Synthetic Biology Journal ›› 2024, Vol. 5 ›› Issue (3): 658-671.DOI: 10.12211/2096-8280.2023-110
• Invited Review • Previous Articles Next Articles
Zhen HUI1,2, Xiaoyu TANG2
Received:
2023-12-26
Revised:
2024-03-17
Online:
2024-07-12
Published:
2024-06-30
Contact:
Xiaoyu TANG
惠真1,2, 唐啸宇2
通讯作者:
唐啸宇
作者简介:
基金资助:
CLC Number:
Zhen HUI, Xiaoyu TANG. Applications of the CRISPR/Cas9 editing system in the study of microbial natural products[J]. Synthetic Biology Journal, 2024, 5(3): 658-671.
惠真, 唐啸宇. CRISPR/Cas9编辑系统在微生物天然产物研究中的应用[J]. 合成生物学, 2024, 5(3): 658-671.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2023-110
策略 | 生物合成基因簇 | 功能 | 生物合成基因簇来源/宿主 | 参考 文献 | |
---|---|---|---|---|---|
基因簇 克隆 | CATCH | Bacillaene | 基因簇线性化 | Bacillus subtilis str. 168 | [ |
Jadomycin | Streptomyces venezuelae ISP52030 | ||||
Chlortetracycline | S. aureofaciens ATCC 10762 | ||||
Pentaminomycins A-H | S. cacaoi CA-170360 | [ | |||
BH-18257 A-C | |||||
ICE & λ packaging system | Tu3010 | S. thiolactonus NRRL 15439 | [ | ||
Sisomicin | Micromonospora inyonensis DSM 46123 | ||||
CAPTURE | 43 uncharacterized BGCs | Streptomyces,Bacillus | [ | ||
CAT-FISHING | Marinolactam A | Micromonospora sp. 181 | [ | ||
基因簇 遗传编辑 | ICE | Tetronate RK-682 | 遗传突变 | Streptomyces sp. Strain 88-682 | [ |
Holomycin | S. clavuligerus TK24 | ||||
pCRISPomyces | Undecylprodigiosin, Actinorhodin | S. lividans 66 | [ | ||
Phosphinothricin tripeptide | S. viridochromogenes DSM 40736 | ||||
Macrolactam, Lanthipeptide | S. albus J1074 | ||||
CRISPR/Cas9 | Actinorhodin, Undecylprodigiosin | S. coelicolor M14 | [ | ||
CRISPR/Cas9-LigD | Actinorhodin | S. coelicolor A3(2) | [ | ||
CRISPRi | |||||
CRISPR/ Cas9-CodA(sm) | Actinorhodin | S. coelicolor M145 | [ | ||
CRISPR/Cas9 | Violacein | E. coli HME68 | [ | ||
Thalassospiramides | Pseudomonas putida EM383 | ||||
CBE/ABE | Undecylprodigiosin, Actinorhodin | S. coelicolor M145 | [ | ||
Avermectin | S. avermitilis MA4680 | ||||
产物 衍生化 | CRISPR/Cas9 & Gibson Assembly | Rapamycin | 组装模块编辑 | S. avermitilis SUKA | [ |
CRISPR/Cas9 | Enduracidin | Streptomyces fungicidicus ATCC 21013 | [ | ||
产物代谢调节 | CRISPR/Cas9 & TAR | Actinorhodin | 启动子工程 | S. albus J1074 | [ |
MSGE | Pristinamyicn Ⅱ, Chloramphenicol, YM-216391 | 多拷贝 | S. pristinaespiralis HCCB10218 S. coelicolor M145 | [ | |
CRISPR/Cas9 | Amorphadiene | 启动子工程,遗传突变, 多拷贝 | Bacillus subtilis | [ | |
CCTL | Actinorhodin | 启动子工程 | Streptomyces sp. 4F | [ | |
基因簇 激活 | CRISPR/Cas9 | Alteramide A, Macrolactam 2, FR-900098 | 启动子工程 | S. roseosporus NRRL15998 | [ |
mCRISTAR | Tetarimycin, Lazarimide, AB1210 | S. albus | [ | ||
mpCRISTAR | Acinorhodin | S. cerevisiae BY4727 | [ | ||
miCASTAR | Atolypene | Amycolatopsis tolypomycina NRRL B-24205 | [ | ||
CRISPR/Cas9-LigD | Amicetin | 遗传突变 | Streptomyces WAC6237 | [ | |
Thiolactomycin, 5-chloro-3-formylindole | Streptomyces WAC5374 | ||||
Phenanthroviridin aglycone | Streptomyces WAC8241 | ||||
CRISPRi/CRISPRa | Jadomycinb | 转录调控 | Streptomyces venezuelae | [ |
Table 1 CRISPR/Cas-assisted biosynthetic gene cluster editing strategies
策略 | 生物合成基因簇 | 功能 | 生物合成基因簇来源/宿主 | 参考 文献 | |
---|---|---|---|---|---|
基因簇 克隆 | CATCH | Bacillaene | 基因簇线性化 | Bacillus subtilis str. 168 | [ |
Jadomycin | Streptomyces venezuelae ISP52030 | ||||
Chlortetracycline | S. aureofaciens ATCC 10762 | ||||
Pentaminomycins A-H | S. cacaoi CA-170360 | [ | |||
BH-18257 A-C | |||||
ICE & λ packaging system | Tu3010 | S. thiolactonus NRRL 15439 | [ | ||
Sisomicin | Micromonospora inyonensis DSM 46123 | ||||
