Synthetic Biology Journal ›› 2024, Vol. 5 ›› Issue (3): 492-506.DOI: 10.12211/2096-8280.2023-083
• Invited Review • Previous Articles Next Articles
Xuchang YU1,2, Hui WU2, Lei LI1
Received:
2023-11-27
Revised:
2024-01-26
Online:
2024-07-12
Published:
2024-06-30
Contact:
Hui WU, Lei LI
虞旭昶1,2, 吴辉2, 李雷1
通讯作者:
吴辉,李雷
作者简介:
基金资助:
CLC Number:
Xuchang YU, Hui WU, Lei LI. Library construction and targeted BGC screening for more efficient discovery of microbial natural products[J]. Synthetic Biology Journal, 2024, 5(3): 492-506.
虞旭昶, 吴辉, 李雷. 文库构建与基因簇靶向筛选驱动的微生物天然产物高效发现[J]. 合成生物学, 2024, 5(3): 492-506.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2023-083
Fig. 1 Construction of soil metagenomic cosmid libraries for the discovery of novel compounds(NPST—Natural Products Sequence Tag. The CONKAT-Seq strategy based on co-occurrence network or phylogenetic analysis strategy based on eSNaPD software is used to identify BGCs of interest. Then, novel NPs are obtained by heterologous expression or chemical synthesis.)
Fig. 2 Construction of bacterial genome BAC/PAC libraries for the high-throughput mining of bioactive natural products.(a) BAC library construction for the genome of S. rochei Sal35 combined with the LEXAS screening system is used for the high-efficient mining of novel compounds; (b) PAC library construction for the genomes of 100 Streptomyces combined with the CONKAT-Seq strategy based on co-occurrence network is used to identify novel BGCs encoding NRP and PK, and then heterologous expression can be performed in different hosts to discover novel compounds.
Fig. 3 Construction of fungal genome FAC libraries for discovering fungal natural products(An untargeted metabolomics scoring system was used to accurately screen and separate novel compounds.)
文库 类型 | 插入 大小 | 核心 元件 | 筛选方法 | 文库针对 类型 | 基因簇获取通量 | 获得化合物 | 优点 | 缺点 | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|
Cosmid | 约40 kb | COS位点 质粒元件 | CONKAT-seq | 宏基因组 | 107个 克隆 | Omnipeptin(NRP) | 适合宏基因组挖掘 | 克隆片段大小相对较小,在克隆大尺度BGC(>40 kb)方面存在局限 | Libis等(2019)[ |
约40 kb | eSNaPD | 宏基因组 | >2×107个 克隆 | MBA3(NRP) | Li等 (2022)[ | ||||
Fosmid | 约40 kb | COS位点 F因子元件 | 序列引导的PCR筛选 | (宏) 基因组 | 2880个 克隆 | Actinonin(NRP) | Wolf等(2018)[ | ||
BAC | 约100 kb | loxP F因子元件 | LEXAS | 基因组 | 784个克隆 | Lexapeptide (羊毛硫肽)等 | ①转化效率高 ②克隆100~300 kb片段 | 不适合宏基因组挖掘 | 徐敏 (2017)[ |
PAC | 约140 kb | F因子元件 P1噬菌体元件 | CONKAT-seq | 基因组 | 60 000个 克隆 | Prolinolexin(NRP) Cinnamexin(NRP) Conkatamycin(PK) | Libis等(2022)[ | ||
FAC | 约100 kb | F因子元件 真菌ARS | FAC-MS | 基因组 | 156个FAC | Benzomalvin A/D(NRP) Sesterterpenoid(Terpene) Valactamide A(Hybrid NRP-PK) | ①克隆100~300 kb片段 ②适合真菌基因组挖掘 | 克隆稳定性差 | Clevenger等(2017)[ |
YAC | 100~ 2000 kb | 着丝粒 端粒 酵母ARS | NA | 基因组 | 1896个YAC | NA | 克隆100~2000 kb片段 | ①克隆稳定性差 ②转化效率低 ③重组率、嵌合率高 | Saji等(2001)[ |
Table 1 Comparison of strategies for constructing different libraries for high-throughput screening of novel natural products
文库 类型 | 插入 大小 | 核心 元件 | 筛选方法 | 文库针对 类型 | 基因簇获取通量 | 获得化合物 | 优点 | 缺点 | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|
Cosmid | 约40 kb | COS位点 质粒元件 | CONKAT-seq | 宏基因组 | 107个 克隆 | Omnipeptin(NRP) | 适合宏基因组挖掘 | 克隆片段大小相对较小,在克隆大尺度BGC(>40 kb)方面存在局限 | Libis等(2019)[ |
约40 kb | eSNaPD | 宏基因组 | >2×107个 克隆 | MBA3(NRP) | Li等 (2022)[ | ||||
Fosmid | 约40 kb | COS位点 F因子元件 | 序列引导的PCR筛选 | (宏) 基因组 | 2880个 克隆 | Actinonin(NRP) | Wolf等(2018)[ | ||
