Synthetic Biology Journal ›› 2024, Vol. 5 ›› Issue (4): 719-733.DOI: 10.12211/2096-8280.2024-010
• Invited Review • Previous Articles Next Articles
Bowen HU1,2,3, Jiaping TAN1,2,3, Xiaodong LIU1,2,3
Received:
2024-01-19
Revised:
2024-04-16
Online:
2024-09-19
Published:
2024-08-31
Contact:
Xiaodong LIU
胡博文1,2,3, 陈家斌1,2,3, 刘晓东1,2,3
通讯作者:
刘晓东
作者简介:
基金资助:
CLC Number:
Bowen HU, Jiaping TAN, Xiaodong LIU. Advances in the development of human embryo models[J]. Synthetic Biology Journal, 2024, 5(4): 719-733.
胡博文, 陈家斌, 刘晓东. 人类早期胚胎发育体外模型研究进展[J]. 合成生物学, 2024, 5(4): 719-733.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2024-010
1 | ROSSANT J, TAM P P L. New insights into early human development: lessons for stem cell derivation and differentiation[J]. Cell Stem Cell, 2017, 20(1): 18-28. |
2 | GHIMIRE S, MANTZIOU V, MORIS N, et al. Human gastrulation: the embryo and its models[J]. Developmental Biology, 2021, 474: 100-108. |
3 | JIRÁSEK J E. Developmental stages of human embryos[J]. Czechoslovak Medicine, 1978, 1(3): 156-161. |
4 | O′RAHILLY R, MÜLLER F. Developmental stages in human embryos: revised and new measurements[J]. Cells, Tissues, Organs, 2010, 192(2): 73-84. |
5 | KIMBER S J, SNEDDON S F, BLOOR D J, et al. Expression of genes involved in early cell fate decisions in human embryos and their regulation by growth factors[J]. Reproduction, 2008, 135(5): 635-647. |
6 | MACKLON N S, GERAEDTS J P M, FAUSER B C J M. Conception to ongoing pregnancy: the ‘black box’ of early pregnancy loss[J]. Human Reproduction Update, 2002, 8(4): 333-343. |
7 | ROSSANT J, TAM P P L. Opportunities and challenges with stem cell-based embryo models[J]. Stem Cell Reports, 2021, 16(5): 1031-1038. |
8 | THOMSON J A, ITSKOVITZ-ELDOR J, SHAPIRO S S, et al. Embryonic stem cell lines derived from human blastocysts[J]. Science, 1998, 282(5391): 1145-1147. |
9 | REUBINOFF B E, PERA M F, FONG C Y, et al. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro [J]. Nature Biotechnology, 2000, 18(4): 399-404. |
10 | TAKAHASHI K, TANABE K, OHNUKI M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007, 131(5): 861-872. |
11 | PARK I H, ZHAO R, WEST J A, et al. Reprogramming of human somatic cells to pluripotency with defined factors[J]. Nature, 2008, 451(7175): 141-146. |
12 | WERNIG M, MEISSNER A, FOREMAN R, et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state[J]. Nature, 2007, 448(7151): 318-324. |
13 | YU J Y, VODYANIK M A, SMUGA-OTTO K, et al. Induced pluripotent stem cell lines derived from human somatic cells[J]. Science, 2007, 318(5858): 1917-1920. |
14 | TAKASHIMA Y, GUO G, LOOS R, et al. Resetting transcription factor control circuitry toward ground-state pluripotency in human[J]. Cell, 2015, 162(2): 452-453. |
15 | THEUNISSEN T W, POWELL B E, WANG H Y, et al. Systematic identification of culture conditions for induction and maintenance of naive human pluripotency[J]. Cell Stem Cell, 2014, 15(4): 524-526. |
16 | GUO G, VON MEYENN F, ROSTOVSKAYA M, et al. Epigenetic resetting of human pluripotency[J]. Development, 2017, 144(15): 2748-2763. |
17 | MAZID M A, WARD C, LUO Z W, et al. Rolling back human pluripotent stem cells to an eight-cell embryo-like stage[J]. Nature, 2022, 605(7909): 315-324. |