CAPTURE | 43 uncharacterized BGCs | Streptomyces,Bacillus | [ | ||
CAT-FISHING | Marinolactam A | Micromonospora sp. 181 | [ | ||
基因簇 遗传编辑 | ICE | Tetronate RK-682 | 遗传突变 | Streptomyces sp. Strain 88-682 | [ |
Holomycin | S. clavuligerus TK24 | ||||
pCRISPomyces | Undecylprodigiosin, Actinorhodin | S. lividans 66 | [ | ||
Phosphinothricin tripeptide | S. viridochromogenes DSM 40736 | ||||
Macrolactam, Lanthipeptide | S. albus J1074 | ||||
CRISPR/Cas9 | Actinorhodin, Undecylprodigiosin | S. coelicolor M14 | [ | ||
CRISPR/Cas9-LigD | Actinorhodin | S. coelicolor A3(2) | [ | ||
CRISPRi | |||||
CRISPR/ Cas9-CodA(sm) | Actinorhodin | S. coelicolor M145 | [ | ||
CRISPR/Cas9 | Violacein | E. coli HME68 | [ | ||
Thalassospiramides | Pseudomonas putida EM383 | ||||
CBE/ABE | Undecylprodigiosin, Actinorhodin | S. coelicolor M145 | [ | ||
Avermectin | S. avermitilis MA4680 | ||||
产物 衍生化 | CRISPR/Cas9 & Gibson Assembly | Rapamycin | 组装模块编辑 | S. avermitilis SUKA | [ |
CRISPR/Cas9 | Enduracidin | Streptomyces fungicidicus ATCC 21013 | [ | ||
产物代谢调节 | CRISPR/Cas9 & TAR | Actinorhodin | 启动子工程 | S. albus J1074 | [ |
MSGE | Pristinamyicn Ⅱ, Chloramphenicol, YM-216391 | 多拷贝 | S. pristinaespiralis HCCB10218 S. coelicolor M145 | [ | |
CRISPR/Cas9 | Amorphadiene | 启动子工程,遗传突变, 多拷贝 | Bacillus subtilis | [ | |
CCTL | Actinorhodin | 启动子工程 | Streptomyces sp. 4F | [ | |
基因簇 激活 | CRISPR/Cas9 | Alteramide A, Macrolactam 2, FR-900098 | 启动子工程 | S. roseosporus NRRL15998 | [ |
mCRISTAR | Tetarimycin, Lazarimide, AB1210 | S. albus | [ | ||
mpCRISTAR | Acinorhodin | S. cerevisiae BY4727 | [ | ||
miCASTAR | Atolypene | Amycolatopsis tolypomycina NRRL B-24205 | [ | ||
CRISPR/Cas9-LigD | Amicetin | 遗传突变 | Streptomyces WAC6237 | [ | |
Thiolactomycin, 5-chloro-3-formylindole | Streptomyces WAC5374 | ||||
Phenanthroviridin aglycone | Streptomyces WAC8241 | ||||
CRISPRi/CRISPRa | Jadomycinb | 转录调控 | Streptomyces venezuelae | [ |
1 | BAKER D D, CHU M, OZA U, et al. The value of natural products to future pharmaceutical discovery[J]. Natural Product Reports, 2007, 24(6): 1225-1244. |
2 | NEWMAN D J, CRAGG G M. Natural products as sources of new drugs from 1981 to 2014[J]. Journal of Natural Products, 2016, 79(3): 629-661. |
3 | MOLONEY M G. Natural products as a source for novel antibiotics[J]. Trends in Pharmacological Sciences, 2016, 37(8): 689-701. |
4 | KIM H U, BLIN K, LEE S Y, et al. Recent development of computational resources for new antibiotics discovery[J]. Current Opinion in Microbiology, 2017, 39: 113-120. |
5 | TRACANNA V, JONG A D, MEDEMA M H, et al. Mining prokaryotes for antimicrobial compounds: from diversity to function[J]. FEMS Microbiology Reviews, 2017, 41(3): 417-429. |
6 | JIANG F G, DOUDNA J A. CRISPR-Cas9 structures and mechanisms[J]. Annual Review of Biophysics, 2017, 46: 505-529. |
7 | BARRANGOU R, FREMAUX C, DEVEAU H, et al. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007, 315(5819): 1709-1712. |
8 | MOJICA F J M, DÍEZ-VILLASEÑOR C, GARCÍA-MARTÍNEZ J, et al. Short motif sequences determine the targets of the prokaryotic CRISPR defence system[J]. Microbiology, 2009, 155(Pt 3): 733-740. |
9 | SAPRANAUSKAS R, GASIUNAS G, FREMAUX C, et al. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli [J]. Nucleic Acids Research, 2011, 39(21): 9275-9282. |
10 | DELTCHEVA E, CHYLINSKI K, SHARMA C M, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase Ⅲ[J]. Nature, 2011, 471(7340): 602-607. |