BAC | 约100 kb | loxP F因子元件 | LEXAS | 基因组 | 784个克隆 | Lexapeptide (羊毛硫肽)等 | ①转化效率高 ②克隆100~300 kb片段 | 不适合宏基因组挖掘 | 徐敏 (2017)[ |
PAC | 约140 kb | F因子元件 P1噬菌体元件 | CONKAT-seq | 基因组 | 60 000个 克隆 | Prolinolexin(NRP) Cinnamexin(NRP) Conkatamycin(PK) | Libis等(2022)[ | ||
FAC | 约100 kb | F因子元件 真菌ARS | FAC-MS | 基因组 | 156个FAC | Benzomalvin A/D(NRP) Sesterterpenoid(Terpene) Valactamide A(Hybrid NRP-PK) | ①克隆100~300 kb片段 ②适合真菌基因组挖掘 | 克隆稳定性差 | Clevenger等(2017)[ |
YAC | 100~ 2000 kb | 着丝粒 端粒 酵母ARS | NA | 基因组 | 1896个YAC | NA | 克隆100~2000 kb片段 | ①克隆稳定性差 ②转化效率低 ③重组率、嵌合率高 | Saji等(2001)[ |
1 | HUTCHINGS M I, TRUMAN A W, WILKINSON B. Antibiotics: past, present and future[J]. Current Opinion in Microbiology, 2019, 51: 72-80. |
2 | MULLOWNEY M W, DUNCAN K R, ELSAYED S S, et al. Artificial intelligence for natural product drug discovery[J]. Nature Reviews Drug Discovery, 2023, 22(11): 895-916. |
3 | ATANASOV A G, ZOTCHEV S B, DIRSCH V M, et al. Natural products in drug discovery: advances and opportunities[J]. Nature Reviews Drug Discovery, 2021, 20(3): 200-216. |
4 | KWON M J, STEINIGER C, CAIRNS T C, et al. Beyond the biosynthetic gene cluster paradigm: genome-wide coexpression networks connect clustered and unclustered transcription factors to secondary metabolic pathways[J]. Microbiology Spectrum, 2021, 9(2): e00898-21. |
5 | WOOLEY J C, YE Y Z. Metagenomics: facts and artifacts, and computational challenges[J]. Journal of Computer Science and Technology, 2010, 25(1): 71-81. |
6 | SIMON C, DANIEL R. Metagenomic analyses: past and future trends[J]. Applied and Environmental Microbiology, 2011, 77(4): 1153-1161. |
7 | SCHERLACH K, HERTWECK C. Mining and unearthing hidden biosynthetic potential[J]. Nature Communications, 2021, 12(1): 3864. |
8 | ZIEMERT N, ALANJARY M, WEBER T. The evolution of genome mining in microbes—a review[J]. Natural Product Reports, 2016, 33(8): 988-1005. |
9 | GAVRIILIDOU A, KAUTSAR S A, ZABURANNYI N, et al. Compendium of specialized metabolite biosynthetic diversity encoded in bacterial genomes[J]. Nature Microbiology, 2022, 7(5): 726-735. |
10 | BALTZ R H. Gifted microbes for genome mining and natural product discovery[J]. Journal of Industrial Microbiology & Biotechnology, 2017, 44(4/5): 573-588. |
11 | LI L. Next-generation synthetic biology approaches for the accelerated discovery of microbial natural products[J]. Engineering Microbiology, 2023, 3(1): 100060. |
12 | HUO L J, HUG J J, FU C Z, et al. Heterologous expression of bacterial natural product biosynthetic pathways[J]. Natural Product Reports, 2019, 36(10): 1412-1436. |
13 | HAO T T, XIE Z J, WANG M, et al. An anaerobic bacterium host system for heterologous expression of natural product biosynthetic gene clusters[J]. Nature Communications, 2019, 10(1): 3665. |
14 | GALM U, SHEN B. Expression of biosynthetic gene clusters in heterologous hosts for natural product production and combinatorial biosynthesis[J]. Expert Opinion on Drug Discovery, 2006, 1(5): 409-437. |
15 | LI L, JIANG W H, LU Y H. New strategies and approaches for engineering biosynthetic gene clusters of microbial natural products[J]. Biotechnology Advances, 2017, 35(8): 936-949. |
16 | GIBSON D G, YOUNG L, CHUANG R Y, et al. Enzymatic assembly of DNA molecules up to several hundred kilobases[J]. Nature Methods, 2009, 6(5): 343-345. |