18 | BAYERL J, AYYASH M, SHANI T, et al. Principles of signaling pathway modulation for enhancing human naive pluripotency induction[J]. Cell Stem Cell, 2021, 28(9): 1549-1565.e12. |
19 | AI Z Y, NIU B H, DUAN K, et al. Modulation of Wnt and Activin/Nodal supports efficient derivation, cloning and suspension expansion of human pluripotent stem cells[J]. Biomaterials, 2020, 249: 120015. |
20 | YANG Y, LIU B, XU J, et al. Derivation of pluripotent stem cells with in vivo embryonic and extraembryonic potency[J]. Cell, 2017, 169(2): 243-257.e25. |
21 | YU X, LIANG S Q, CHEN M Q, et al. Recapitulating early human development with 8C-like cells[J]. Cell Reports, 2022, 39(12): 110994. |
22 | OKAE H, TOH H, SATO T, et al. Derivation of human trophoblast stem cells[J]. Cell Stem Cell, 2018, 22(1): 50-63.e6. |
23 | BAI T, PENG C Y, ANEAS I, et al. Establishment of human induced trophoblast stem-like cells from term villous cytotrophoblasts[J]. Stem Cell Research, 2021, 56: 102507. |
24 | LIU X D, OUYANG J F, ROSSELLO F J, et al. Reprogramming roadmap reveals route to human induced trophoblast stem cells[J]. Nature, 2020, 586(7827): 101-107. |
25 | IO S, KABATA M, IEMURA Y, et al. Capturing human trophoblast development with naive pluripotent stem cells in vitro [J]. Cell Stem Cell, 2021, 28(6): 1023-1039.e13. |
26 | GUO G, STIRPARO G G, STRAWBRIDGE S E, et al. Human naive epiblast cells possess unrestricted lineage potential[J]. Cell Stem Cell, 2021, 28(6): 1040-1056.e6. |
27 | LINNEBERG-AGERHOLM M, WONG Y F, ROMERO HERRERA J A, et al. Naïve human pluripotent stem cells respond to Wnt, Nodal and LIF signalling to produce expandable naïve extra-embryonic endoderm[J]. Development, 2019, 146(24): dev180620. |
28 | MACKINLAY K M, WEATHERBEE B A, SOUZA ROSA V, et al. An in vitro stem cell model of human epiblast and yolk sac interaction[J]. eLife, 2021, 10: e63930. |
29 | SÉGUIN C A, DRAPER J S, NAGY A, et al. Establishment of endoderm progenitors by SOX transcription factor expression in human embryonic stem cells[J]. Cell Stem Cell, 2008, 3(2): 182-195. |
30 | GUPTA A, LUTOLF M P, HUGHES A J, et al. Bioengineering in vitro models of embryonic development[J]. Stem Cell Reports, 2021, 16(5): 1104-1116. |
31 | XIANG L F, YIN Y, ZHENG Y, et al. A developmental landscape of 3D-cultured human pre-gastrulation embryos[J]. Nature, 2020, 577(7791): 537-542. |
32 | ZHOU F, WANG R, YUAN P, et al. Reconstituting the transcriptome and DNA methylome landscapes of human implantation[J]. Nature, 2019, 572(7771): 660-664. |
33 | BLAKELEY P, FOGARTY N M, DEL VALLE I, et al. Defining the three cell lineages of the human blastocyst by single-cell RNA-seq[J]. Development, 2015, 142(20): 3613. |
34 | MOLÈ M A, COORENS T H H, SHAHBAZI M N, et al. A single cell characterisation of human embryogenesis identifies pluripotency transitions and putative anterior hypoblast centre[J]. Nature Communications, 2021, 12(1): 3679. |
35 | TYSER R C V, MAHAMMADOV E, NAKANOH S, et al. Single-cell transcriptomic characterization of a gastrulating human embryo[J]. Nature, 2021, 600(7888): 285-289. |
36 | BRAUDE P, BOLTON V, MOORE S. Human gene expression first occurs between the four- and eight-cell stages of preimplantation development[J]. Nature, 1988, 332(6163): 459-461. |