11 | STERNBERG S H, REDDING S, JINEK M, et al. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9[J]. Nature, 2014, 507(7490): 62-67. |
12 | JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816-821. |
13 | GASIUNAS G, BARRANGOU R, HORVATH P, et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(39): E2579-E2586. |
14 | JIANG W Y, BIKARD D, COX D, et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems[J]. Nature Biotechnology, 2013, 31(3): 233-239. |
15 | THOMASON L C, COSTANTINO N, LI X T, et al. Recombineering: genetic engineering in Escherichia coli using homologous recombination[J]. Current Protocols, 2023, 3(2): e656. |
16 | QI L S, LARSON M H, GILBERT L A, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression[J]. Cell, 2013(5): 1173-1183. |
17 | BIKARD D, JIANG W Y, SAMAI P, et al. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system[J]. Nucleic Acids Research, 2013, 41(15): 7429-7437. |
18 | DOVE S L, HOCHSCHILD A. Conversion of the omega subunit of Escherichia coli RNA polymerase into a transcriptional activator or an activation target[J]. Genes & Development, 1998, 12(5): 745-754. |
19 | HILTON I B, GERSBACH C A. Enabling functional genomics with genome engineering[J]. Genome Research, 2015, 25(10): 1442-1455. |
20 | KOMOR A C, KIM Y B, PACKER M S, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603): 420-424. |
21 | GAUDELLI N M, KOMOR A C, REES H A, et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage[J]. Nature, 2017, 551(7681): 464-471. |
22 | LIU H B, JIANG H, HALTLI B, et al. Rapid cloning and heterologous expression of the meridamycin biosynthetic gene cluster using a versatile Escherichia coli-Streptomyces artificial chromosome vector, pSBAC[J]. Journal of Natural Products, 2009, 72(3): 389-395. |
23 | NAH H J, WOO M W, CHOI S S, et al. Precise cloning and tandem integration of large polyketide biosynthetic gene cluster using Streptomyces artificial chromosome system[J]. Microbial Cell Factories, 2015, 14: 140. |
24 | KIM J H, FENG Z Y, BAUER J D, et al. Cloning large natural product gene clusters from the environment: piecing environmental DNA gene clusters back together with TAR[J]. Biopolymers, 2010, 93(9): 833-844. |
25 | KOUPRINA N, LARIONOV V. Transformation-associated recombination (TAR) cloning for genomics studies and synthetic biology[J]. Chromosoma, 2016, 125(4): 621-632. |
26 | BIAN X Y, HUANG F, STEWART F A, et al. Direct cloning, genetic engineering, and heterologous expression of the syringolin biosynthetic gene cluster in E. coli through Red/ET recombineering[J]. Chembiochem, 2012, 13(13): 1946-1952. |
27 | FU J, BIAN X Y, HU S B, et al. Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting[J]. Nature Biotechnology, 2012, 30(5): 440-446. |
28 | MURPHY K C. Phage recombinases and their applications[J]. Advances in Virus Research, 2012, 83: 367-414. |
29 | JIANG W J, ZHAO X J, GABRIELI T, et al. Cas9-Assisted targeting of chromosome segments CATCH enables one-step targeted cloning of large gene clusters[J]. Nature Communications, 2015, 6: 8101. |
30 | ROMÁN-HURTADO F, SÁNCHEZ-HIDALGO M, MARTÍN J, et al. One pathway, two cyclic non-ribosomal pentapeptides: heterologous expression of BE-18257 antibiotics and pentaminomycins from Streptomyces cacaoi CA-170360[J]. Microorganisms, 2021, 9(1): 135. |
31 | TAO W X, CHEN L, ZHAO C H, et al. In vitro packaging mediated one-step targeted cloning of natural product pathway[J]. ACS Synthetic Biology, 2019, 8(9): 1991-1997. |