17 | KOUPRINA N, LARIONOV V. Transformation-associated recombination (TAR) cloning for genomics studies and synthetic biology[J]. Chromosoma, 2016, 125(4): 621-632. |
18 | ZHANG Y, BUCHHOLZ F, MUYRERS J P, et al. A new logic for DNA engineering using recombination in Escherichia coli [J]. Nature Genetics, 1998, 20(2): 123-128. |
19 | JIANG W J, ZHAO X J, GABRIELI T, et al. Cas9-assisted targeting of chromosome segments CATCH enables one-step targeted cloning of large gene clusters[J]. Nature Communications, 2015, 6: 8101. |
20 | LIANG M D, LIU L S, XU F, et al. Activating cryptic biosynthetic gene cluster through a CRISPR-Cas12a-mediated direct cloning approach[J]. Nucleic Acids Research, 2022, 50(6): 3581-3592. |
21 | DU D Y, WANG L, TIAN Y Q, et al. Genome engineering and direct cloning of antibiotic gene clusters via phage ϕBT1 integrase-mediated site-specific recombination in Streptomyces [J]. Scientific Reports, 2015, 5: 8740. |
22 | 戴岩, 吴旭日, 陈依军. 链霉菌沉默生物合成基因簇激活策略的研究进展[J]. 中国药科大学学报, 2019, 50(4): 379-388. |
DAI Y, WU X R, CHEN Y J. Advances in strategies for activating silent biosynthetic gene clusters in Streptomyces [J]. Journal of China Pharmaceutical University, 2019, 50(4): 379-388. | |
23 | 戴钊钊. 基于PacBio的高通量Fosmid文库克隆长配对末端测序技术的开发[D]. 武汉: 华中农业大学, 2019. |
DAI Z Z. High-throughput long paired-end sequencing of a Fosmid library by PacBio[D]. Wuhan: Huazhong Agricultural University, 2019. | |
24 | PETERSON D G, TOMKINS J P, FRISCH D A, et al. Construction of plant bacterial artificial chromosome (BAC) libraries: an illustrated guide[J/OL]. Journal of Agricultural Genomics, 2000, 5: 1-100[2023-12-01]. . |
25 | 樊颖伦, 赵开军. 大片段克隆载体研究进展[J]. 中国生物工程杂志, 2004, 24(3): 12-16. |
FAN Y L, ZHAO K J. Progress in development of large DNA fragment cloning vectors[J]. China Biotechnology, 2004, 24(3): 12-16. | |
26 | HOSODA F, NISHIMURA S, UCHIDA H, et al. An F factor based cloning system for large DNA fragments[J]. Nucleic Acids Research, 1990, 18(13): 3863-3869. |
27 | DANIEL R. The metagenomics of soil[J]. Nature Reviews Microbiology, 2005, 3(6): 470-478. |
28 | 高花花, 胡娟, 刘玲丽. 基因簇大片段克隆技术研究进展及挑战[J]. 微生物学通报, 2023, 50(1): 351-367. |
GAO H H, HU J, LIU L L. Research progress and challenges in cloning large gene clusters[J]. Microbiology China, 2023, 50(1): 351-367. | |
29 | 王凯, 张燕洁, 关兵, 等. 棉花细菌人工染色体的荧光原位杂交(BAC-FISH)技术[J]. 生物化学与生物物理进展, 2007, 34(11): 1216-1222. |
WANG K, ZHANG Y J, GUAN B, et al. Fluorescence in situ hybridization of bacterial artificial chromosome in cotton[J]. Progress in Biochemistry and Biophysics, 2007, 34(11): 1216-1222. | |
30 | 池淏甜, 陈实. 基因组学技术解码天然产物合成[J]. 生物工程学报, 2019, 35(10): 1889-1900. |
CHI H T, CHEN S. Genomics approaches decode natural products synthesis[J]. Chinese Journal of Biotechnology, 2019, 35(10): 1889-1900. | |
31 | SUMMERS W C. Plasmids: histories of a concept[M/OL]//Reticulate evolution: symbiogenesis, lateral gene transfer, hybridization and infectious heredity. Cham: Springer, 2015: 179-190 [2023-12-01]. . |
32 | LEDERBERG E M, LEDERBERG J. Genetic studies of lysogenicity in Escherichia coli [J]. Genetics, 1953, 38(1): 51-64. |
33 | COLLINS J, HOHN B. Cosmids: a type of plasmid gene-cloning vector that is packageable in vitro in bacteriophage lambda heads[J]. Proceedings of the National Academy of Sciences of the United States of America, 1978, 75(9): 4242-4246. |
34 | WENZEL R, HERRMANN R. Cosmid cloning with small genomes[M/OL]//Nonmammalian genomic analysis. San Diego, CA, USA: Academic Press, 1996: 197-222 [2023-12-01]. . |