37 | SCHULZ K N, HARRISON M M. Mechanisms regulating zygotic genome activation[J]. Nature Reviews Genetics, 2019, 20(4): 221-234. |
38 | WILKINSON A L, ZORZAN I, RUGG-GUNN P J. Epigenetic regulation of early human embryo development[J]. Cell Stem Cell, 2023, 30(12): 1569-1584. |
39 | YAN L Y, YANG M Y, GUO H S, et al. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells[J]. Nature Structural & Molecular Biology, 2013, 20(9): 1131-1139. |
40 | PETROPOULOS S, EDSGÄRD D, REINIUS B, et al. Single-cell RNA-seq reveals lineage and X chromosome dynamics in human preimplantation embryos[J]. Cell, 2016, 167(1):285. |
41 | MEISTERMANN D, BRUNEAU A, LOUBERSAC S, et al. Integrated pseudotime analysis of human pre-implantation embryo single-cell transcriptomes reveals the dynamics of lineage specification[J]. Cell Stem Cell, 2021, 28(9): 1625-1640.e6. |
42 | ZENG B, LIU Z Y, LU Y F, et al. The single-cell and spatial transcriptional landscape of human gastrulation and early brain development[J]. Cell Stem Cell, 2023, 30(6): 851-866.e7. |
43 | XU Y C, ZHANG T J, ZHOU Q, et al. A single-cell transcriptome atlas profiles early organogenesis in human embryos[J]. Nature Cell Biology, 2023, 25(4): 604-615. |
44 | GOH I, BOTTING R A, ROSE A, et al. Yolk sac cell atlas reveals multiorgan functions during human early development[J]. Science, 2023, 381(6659): eadd7564. |
45 | YAO H, SUN N Q, SHAO H L, et al. Ex utero embryogenesis of non-human primate embryos and beyond[J]. Current Opinion in Genetics & Development, 2023, 82: 102093. |
46 | NAKAMURA T, FUJIWARA K, SAITOU M, et al. Non-human primates as a model for human development[J]. Stem Cell Reports, 2021, 16(5): 1093-1103. |
47 | ZHAI J L, GUO J, WAN H F, et al. Primate gastrulation and early organogenesis at single-cell resolution[J]. Nature, 2022, 612(7941): 732-738. |
48 | SHAHBAZI M N, JEDRUSIK A, VUORISTO S, et al. Self-organization of the human embryo in the absence of maternal tissues[J]. Nature Cell Biology, 2016, 18(6): 700-708. |
49 | DEGLINCERTI A, CROFT G F, PIETILA L N, et al. Self-organization of the in vitro attached human embryo[J]. Nature, 2016, 533(7602): 251-254. |
50 | LOVELL-BADGE R, ANTHONY E, BARKER R A, et al. ISSCR guidelines for stem cell research and clinical translation: the 2021 update[J]. Stem Cell Reports, 2021, 16(6): 1398-1408. |
51 | MA H X, ZHAI J L, WAN H F, et al. In vitro culture of cynomolgus monkey embryos beyond early gastrulation[J]. Science, 2019, 366(6467): eaax7890. |
52 | NIU Y Y, SUN N Q, LI C, et al. Dissecting primate early post-implantation development using long-term in vitro embryo culture[J]. Science, 2019, 366(6467): eaaw5754. |
53 | GONG Y D, BAI B, SUN N Q, et al. Ex utero monkey embryogenesis from blastocyst to early organogenesis[J]. Cell, 2023, 186(10): 2092-2110.e23. |
54 | ZHAI J L, XU Y H, WAN H F, et al. Neurulation of the cynomolgus monkey embryo achieved from 3D blastocyst culture[J]. Cell, 2023, 186(10): 2078-2091.e18. |
55 | CLARK A T, BRIVANLOU A, FU J P, et al. Human embryo research, stem cell-derived embryo models and in vitro gametogenesis: considerations leading to the revised ISSCR guidelines[J]. Stem Cell Reports, 2021, 16(6): 1416-1424. |