32 | ENGHIAD B, HUANG C S, GUO F, et al. Cas12a-assisted precise targeted cloning using in vivo Cre-lox recombination[J]. Nature Communications, 2021, 12(1): 1171. |
33 | LIANG M D, LIU L S, XU F, et al. Activating cryptic biosynthetic gene cluster through a CRISPR-Cas12a-mediated direct cloning approach[J]. Nucleic Acids Research, 2022, 50(6): 3581-3592. |
34 | LIU Y K, TAO W X, WEN S S, et al. In vitro CRISPR/Cas9 system for efficient targeted DNA editing[J]. mBio, 2015, 6(6): e01714-15. |
35 | COBB R E, WANG Y J, ZHAO H M. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system[J]. ACS Synthetic Biology, 2015, 4(6): 723-728. |
36 | HUANG H, ZHENG G S, JIANG W H, et al. One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces [J]. Acta Biochimica et Biophysica Sinica, 2015, 47(4): 231-243. |
37 | TONG Y J, CHARUSANTI P, ZHANG L X, et al. CRISPR-Cas9 based engineering of actinomycetal genomes[J]. ACS Synthetic Biology, 2015, 4(9): 1020-1029. |
38 | ZENG H, WEN S S, XU W, et al. Highly efficient editing of the actinorhodin polyketide chain length factor gene in Streptomyces coelicolor M145 using CRISPR/Cas9-CodA(sm) combined system[J]. Applied Microbiology and Biotechnology, 2015, 99(24): 10575-10585. |
39 | ZHANG J J, MOORE B S. Site-directed mutagenesis of large biosynthetic gene clusters via oligonucleotide recombineering and CRISPR/Cas9 targeting[J]. ACS Synthetic Biology, 2020, 9(7): 1917-1922. |
40 | ZHONG Z Y, GUO J H, DENG L, et al. Base editing in Streptomyces with Cas9-deaminase fusions[EB/OL]. bioRxiv. (2019-05-07)[2023-11-01]. . |
41 | KUDO K, HASHIMOTO T, HASHIMOTO J, et al. In vitro Cas9-assisted editing of modular polyketide synthase genes to produce desired natural product derivatives[J]. Nature Communications, 2020, 11(1): 4022. |
42 | THONG W L, ZHANG Y X, ZHUO Y, et al. Gene editing enables rapid engineering of complex antibiotic assembly lines[J]. Nature Communications, 2021, 12(1): 6872. |
43 | JI C H, KIM H, KANG H S. Synthetic inducible regulatory systems optimized for the modulation of secondary metabolite production in Streptomyces [J]. ACS Synthetic Biology, 2019, 8(3): 577-586. |
44 | LI L, ZHENG G S, CHEN J, et al. Multiplexed site-specific genome engineering for overproducing bioactive secondary metabolites in actinomycetes[J]. Metabolic Engineering, 2017, 40: 80-92. |
45 | SONG Y F, HE S Q, ABDALLAH I I, et al. Engineering of multiple modules to improve amorphadiene production in Bacillus subtilis using CRISPR-Cas9[J]. Journal of Agricultural and Food Chemistry, 2021, 69(16): 4785-4794. |
46 | LEI C, LI S Y, LIU J K, et al. The CCTL (Cpf1-assisted cutting and Taq DNA ligase-assisted ligation) method for efficient editing of large DNA constructs in vitro [J]. Nucleic Acids Research, 2017, 45(9): e74. |
47 | ZHANG M M, WONG F T, WANG Y J, et al. CRISPR-Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters[J]. Nature Chemical Biology, 2017, 13: 607-609. |
48 | KANG H S, CHARLOP-POWERS Z, BRADY S F. Multiplexed CRISPR/Cas9- and TAR-mediated promoter engineering of natural product biosynthetic gene clusters in yeast[J]. ACS Synthetic Biology, 2016, 5(9): 1002-1010. |
49 | KIM H Y, JI C H, JE H W, et al. mpCRISTAR: multiple plasmid approach for CRISPR/Cas9 and TAR-mediated multiplexed refactoring of natural product biosynthetic gene clusters[J]. ACS Synthetic Biology, 2020, 9(1): 175-180. |
50 | KIM S H, LU W L, AHMADI M K, et al. Atolypenes, tricyclic bacterial sesterterpenes discovered using a multiplexed in vitro Cas9-TAR gene cluster refactoring approach[J]. ACS Synthetic Biology, 2019, 8(1): 109-118. |