35 | LI J E, GUO Z Y, HUANG W, et al. Mining of a streptothricin gene cluster from Streptomyces sp. TP-A0356 genome via heterologous expression[J]. Science China Life Sciences, 2013, 56(7): 619-627. |
36 | 杨其会. 基于基因组挖掘策略研究Streptomyces netropsis DSM 40846中天然产物生物合成基因簇[D]. 武汉:华中农业大学, 2022. |
YANG Q H. Exploring natural product biosynthesis gene clusters in Streptomyces netropsis DSM 40846 by genome mining[D]. Wuhan: Huazhong Agricultural University, 2022. | |
37 | 张巧燕. 基于genome mining技术的TRM 15522次级代谢产物研究[D]. 阿拉尔:塔里木大学, 2021. |
ZHANG Q Y. Study on secondary metabolites of TRM 15522 based on genome mining technology[D]. Alaer: Tarim University, 2021. | |
38 | GAO Y S, WALT C, BADER C D, et al. Genome-guided discovery of the myxobacterial thiolactone-containing sorangibactins[J]. ACS Chemical Biology, 2023, 18(4): 924-932. |
39 | LIU J Y, YANG L, KJELLERUP B V, et al. Viable but nonculturable (VBNC) state, an underestimated and controversial microbial survival strategy[J]. Trends in Microbiology, 2023, 31(10): 1013-1023. |
40 | PINTO D, SANTOS M A, CHAMBEL L. Thirty years of viable but nonculturable state research: unsolved molecular mechanisms[J]. Critical Reviews in Microbiology, 2015, 41(1): 61-76. |
41 | EKKERS D M, CRETOIU M S, KIELAK A M, et al. The great screen anomaly: a new frontier in product discovery through functional metagenomics[J]. Applied Microbiology and Biotechnology, 2012, 93(3): 1005-1020. |
42 | HANDELSMAN J. Metagenomics: application of genomics to uncultured microorganisms[J]. Microbiology and Molecular Biology Reviews, 2004, 68(4): 669-685. |
43 | COURTOIS S, CAPPELLANO C M, BALL M, et al. Recombinant environmental libraries provide access to microbial diversity for drug discovery from natural products[J]. Applied and Environmental Microbiology, 2003, 69(1): 49-55. |
44 | BRADY S F, CHAO C J, HANDELSMAN J, et al. Cloning and heterologous expression of a natural product biosynthetic gene cluster from eDNA[J]. Organic Letters, 2001, 3(13): 1981-1984. |
45 | BRADY S F, CLARDY J. Cloning and heterologous expression of isocyanide biosynthetic genes from environmental DNA[J]. Angewandte Chemie International Edition, 2005, 117(43): 7225-7227. |
46 | BAUER J D, KING R W, BRADY S F. Utahmycins A and B, azaquinones produced by an environmental DNA clone[J]. Journal of Natural Products, 2010, 73(5): 976-979. |
47 | KALLIFIDAS D, KANG H S, BRADY S F. Tetarimycin A, an MRSA-active antibiotic identified through induced expression of environmental DNA gene clusters[J]. Journal of the American Chemical Society, 2012, 134(48): 19552-19555. |
48 | KANG H S, BRADY S F. Arimetamycin A: improving clinically relevant families of natural products through sequence-guided screening of soil metagenomes[J]. Angewandte Chemie International Edition, 2013, 52(42): 11063-11067. |
49 | PEEK J, LILIC M, MONTIEL D, et al. Rifamycin congeners kanglemycins are active against rifampicin-resistant bacteria via a distinct mechanism[J]. Nature Communications, 2018, 9(1): 4147. |
50 | HOVER B M, KIM S H, KATZ M, et al. Culture-independent discovery of the malacidins as calcium-dependent antibiotics with activity against multidrug-resistant Gram-positive pathogens[J]. Nature Microbiology, 2018, 3(4): 415-422. |