56 | ITSKOVITZ-ELDOR J, SCHULDINER M, KARSENTI D, et al. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers[J]. Molecular Medicine, 2000, 6(2): 88-95. |
57 | MURRY C E, KELLER G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development[J]. Cell, 2008, 132(4): 661-680. |
58 | AI Z Y, YIN Y, NIU B H, et al. Deconstructing human peri-implantation embryogenesis based on embryos and embryoids[J]. Biology of Reproduction, 2022, 107(1): 212-225. |
59 | TURNER D A, GIRGIN M, ALONSO-CRISOSTOMO L, et al. Anteroposterior polarity and elongation in the absence of extra-embryonic tissues and of spatially localised signalling in gastruloids: mammalian embryonic organoids[J]. Development, 2017, 144(21): 3894-3906. |
60 | VAN DEN BRINK S C, BAILLIE-JOHNSON P, BALAYO T, et al. Symmetry breaking, germ layer specification and axial organisation in aggregates of mouse embryonic stem cells[J]. Development, 2014, 141(22): 4231-4242. |
61 | BECCARI L, MORIS N, GIRGIN M, et al. Multi-axial self-organization properties of mouse embryonic stem cells into gastruloids[J]. Nature, 2018, 562(7726): 272-276. |
62 | GIRGIN M U, BROGUIERE N, MATTOLINI L, et al. Gastruloids generated without exogenous Wnt activation develop anterior neural tissues[J]. Stem Cell Reports, 2021, 16(5): 1143-1155. |
63 | VEENVLIET J V, BOLONDI A, KRETZMER H, et al. Mouse embryonic stem cells self-organize into trunk-like structures with neural tube and somites[J]. Science, 2020, 370(6522): eaba4937. |
64 | ROSSI G, BROGUIERE N, MIYAMOTO M, et al. Capturing cardiogenesis in gastruloids[J]. Cell Stem Cell, 2021, 28(2): 230-240.e6. |
65 | MORIS N, ANLAS K, VAN DEN BRINK S C, et al. An in vitro model of early anteroposterior organization during human development[J]. Nature, 2020, 582(7812): 410-415. |
66 | YAMANAKA Y, HAMIDI S, YOSHIOKA-KOBAYASHI K, et al. Reconstituting human somitogenesis in vitro [J]. Nature, 2023, 614(7948): 509-520. |
67 | MIAO Y C, DJEFFAL Y, DE SIMONE A, et al. Reconstruction and deconstruction of human somitogenesis in vitro [J]. Nature, 2023, 614(7948): 500-508. |
68 | LIBBY A R G, JOY D A, ELDER N H, et al. Axial elongation of caudalized human organoids mimics aspects of neural tube development[J]. Development, 2021, 148(12): dev198275. |
69 | OLMSTED Z T, PALUH J L. Co-development of central and peripheral neurons with trunk mesendoderm in human elongating multi-lineage organized gastruloids[J]. Nature Communications, 2021, 12(1): 3020. |
70 | GRIBAUDO S, ROBERT R, VAN SAMBEEK B, et al. Self-organizing models of human trunk organogenesis recapitulate spinal cord and spine co-morphogenesis[J/OL]. Nature Biotechnology[2023-12-01]. . |
71 | WARMFLASH A, SORRE B, ETOC F, et al. A method to recapitulate early embryonic spatial patterning in human embryonic stem cells[J]. Nature Methods, 2014, 11(8): 847-854. |
72 | BRITTON G, HEEMSKERK I, HODGE R, et al. A novel self-organizing embryonic stem cell system reveals signaling logic underlying the patterning of human ectoderm[J]. Development, 2019, 146(20): dev179093. |
73 | MARTYN I, KANNO T Y, RUZO A, et al. Self-organization of a human organizer by combined Wnt and Nodal signalling[J]. Nature, 2018, 558(7708): 132-135. |
