ES cells[J]. Nature, 2023, 622(7983): 562-573. |
127 | WEATHERBEE B A T, GANTNER C W, IWAMOTO-STOHL L K, et al. Pluripotent stem cell-derived model of the post-implantation human embryo[J]. Nature, 2023, 622(7983): 584-593. |
128 | TSAI T Y C, SIKORA M, XIA P, et al. An adhesion code ensures robust pattern formation during tissue morphogenesis[J]. Science, 2020, 370(6512): 113-116. |
129 | STEINBERG M S. Does differential adhesion govern self-assembly processes in histogenesis? Equilibrium configurations and the emergence of a hierarchy among populations of embryonic cells[J]. The Journal of Experimental Zoology, 1970, 173(4): 395-433. |
130 | BAO M, CORNWALL-SCOONES J, SANCHEZ-VASQUEZ E, et al. Stem cell-derived synthetic embryos self-assemble by exploiting cadherin codes and cortical tension[J]. Nature Cell Biology, 2022, 24(9): 1341-1349. |
131 | WEBERLING A, ZERNICKA-GOETZ M. Trophectoderm mechanics direct epiblast shape upon embryo implantation[J]. Cell Reports, 2021, 34(3): 108655. |
132 | LIU L Z, OURA S, MARKHAM Z, et al. Modeling post-implantation stages of human development into early organogenesis with stem-cell-derived peri-gastruloids[J]. Cell, 2023, 186(18): 3776-3792.e16. |
133 | TIAN J W, YANG J, CHEN T W, et al. Generation of human endometrial assembloids with a luminal epithelium using air-liquid interface culture methods[J]. Advanced Science, 2023, 10(30): e2301868. |
134 | TURCO M Y, GARDNER L, KAY R G, et al. Trophoblast organoids as a model for maternal-fetal interactions during human placentation[J]. Nature, 2018, 564(7735): 263-267. |
135 | HAIDER S, MEINHARDT G, SALEH L, et al. Self-renewing trophoblast organoids recapitulate the developmental program of the early human placenta[J]. Stem Cell Reports, 2018, 11(2): 537-551. |
136 | YANG L H, LIANG P F, YANG H H, et al. Trophoblast organoids with physiological polarity model placental structure and function[J]. Journal of Cell Science, 2024, 137(5): jcs261528. |
137 | ZHOU J, SHERIDAN M A, TIAN Y, et al. Development of properly-polarized trophoblast stem cell-derived organoids to model early human pregnancy[EB/OL]. BioRxiv, 2023: 2023.09.30.560327[2023-12-01]. . |
138 | ZHOU F, WANG R, YUAN P, et al. Reconstituting the transcriptome and DNA methylome landscapes of human implantation[J]. Nature, 2019, 572(7771): 660-664. |
139 | LV B, AN Q, ZENG Q, et al. Single-cell RNA sequencing reveals regulatory mechanism for trophoblast cell-fate divergence in human peri-implantation conceptuses[J]. PLoS Biology, 2019, 17(10): e3000187. |
140 | WEST R C, MING H, LOGSDON D M, et al. Dynamics of trophoblast differentiation in peri-implantation–stage human embryos[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(45): 22635-22644. |
141 | SHAHBAZI M N, WANG T R, TAO X, et al. Developmental potential of aneuploid human embryos cultured beyond implantation[J]. Nature Communications, 2020, 11(1): 3987. |
142 | SHAHBAZI M N, SCIALDONE A, SKORUPSKA N, et al. Pluripotent state transitions coordinate morphogenesis in mouse and human embryos[J]. Nature, 2017, 552(7684): 239-243. |
143 | PEDROZA M, GASSALOGLU S I, DIAS N, et al. Self-patterning of human stem cells into post-implantation lineages[J]. Nature, 2023, 622(7983): 574-583. |
144 | KARVAS R M, ZEMKE J E, ALI S S, et al. 3D-cultured blastoids model human embryogenesis from pre-implantation to early gastrulation stages[J]. Cell Stem Cell, 2023, 30(9): 1148-1165.e7. |
145 | HISLOP J, SONG Q, KESHAVARZ F K, et al. Modelling post-implantation human development to yolk sac blood emergence[J]. Nature, 2024, 626: 367-376. |
146 | YUAN G G, WANG J C, LIU Z D, et al. Establishment of a novel non-integrated human pluripotent stem cell-based gastruloid model[EB/OL]. bioRxiv,2023: 2023. 06. 28.546720.[2023-12-01]. . |
147 | YANAGIDA A, SPINDLOW D, NICHOLS J, et al. Naive stem cell blastocyst model captures human embryo lineage segregation[J]. Cell Stem Cell, 2021, 28(6): 1016-1022.e4. |
148 | AMADEI G, HANDFORD C E, QIU C X, et al. Embryo model completes gastrulation to neurulation and organogenesis[J]. Nature, 2022, 610(7930): 143-153. |
149 | TARAZI S, AGUILERA-CASTREJON A, JOUBRAN C, et al. Post-gastrulation synthetic embryos generated ex utero from mouse naive ESCs[J]. Cell, 2022, 185(18): 3290-3306.e25. |
150 | LAU K Y C, RUBINSTEIN H, GANTNER C W, et al. Mouse embryo model derived exclusively from embryonic stem cells undergoes neurulation and heart development[J]. Cell Stem Cell, 2022, 29(10): 1445-1458.e8. |
[1] | Yuan HONG, Yan LIU. Research progress of brain organoids in regenerative medicine [J]. Synthetic Biology Journal, 2024, 5(4): 754-769. |
[2] | Qianwen CHEN, Siqi ZHAO, Yaojin PENG. Organoids: technological innovation and ethical controversies [J]. Synthetic Biology Journal, 2024, 5(4): 898-907. |
[3] | Bowen HU, Jiaping TAN, Xiaodong LIU. Advances in the development of human embryo models [J]. Synthetic Biology Journal, 2024, 5(4): 719-733. |
[4] | Bohang ZHANG, Xiaoxuan QI, Yan YUAN. Advancements in testicular organoids for in vitro spermatogenesis [J]. Synthetic Biology Journal, 2024, 5(4): 770-781. |
[5] | Yizhao HAN, Jia GUO, Yue SHAO. Stem cell-based synthetic development: cellular components, embryonic models, and engineering approaches [J]. Synthetic Biology Journal, 2024, 5(4): 734-753. |
[6] | Shikai LI, Dong′ao ZENG, Fangzhou DU, Jingzhong ZHANG, Shuang YU. The construction approaches and biomaterials for vascularized organoids [J]. Synthetic Biology Journal, 2024, 5(4): 851-866. |
[7] | Ke’er HU, Hanqi WANG, Ruqi HUANG, Canyang ZHANG, Xinhui XING, Shaohua MA. Integrated design strategies for engineered organoids and organ-on-a-chip technologies [J]. Synthetic Biology Journal, 2024, 5(4): 883-897. |
[8] | Liyu ZHU, Yulong ZHAO, Wei LI, Libin WANG. Progress in mammalian chromosome engineering [J]. Synthetic Biology Journal, 2023, 4(2): 394-406. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||