51 | LIBIS V, ANTONOVSKY N, ZHANG M Y, et al. Uncovering the biosynthetic potential of rare metagenomic DNA using co-occurrence network analysis of targeted sequences[J]. Nature Communications, 2019, 10(1): 3848. |
52 | LI L, KOIRALA B, HERNANDEZ Y, et al. Identification of structurally diverse menaquinone-binding antibiotics with in vivo activity against multidrug-resistant pathogens[J]. Nature Microbiology, 2022, 7(1): 120-131. |
53 | 刘建喜, 林爱星, 丁翔, 等. DNA克隆载体的发展和应用[J]. 遗传, 1997, 19(6): 41-44. |
LIU J X, LIN A X, DING X, et al. The development and application of DNA cloning vectors[J]. Hereditas(Beijing), 1997, 19(6): 41-44. | |
54 | EVANS G A, LEWIS K A. Physical mapping of complex genomes by cosmid multiplex analysis[J]. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86(13): 5030-5034. |
55 | KIM U J, SHIZUYA H, DE JONG P J, et al. Stable propagation of cosmid sized human DNA inserts in an F factor based vector[J]. Nucleic Acids Research, 1992, 20(5): 1083-1085. |
56 | 李昂, 张安, 唐君, 等. Fosmid基因组文库构建及应用现状[J]. 江苏农业科学, 2013, 41(6): 28-30. |
LI A, ZHANG A, TANG J, et al. Fosmid genomic library construction and its application status[J]. Jiangsu Agricultural Sciences, 2013, 41(6): 28-30. | |
57 | LIU C X, LIU X L, LEI L, et al. Fosmid library construction and screening for the maize mutant gene Vestigial glume 1 [J]. The Crop Journal, 2016, 4(1): 55-60. |
58 | FELCZYKOWSKA A, DYDECKA A, BOHDANOWICZ M, et al. The use of fosmid metagenomic libraries in preliminary screening for various biological activities[J]. Microbial Cell Factories, 2014, 13: 105. |
59 | WOLF F, LEIPOLDT F, KULIK A, et al. Characterization of the actinonin biosynthetic gene cluster[J]. ChemBioChem, 2018, 19(11): 1189-1195. |
60 | JIAO Y J, LIU Y, WANG H X, et al. Expression of the clifednamide biosynthetic pathway in Streptomyces generates 27, 28-seco-derivatives[J]. Journal of Natural Products, 2020, 83(9): 2803-2808. |
61 | UFARTÉ L, BOZONNET S, LAVILLE E, et al. Functional metagenomics: construction and high-throughput screening of Fosmid libraries for discovery of novel carbohydrate-active enzymes[M/OL]//Methods in molecular biology: microbial environmental genomics. New York: Humana Press, 2016, 1399: 257-271 [2023-12-01]. . |
62 | RIESENFELD C S, SCHLOSS P D, HANDELSMAN J. Metagenomics: genomic analysis of microbial communities[J]. Annual Review of Genetics, 2004, 38: 525-552. |
63 | 芦晓飞, 赵志祥, 谢丙炎, 等. 西藏米拉山高寒草甸土壤微生物DNA提取及宏基因组Fosmid文库构建[J]. 应用与环境生物学报, 2009, 15(6): 824-829. |
LU X F, ZHAO Z X, XIE B Y, et al. DNA extraction and construction of a metagenomic Fosmid library of alpine meadow soil from the Mila mountains in Tibet, China[J]. Chinese Journal of Applied and Environmental Biology, 2009, 15(6): 824-829. | |
64 | NEGRI T, MANTRI S, ANGELOV A, et al. A rapid and efficient strategy to identify and recover biosynthetic gene clusters from soil metagenomes[J]. Applied Microbiology and Biotechnology, 2022, 106(8): 3293-3306. |
65 | SHIZUYA H, BIRREN B, KIM U J, et al. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector[J]. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(18): 8794-8797. |
66 | KIM U J, BIRREN B W, SLEPAK T, et al. Construction and characterization of a human bacterial artificial chromosome library[J]. Genomics, 1996, 34(2): 213-218. |
67 | LIU Y G, SHIRANO Y, FUKAKI H, et al. Complementation of plant mutants with large genomic DNA fragments by a transformation-competent artificial chromosome vector accelerates positional cloning[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(11): 6535-6540. |