74 | HAREMAKI T, METZGER J J, RITO T, et al. Self-organizing neuruloids model developmental aspects of Huntington’s disease in the ectodermal compartment[J]. Nature Biotechnology, 2019, 37(10): 1198-1208. |
75 | XUE X F, SUN Y B, RESTO-IRIZARRY A M, et al. Mechanics-guided embryonic patterning of neuroectoderm tissue from human pluripotent stem cells[J]. Nature Materials, 2018, 17(7): 633-641. |
76 | MUNCIE J M, AYAD N M E, LAKINS J N, et al. Mechanical tension promotes formation of gastrulation-like nodes and patterns mesoderm specification in human embryonic stem cells[J]. Developmental Cell, 2020, 55(6): 679-694.e11. |
77 | CHHABRA S, LIU L Z, GOH R, et al. Dissecting the dynamics of signaling events in the BMP, WNT, and NODAL cascade during self-organized fate patterning in human gastruloids[J]. PLoS Biology, 2019, 17(10): e3000498. |
78 | SIMUNOVIC M, METZGER J J, ETOC F, et al. A 3D model of a human epiblast reveals BMP4-driven symmetry breaking[J]. Nature Cell Biology, 2019, 21(7): 900-910. |
79 | SHAO Y, TANIGUCHI K, GURDZIEL K, et al. Self-organized amniogenesis by human pluripotent stem cells in a biomimetic implantation-like niche[J]. Nature Materials, 2017, 16(4): 419-425. |
80 | SHAO Y, TANIGUCHI K, TOWNSHEND R F, et al. A pluripotent stem cell-based model for post-implantation human amniotic sac development[J]. Nature Communications, 2017, 8(1): 208. |
81 | ZHENG Y, XUE X F, SHAO Y, et al. Controlled modelling of human epiblast and amnion development using stem cells[J]. Nature, 2019, 573(7774): 421-425. |
82 | AMADEI G, LAU K Y C, JONGHE J D, et al. Inducible stem-cell-derived embryos capture mouse morphogenetic events in vitro [J]. Developmental Cell, 2021, 56(3): 366-382.e9. |
83 | RIVRON N C, FRIAS-ALDEGUER J, VRIJ E J, et al. Blastocyst-like structures generated solely from stem cells[J]. Nature, 2018, 557(7703): 106-111. |
84 | HARRISON S E, SOZEN B, CHRISTODOULOU N, et al. Assembly of embryonic and extraembryonic stem cells to mimic embryogenesis in vitro [J]. Science, 2017, 356(6334): eaal1810. |
85 | ZHANG S P, CHEN T Z, CHEN N X, et al. Implantation initiation of self-assembled embryo-like structures generated using three types of mouse blastocyst-derived stem cells[J]. Nature Communications, 2019, 10(1): 496. |
86 | SOZEN B, AMADEI G, COX A, et al. Self-assembly of embryonic and two extra-embryonic stem cell types into gastrulating embryo-like structures[J]. Nature Cell Biology, 2018, 20(8): 979-989. |
87 | SOZEN B, COX A L, JONGHE J D, et al. Self-organization of mouse stem cells into an extended potential blastoid[J]. Developmental Cell, 2019, 51(6): 698-712.e8. |
88 | LI R H, ZHONG C Q, YU Y, et al. Generation of blastocyst-like structures from mouse embryonic and adult cell cultures[J]. Cell, 2019, 179(3): 687-702.e18. |
89 | YU L Q, WEI Y L, DUAN J L, et al. Blastocyst-like structures generated from human pluripotent stem cells[J]. Nature, 2021, 591(7851): 620-626. |
90 | LIU X D, TAN J P, SCHRÖDER J, et al. Modelling human blastocysts by reprogramming fibroblasts into iBlastoids[J]. Nature, 2021, 591(7851): 627-632. |
91 | KRUITHOF-DE JULIO M, ALVAREZ M J, GALLI A, et al. Regulation of extra-embryonic endoderm stem cell differentiation by Nodal and Cripto signaling[J]. Development, 2011, 138(18): 3885-3895. |