51 | CULP E J, YIM G, WAGLECHNER N, et al. Hidden antibiotics in actinomycetes can be identified by inactivation of gene clusters for common antibiotics[J]. Nature Biotechnology, 2019, 37(10): 1149-1154. |
52 | AMERUOSO A, VILLEGAS KCAM M C, COHEN K P, et al. Activating natural product synthesis using CRISPR interference and activation systems in Streptomyces [J]. Nucleic Acids Research, 2022, 50(13): 7751-7760. |
53 | WANG J W, WANG A, LI K Y, et al. CRISPR/Cas9 nuclease cleavage combined with Gibson assembly for seamless cloning[J]. BioTechniques, 2015, 58(4): 161-170. |
54 | LEE N C O, LARIONOV V, KOUPRINA N. Highly efficient CRISPR/Cas9-mediated TAR cloning of genes and chromosomal loci from complex genomes in yeast[J]. Nucleic Acids Research, 2015, 43(8): e55. |
55 | ZHOU J T, WU R H, XUE X L, et al. CasHRA (Cas9-facilitated homologous recombination assembly) method of constructing megabase-sized DNA[J]. Nucleic Acids Research, 2016, 44(14): e124. |
56 | HOHN B, WURTZ M, KLEIN B, et al. Phage lambda DNA packaging, in vitro [J]. Journal of Supramolecular Structure, 1974, 2(2-4): 302-317. |
57 | DATSENKO K A, WANNER B L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(12): 6640-6645. |
58 | TISCHER B K, VON EINEM J, KAUFER B, et al. Two-step red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli [J]. BioTechniques, 2006, 40(2): 191-197. |
59 | SIEGL T, PETZKE L, WELLE E, et al. I-SceI endonuclease: a new tool for DNA repair studies and genetic manipulations in Streptomyces [J]. Applied Microbiology & Biotechnology, 2010, 87(4): 1525-1532. |
60 | HERRMANN S, SIEGL T, LUZHETSKA M, et al. Site-specific recombination strategies for engineering actinomycete genomes[J]. Applied & Environmental Microbiology, 2012, 78(6): 1804-1812. |
61 | WOLF T, GREN T, THIEME E, et al. Targeted genome editing in the rare actinomycete Actinoplanes sp. SE50/110 by using the CRISPR/Cas9 System[J]. Journal of Biotechnology, 2016, 231: 122-128. |
62 | ZHANG Y, YUN K Y, HUANG H M, et al. Antisense RNA interference-enhanced CRISPR/Cas9 base editing method for improving base editing efficiency in Streptomyces lividans 66[J]. ACS Synthetic Biology, 2021, 10(5): 1053-1063. |
63 | SHAFEE T, LOWE R. Eukaryotic and prokaryotic gene structure[J]. WikiJournal of Medicine, 2017, 4(1): 2. |
64 | JIN L Q, JIN W R, MA Z C, et al. Promoter engineering strategies for the overproduction of valuable metabolites in microbes[J]. Applied Microbiology and Biotechnology, 2019, 103(21-22): 8725-8736. |
65 | WANG Y, CHENG H J, LIU Y, et al. In-situ generation of large numbers of genetic combinations for metabolic reprogramming via CRISPR-guided base editing[J]. Nature Communications, 2021, 12(1): 678. |
66 | RUTLEDGE P J, CHALLIS G L. Discovery of microbial natural products by activation of silent biosynthetic gene clusters[J]. Nature Reviews Microbiology, 2015, 13(8): 509-523. |
67 | ZETSCHE B, GOOTENBERG J S, ABUDAYYEH O O, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell, 2015, 163(3): 759-771. |
68 | FONFARA I, RICHTER H, BRATOVIČ M, et al. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA[J]. Nature, 2016, 532(7600): 517-521. |
69 | ZETSCHE B, HEIDENREICH M, MOHANRAJU P, et al. Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array[J]. Nature Biotechnology, 2017, 35: 31-34. |
70 | LI L, WEI K K, ZHENG G S, et al. CRISPR-Cpf1-assisted multiplex genome editing and transcriptional repression in Streptomyces [J]. Applied and Environmental Microbiology, 2018, 84(18): e00827-18. |