68 | LUO M Z, WANG Y H, FRISCH D, et al. Melon bacterial artificial chromosome (BAC) library construction using improved methods and identification of clones linked to the locus conferring resistance to melon Fusarium wilt (Fom-2)[J]. Genome, 2001, 44(2): 154-162. |
69 | LUO M Z, WING R A. An improved method for plant BAC library construction[M/OL]//Methods in molecular biology: plant functional genomics. New York: Human Press, 2003, 236: 3-20 [2023-12-01]. . |
70 | 黄胜, 李娜, 周俊, 等. 适用于链霉菌大片段基因组DNA克隆和异源表达的细菌人工染色体(BAC)载体的构建及应用[J]. 微生物学报, 2012, 52(1): 30-37. |
HUANG S, LI N, ZHOU J, et al. Construction of a new bacterial artificial chromosome (BAC) vector for cloning of large DNA fragments and heterologous expression in Streptomyces [J]. Acta Microbiologica Sinica, 2012, 52(1): 30-37. | |
71 | 刘家栋, 王革娇, 罗美中. 阿维链霉菌BAC文库的构建及分析[J]. 华中农业大学学报, 2016, 35(5): 45-50. |
LIU J D, WANG G J, LUO M Z. Construction and analysis of a BAC library of Streptomyces avermitilis genome[J]. Journal of Huazhong Agricultural University, 2016, 35(5): 45-50. | |
72 | RASCHER A, HU Z H, VISWANATHAN N, et al. Cloning and characterization of a gene cluster for geldanamycin production in Streptomyces hygroscopicus NRRL 3602[J]. FEMS Microbiology Letters, 2003, 218(2): 223-230. |
73 | PENN J, LI X, WHITING A, et al. Heterologous production of daptomycin in Streptomyces lividans [J]. Journal of Industrial Microbiology & Biotechnology, 2006, 33(2): 121-128. |
74 | LIU H B, JIANG H, HALTLI B, et al. Rapid cloning and heterologous expression of the meridamycin biosynthetic gene cluster using a versatile Escherichia coli-Streptomyces artificial chromosome vector, pSBAC[J]. Journal of Natural Products, 2009, 72(3): 389-395. |
75 | DENG Q, ZHOU L, LUO M Z, et al. Heterologous expression of avermectins biosynthetic gene cluster by construction of a Bacterial Artificial Chromosome library of the producers[J]. Synthetic and Systems Biotechnology, 2017, 2(1): 59-64. |
76 | HASHIMOTO T, HASHIMOTO J, KOZONE I, et al. Biosynthesis of quinolidomicin, the largest known macrolide of terrestrial origin: identification and heterologous expression of a biosynthetic gene cluster over 200 kb[J]. Organic Letters, 2018, 20(24): 7996-7999. |
77 | HASHIMOTO T, KOZONE I, HASHIMOTO J, et al. Novel macrolactam compound produced by the heterologous expression of a large cryptic biosynthetic gene cluster of Streptomyces rochei IFO12908[J]. The Journal of Antibiotics, 2020, 73(3): 171-174. |
78 | 徐敏. 高通量异源表达辅助的活性天然产物挖掘与新型羊毛硫肽Lexapeptide的生物合成研究[D]. 上海: 上海交通大学, 2017. |
XU M. Discovery of bioactive natural products enabled by high throughput heterologous expression and biosynthesis of a novel lantibiotic, lexapeptide[D]. Shanghai: Shanghai Jiao Tong University, 2017. | |
79 | XU M, ZHANG F, CHENG Z, et al. Functional genome mining reveals a class Ⅴ lanthipeptide containing a D-amino acid introduced by an F420 H2-dependent reductase[J]. Angewandte Chemie International Edition, 2020, 59(41): 18029-18035. |
80 | STERNBERG N. Bacteriophage P1 cloning system for the isolation, amplification, and recovery of DNA fragments as large as 100 kilobase pairs[J]. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(1): 103-107. |