92 | NIWA H, TOYOOKA Y, SHIMOSATO D, et al. Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation[J]. Cell, 2005, 123(5): 917-929. |
93 | YANAGIDA A, SPINDLOW D, NICHOLS J, et al. Naive stem cell blastocyst model captures human embryo lineage segregation[J]. Cell Stem Cell, 2021, 28(6): 1016-1022.e4. |
94 | KAGAWA H, JAVALI A, KHOEI H H, et al. Human blastoids model blastocyst development and implantation[J]. Nature, 2022, 601(7894): 600-605. |
95 | FAN Y, MIN Z Y, ALSOLAMI S, et al. Generation of human blastocyst-like structures from pluripotent stem cells[J]. Cell Discovery, 2021, 7(1): 81. |
96 | SOZEN B, JORGENSEN V, WEATHERBEE B A T, et al. Reconstructing aspects of human embryogenesis with pluripotent stem cells[J]. Nature Communications, 2021, 12(1): 5550. |
97 | TU Z F, BI Y, ZHU X H, et al. Modeling human pregastrulation development by 3D culture of blastoids generated from primed-to-naïve transitioning intermediates[J]. Protein & Cell, 2023, 14(5): 337-349. |
98 | YU L Q, LOGSDON D, PINZON-ARTEAGA C A, et al. Large-scale production of human blastoids amenable to modeling blastocyst development and maternal-fetal cross talk[J]. Cell Stem Cell, 2023, 30(9): 1246-1261.e9. |
99 | KARVAS R M, ZEMKE J E, ALI S S, et al. 3D-cultured blastoids model human embryogenesis from pre-implantation to early gastrulation stages[J]. Cell Stem Cell, 2023, 30(9): 1148-1165.e7. |
100 | LI J, ZHU Q Y, CAO J, et al. Cynomolgus monkey embryo model captures gastrulation and early pregnancy[J]. Cell Stem Cell, 2023, 30(4): 362-377.e7. |
101 | LI R H, ZHONG C Q, IZPISUA BELMONTE J C. Time matters: human blastoids resemble the sequence of blastocyst development[J]. Cell, 2022, 185(4): 581-584. |
102 | SHAHBAZI M N, WANG T R, TAO X, et al. Developmental potential of aneuploid human embryos cultured beyond implantation[J]. Nature Communications, 2020, 11(1): 3987. |
103 | GIULITTI S, PELLEGRINI M, ZORZAN I, et al. Direct generation of human naive induced pluripotent stem cells from somatic cells in microfluidics[J]. Nature Cell Biology, 2019, 21(2): 275-286. |
104 | PEDROZA M, GASSALOGLU S I, DIAS N, et al. Self-patterning of human stem cells into post-implantation lineages[J]. Nature, 2023, 622(7983): 574-583. |
105 | LIU L Z, OURA S, MARKHAM Z, et al. Modeling post-implantation stages of human development into early organogenesis with stem-cell-derived peri-gastruloids[J]. Cell, 2023, 186(18): 3776-3792.e16. |
106 | HISLOP J, SONG Q, KESHAVARZ F K, et al. Modelling post-implantation human development to yolk sac blood emergence[J]. Nature, 2024, 626(7998): 367-376. |
107 | OKUBO T, RIVRON N, KABATA M, et al. Hypoblast from human pluripotent stem cells regulates epiblast development[J]. Nature, 2024, 626(7998): 357-366. |
108 | KRENDL C, SHAPOSHNIKOV D, RISHKO V, et al. GATA2/3-TFAP2A/C transcription factor network couples human pluripotent stem cell differentiation to trophectoderm with repression of pluripotency[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(45): E9579-E9588. |
109 | WAMAITHA S E, DEL VALLE I, CHO L T, et al. Gata6 potently initiates reprograming of pluripotent and differentiated cells to extraembryonic endoderm stem cells[J]. Genes & Development, 2015, 29(12): 1239-1255. |