71 | SCHILLING C, KOFFAS M A G, SIEBER V, et al. Novel prokaryotic CRISPR-Cas12a-based tool for programmable transcriptional activation and repression[J]. ACS Synthetic Biology, 2020, 9(12): 3353-3363. |
72 | LI S Y, ZHAO G P, WANG J. C-brick: a new standard for assembly of biological parts using Cpf1[J]. ACS Synthetic Biology, 2016, 5(12): 1383-1388. |
73 | BAUMAN K D, BUTLER K S, MOORE B S, et al. Genome mining methods to discover bioactive natural products[J]. Natural Product Reports, 2021, 38(11): 2100-2129. |
[1] | Jun ZHANG, Shixue JIN, Qian YUN, Xudong QU. Biosynthesis of the unnatural extender units with polyketides and their structural modifications for applications in medicines [J]. Synthetic Biology Journal, 2024, 5(3): 561-570. |
[2] | Xuchang YU, Hui WU, Lei LI. Library construction and targeted BGC screening for more efficient discovery of microbial natural products [J]. Synthetic Biology Journal, 2024, 5(3): 492-506. |
[3] | Huang XIE, Yilei ZHENG, Yiting SU, Jingyi RUAN, Yongquan LI. An overview on reconstructing the biosynthetic system of actinomycetes for polyketides production [J]. Synthetic Biology Journal, 2024, 5(3): 612-630. |
[4] | Jin FENG, Haixue PAN, Gongli TANG. Research advances in biosynthesis of natural product drugs within the past decade [J]. Synthetic Biology Journal, 2024, 5(3): 408-446. |
[5] | Mengyu XI, Yiling HU, Yucheng GU, Huiming GE. Genome mining-directed discovery for natural medicinal products [J]. Synthetic Biology Journal, 2024, 5(3): 447-473. |
[6] | Ru LEI, Hui TAO, Tiangang LIU. Deep genome mining boosts the discovery of microbial terpenoids [J]. Synthetic Biology Journal, 2024, 5(3): 507-526. |
[7] | Xinjie SHI, Yiling DU. Research advances in the biosynthesis of nonribosomal peptides within the bisintercalator family as anticancer drugs [J]. Synthetic Biology Journal, 2024, 5(3): 593-611. |
[8] | Rui ZHANG, Wenzheng JIN, Yijun CHEN. Bacterial inter-PKS hybrids and the biosynthetic algorithm of polyketides [J]. Synthetic Biology Journal, 2024, 5(3): 548-560. |
[9] | Yongxiang SONG, Xiufeng ZHANG, Yanqin LI, Hua XIAO, Yan YAN. Resistance-gene directed discovery of bioactive natural products [J]. Synthetic Biology Journal, 2024, 5(3): 474-491. |
[10] | Wenlong ZHA, Lan BU, Jiachen ZI. Advances in synthetic biology for producing potent pharmaceutical ingredients of traditional Chinese medicine [J]. Synthetic Biology Journal, 2024, 5(3): 631-657. |
[11] | Xiaonan LIU, Jing LI, Xiaoxi ZHU, Zishuo XU, Jian QI, Huifeng JIANG. Research advances on paclitaxel biosynthesis [J]. Synthetic Biology Journal, 2024, 5(3): 527-547. |
[12] | Xuejing MA, Chang GUO, Zhaolin HUA, Baidong HOU. Dawn of the rational design of nanoparticle vaccines aided by the advance of synthetic biology techniques [J]. Synthetic Biology Journal, 2024, 5(2): 353-368. |
[13] | Busen WANG, Jinghan XU, Zhiqiang GAO, Lihua HOU. Advances in virus-vectored vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 281-293. |
[14] | Jinyong ZHANG, Jiang GU, Shan GUAN, Haibo LI, Hao ZENG, Quanming ZOU. Synthetic biology promotes the development of bacterial vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 321-337. |
[15] | Weifeng YUAN, Yongliang ZHAO, Zhixuan WU, Ke XU. Applications of synthetic biology in the development of SARS-CoV-2 broad-spectrum vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 369-384. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||