81 | IOANNOU P A, AMEMIYA C T, GARNES J, et al. A new bacteriophage P1-derived vector for the propagation of large human DNA fragments[J]. Nature Genetics, 1994, 6(1): 84-89. |
82 | JONES A C, GUST B, KULIK A, et al. Phage p1-derived artificial chromosomes facilitate heterologous expression of the FK506 gene cluster[J]. PLoS One, 2013, 8(7): e69319. |
83 | CASTRO J F, RAZMILIC V, GOMEZ-ESCRIBANO J P, et al. Identification and heterologous expression of the chaxamycin biosynthesis gene cluster from Streptomyces leeuwenhoekii [J]. Applied and Environmental Microbiology, 2015, 81(17): 5820-5831. |
84 | TU J J, LI S T, CHEN J, et al. Characterization and heterologous expression of the neoabyssomicin/abyssomicin biosynthetic gene cluster from Streptomyces koyangensis SCSIO 5802[J]. Microbial Cell Factories, 2018, 17(1): 28. |
85 | LIBIS V, MACINTYRE L W, MEHMOOD R, et al. Multiplexed mobilization and expression of biosynthetic gene clusters[J]. Nature Communications, 2022, 13(1): 5256. |
86 | BÉRDY J. Bioactive microbial metabolites[J]. The Journal of Antibiotics, 2005, 58(1): 1-26. |
87 | CHIANG C Y, OHASHI M, TANG Y. Deciphering chemical logic of fungal natural product biosynthesis through heterologous expression and genome mining[J]. Natural Product Reports, 2023, 40(1): 89-127. |
88 | KELLER N P. Translating biosynthetic gene clusters into fungal armor and weaponry[J]. Nature Chemical Biology, 2015, 11(9): 671-677. |
89 | ROKAS A, WISECAVER J H, LIND A L. The birth, evolution and death of metabolic gene clusters in fungi[J]. Nature Reviews Microbiology, 2018, 16(12): 731-744. |
90 | VAN DEN BERG M A, ALBANG R, ALBERMANN K, et al. Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum [J]. Nature Biotechnology, 2008, 26(10): 1161-1168. |
91 | ALBERTS A W, CHEN J, KURON G, et al. Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent[J]. Proceedings of the National Academy of Sciences of the United States of America, 1980, 77(7): 3957-3961. |
92 | STIERLE A, STROBEL G, STIERLE D. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew[J]. Science, 1993, 260(5105): 214-216. |
93 | HÜTTEL W. Echinocandins: structural diversity, biosynthesis, and development of antimycotics[J]. Applied Microbiology and Biotechnology, 2021, 105(1): 55-66. |
94 | 林继聪, 邹根, 刘宏民, 等. CRISPR/Cas基因组编辑技术在丝状真菌次级代谢产物合成中的应用[J]. 合成生物学, 2023, 4(4): 738-755. |
LIN J C, ZOU G, LIU H M, et al. Application of CRISPR/Cas genome editing technology in the synthesis of secondary metabolites of filamentous fungi[J]. Synthetic Biology Journal, 2023, 4(4): 738-755. | |
95 | BOK J W, YE R, CLEVENGER K D, et al. Fungal artificial chromosomes for mining of the fungal secondary metabolome[J]. BMC Genomics, 2015, 16(1): 343. |
96 | CLEVENGER K D, BOK J W, YE R, et al. A scalable platform to identify fungal secondary metabolites and their gene clusters[J]. Nature Chemical Biology, 2017, 13(8): 895-901. |
97 | MURRAY A W, SZOSTAK J W. Construction of artificial chromosomes in yeast[J]. Nature, 1983, 305(5931): 189-193. |
98 | SANTRA D K, SANDHU D, TAI T, et al. Construction and characterization of a soybean yeast artificial chromosome library and identification of clones for the Rps6 region[J]. Functional & Integrative Genomics, 2003, 3(4): 153-159. |
99 | KURATA N, UMEHARA Y, TANOUE H, et al. Physical mapping of the rice genome with YAC clones[J]. Plant Molecular Biology, 1997, 35(1/2): 101-113. |