110 | WEATHERBEE B A T, GANTNER C W, IWAMOTO-STOHL L K, et al. Pluripotent stem cell-derived model of the post-implantation human embryo[J]. Nature, 2023, 622(7983): 584-593. |
111 | AI Z Y, NIU B H, YIN Y, et al. Dissecting peri-implantation development using cultured human embryos and embryo-like assembloids[J]. Cell Research, 2023, 33(9): 661-678. |
112 | OLDAK B, WILDSCHUTZ E, BONDARENKO V, et al. Complete human day 14 post-implantation embryo models from naive ES cells[J]. Nature, 2023, 622(7983): 562-573. |
113 | TURCO M Y, GARDNER L, KAY R G, et al. Trophoblast organoids as a model for maternal-fetal interactions during human placentation[J]. Nature, 2018, 564(7735): 263-267. |
114 | MANTZIOU V, BAILLIE-BENSON P, JAKLIN M, et al. In vitro teratogenicity testing using a 3D, embryo-like gastruloid system[J]. Reproductive Toxicology, 2021, 105: 72-90. |
115 | BLASIMME A, SUGARMAN J. Human stem cell-derived embryo models: toward ethically appropriate regulations and policies[J]. Cell Stem Cell, 2023, 30(8): 1008-1012. |
116 | LANDECKER H L, CLARK A T. Human embryo models made from pluripotent stem cells are not synthetic; they aren’t embryos, either[J]. Cell Stem Cell, 2023, 30(10): 1290-1293. |
117 | MORIS N. Stem cells used to model a two-week-old human embryo[J]. Nature, 2023, 622(7983): 469-470. |
118 | ROSSANT J, FU J P. Why researchers should use human embryo models with caution[J]. Nature, 2023, 622(7983): 454-456. |
119 | RIVRON N C, MARTINEZ-ARIAS A, SERMON K, et al. Changing the public perception of human embryology[J]. Nature Cell Biology, 2023, 25(12): 1717-1719. |
120 | AGUILERA-CASTREJON A, OLDAK B, SHANI T, et al. Ex utero mouse embryogenesis from pre-gastrulation to late organogenesis[J]. Nature, 2021, 593(7857): 119-124. |
[1] | Rongkai CAO, Jianhua QIN, Yaqing WANG. Advances in placenta-on-a-chip for reproductive medicine research [J]. Synthetic Biology Journal, 2024, 5(4): 831-850. |
[2] | Bingyu CAI, Xiangtian TAN, Wei LI. Advances in synthetic biology for engineering stem cell [J]. Synthetic Biology Journal, 2024, 5(4): 782-794. |
[3] | Yizhao HAN, Jia GUO, Yue SHAO. Stem cell-based synthetic development: cellular components, embryonic models, and engineering approaches [J]. Synthetic Biology Journal, 2024, 5(4): 734-753. |
[4] | Shikai LI, Dong′ao ZENG, Fangzhou DU, Jingzhong ZHANG, Shuang YU. The construction approaches and biomaterials for vascularized organoids [J]. Synthetic Biology Journal, 2024, 5(4): 851-866. |
[5] | Zongyong AI, Chengting ZHANG, Baohua NIU, Yu YIN, Jie YANG, Tianqing LI. Early human embryo development and stem cells [J]. Synthetic Biology Journal, 2024, 5(4): 700-718. |
[6] | Liyu ZHU, Yulong ZHAO, Wei LI, Libin WANG. Progress in mammalian chromosome engineering [J]. Synthetic Biology Journal, 2023, 4(2): 394-406. |
[7] | Can ZHANG, Liyang SHI, Jianwu DAI. Cultured meat from biomaterials: challenges and prospects [J]. Synthetic Biology Journal, 2022, 3(4): 676-689. |
[8] | Chengzhi SONG, Yang SUN, Yi CAO. Effects of mechanical signals on stem cell fate determination [J]. Synthetic Biology Journal, 2022, 3(4): 781-794. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||