100 | BURKE D T, CARLE G F, OLSON M V. Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors[J]. Science, 1987, 236(4803): 806-812. |
101 | SAJI S, UMEHARA Y, ANTONIO B A, et al. A physical map with yeast artificial chromosome (YAC) clones covering 63% of the 12 rice chromosomes[J]. Genome, 2001, 44(1): 32-37. |
102 | BLIN K, SHAW S, KLOOSTERMAN A M, et al. antiSMASH 6.0: improving cluster detection and comparison capabilities[J]. Nucleic Acids Research, 2021, 49(W1): W29-W35. |
103 | TERLOUW B R, BLIN K, NAVARRO-MUÑOZ J C, et al. MIBiG 3.0: a community-driven effort to annotate experimentally validated biosynthetic gene clusters[J]. Nucleic Acids Research, 2023, 51(D1): D603-D610. |
104 | NAVARRO-MUÑOZ J C, SELEM-MOJICA N, MULLOWNEY M W, et al. A computational framework to explore large-scale biosynthetic diversity[J]. Nature Chemical Biology, 2020, 16(1): 60-68. |
105 | KAUTSAR S A, VAN DER HOOFT J J J, RIDDER D D, et al. BiG-SLiCE: a highly scalable tool maps the diversity of 1.2 million biosynthetic gene clusters[J]. GigaScience, 2021, 10(1): giaa154. |
106 | 赖奇龙, 姚帅, 查毓国, 等. 微生物组生物合成基因簇发掘方法及应用前景[J]. 合成生物学, 2023, 4(3): 611-627. |
LAI Q L, YAO S, ZHA Y G, et al. Microbiome-based biosynthetic gene cluster data mining techniques and application potentials[J]. Synthetic Biology Journal, 2023, 4(3): 611-627. | |
107 | LI L. Accessing hidden microbial biosynthetic potential from underexplored sources for novel drug discovery[J]. Biotechnology Advances, 2023, 66: 108176. |
108 | BALTZ R H. Marcel Faber Roundtable: is our antibiotic pipeline unproductive because of starvation, constipation or lack of inspiration?[J]. Journal of Industrial Microbiology & Biotechnology, 2006, 33(7): 507-513. |
109 | SHU W S, HUANG L N. Microbial diversity in extreme environments[J]. Nature Reviews Microbiology, 2022, 20(4): 219-235. |
110 | LI S, DONG L, LIAN W H, et al. Exploring untapped potential of Streptomyces spp. in Gurbantunggut Desert by use of highly selective culture strategy[J]. The Science of the Total Environment, 2021, 790: 148235. |
111 | LAZZARINI A, CAVALETTI L, TOPPO G, et al. Rare Genera of actinomycetes as potential producers of new antibiotics[J]. Antonie Van Leeuwenhoek, 2000, 78(3/4): 399-405. |
112 | XIE F Y, PATHOM-AREE W. Actinobacteria from desert: diversity and biotechnological applications[J]. Frontiers in Microbiology, 2021, 12: 765531. |
113 | WANASINGHE D N, MORTIMER P E, XU J C. Insight into the systematics of microfungi colonizing dead woody twigs of Dodonaea viscosa in Honghe (China)[J]. Journal of Fungi, 2021, 7(3): 180. |
114 | LEWIS K, EPSTEIN S, D’ONOFRIO A, et al. Uncultured microorganisms as a source of secondary metabolites[J]. The Journal of Antibiotics, 2010, 63(8): 468-476. |
[1] | Yongxiang SONG, Xiufeng ZHANG, Yanqin LI, Hua XIAO, Yan YAN. Resistance-gene directed discovery of bioactive natural products [J]. Synthetic Biology Journal, 2024, 5(3): 474-491. |
[2] | Qilong LAI, Shuai YAO, Yuguo ZHA, Hong BAI, Kang NING. Microbiome-based biosynthetic gene cluster data mining techniques and application potentials [J]. Synthetic Biology Journal, 2023, 4(3): 611-627. |
[3] | Liwen ZHANG, István MOLNÀR, Yuquan XU. Potential biosynthesis of nonribosomal peptides by hypocrealean entomopathogenic fungi [J]. Synthetic Biology Journal, 2021, 2(5): 815-825. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||