Synthetic Biology Journal ›› 2024, Vol. 5 ›› Issue (6): 1264-1278.DOI: 10.12211/2096-8280.2023-062
• Invited Review • Previous Articles Next Articles
Kuanqing LIU1, Yi-Heng P.Job ZHANG1,2,3
Received:
2023-08-28
Revised:
2023-11-01
Online:
2025-01-10
Published:
2024-12-31
Contact:
Kuanqing LIU, Yi-Heng P.Job ZHANG
刘宽庆1, 张以恒1,2,3
通讯作者:
刘宽庆,张以恒
作者简介:
基金资助:
CLC Number:
Kuanqing LIU, Yi-Heng P.Job ZHANG. Biological degradation and utilization of lignin[J]. Synthetic Biology Journal, 2024, 5(6): 1264-1278.
刘宽庆, 张以恒. 木质素的生物降解和生物利用[J]. 合成生物学, 2024, 5(6): 1264-1278.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2023-062
真菌 | 参考文献 | 细菌 | 参考文献 |
---|---|---|---|
Aspergillus flavus | [ | Acinetobacter sp. | [ |
Aspergillus terreus | [ | Amycolatopsis sp. | [ |
Bjerkandera | [ | Aneurinibacillus aneurinilyticus | [ |
Ceriporiopsis subvermispora | [ | Arthrobacter globiformis | [ |
Cyathus stercoreus | [ | Bacillus atrophaeus | [ |
Dichomitus squalens | [ | Bacillus pumilus | [ |
Fusarium oxysporum | [ | Cupriavidus necator | [ |
Gloeophyllum trabeum | [ | Enterobacter lignolyticus | [ |
Lepista nuda | [ | Klebsiella pneumoniae | [ |
Penicillium citrinum | [ | Mycobacterium smegmatis | [ |
Perenniporia medulla-panis | [ | Nocardia autotrophica | [ |
Phanerochaete chrysosporium | [ | Oceanimonas doudoroffii | [ |
Phlebia radiata | [ | Ochrobactrum tritici | [ |
Pleurotus eryngii | [ | Pantoea ananatis | [ |
Pleurotus ostreatus | [ | Pseudomonas putida | [ |
Porodaedalea pini | [ | Rhodococcus erythropolis | [ |
Pycnoporus cinnabarinus | [ | Rhodococcus jostii | [ |
Schizophyllum commune | [ | Sphingomonas paucimobilis | [ |
Serpula lacrymans | [ | Streptomyces coelicolor | [ |
Trametes versicolor | [ | Streptomyces viridosporus | [ |
Tramtes hirsute | [ | ||
Wolfiporia cocos | [ |
Table 1 List of lignin degrading microbes
真菌 | 参考文献 | 细菌 | 参考文献 |
---|---|---|---|
Aspergillus flavus | [ | Acinetobacter sp. | [ |
Aspergillus terreus | [ | Amycolatopsis sp. | [ |
Bjerkandera | [ | Aneurinibacillus aneurinilyticus | [ |
Ceriporiopsis subvermispora | [ | Arthrobacter globiformis | [ |
Cyathus stercoreus | [ | Bacillus atrophaeus | [ |
Dichomitus squalens | [ | Bacillus pumilus | [ |
Fusarium oxysporum | [ | Cupriavidus necator | [ |
Gloeophyllum trabeum | [ | Enterobacter lignolyticus | [ |
Lepista nuda | [ | Klebsiella pneumoniae | [ |
Penicillium citrinum | [ | Mycobacterium smegmatis | [ |
Perenniporia medulla-panis | [ | Nocardia autotrophica | [ |
Phanerochaete chrysosporium | [ | Oceanimonas doudoroffii | [ |
Phlebia radiata | [ | Ochrobactrum tritici | [ |
Pleurotus eryngii | [ | Pantoea ananatis | [ |
Pleurotus ostreatus | [ | Pseudomonas putida | [ |
Porodaedalea pini | [ | Rhodococcus erythropolis | [ |
Pycnoporus cinnabarinus | [ | Rhodococcus jostii | [ |
Schizophyllum commune | [ | Sphingomonas paucimobilis | [ |
Serpula lacrymans | [ | Streptomyces coelicolor | [ |
Trametes versicolor | [ | Streptomyces viridosporus | [ |
Tramtes hirsute | [ | ||
Wolfiporia cocos | [ |
Fig. 3 Primary reactions for utilizing lignin derived aromatics and schematic of assimilating syringate and catechol into microbial metabolic pathways[Enzymatic reactions are mainly based off Erickson et al.[12] and Vaillancourt et al.[53]. Enzymes for assimilating lignin into microbial metabolic pathways may not come from the same species: DesA[54] and LigM[55] from Sphingomonas paucimobilis SYK-6, Dmts[12] from Novosphingobium aromaticivorans DSM 12444, GalA, B, C, D[56-57], CatB[58], CatC[58], PcaI[59], PcaJ[59], and PcaF[59-61] from Pseudomonas putida, CatA[62] from Acinetobacter baylyi, PcaD[63] from Rhodococcus opacus 1CP, and PaaJ [64] from Escherichia coli]
底物 | 产物 | 底盘细胞 | 参考文献 |
---|---|---|---|
异丁香酚、丁香酚、香草醇、阿魏酸 | 香兰素 | Bacillus pumilus Escherichia coli | [ |
苯甲酸、4-羟基肉桂酸、木质素 | 丙酮酸、乳酸、琥珀酸、衣康酸、酮己二酸 | Phanerochaete chrysosporium Pseudomonas putida | [ |
香兰素、香草酸、苯甲酸、儿茶酚 | 顺,顺-己二烯二酸 | Arthrobacter sp. Brevibacterium flavum Corynebacterium acetoacidophilum Corynebacterium glutamicum Corynebacterium lilium Corynebacterium pseudodiphtheriticum Pseudomonas sp. Pseudomonas putida Sphingobacterium sp. | [ |
儿茶酚 | 聚对苯二甲酸乙二醇酯 | Pseudomonas putida | [ |
木质素 | 脂质 | Rhodococcus opacus | [ |
木质素 | 聚羟基烷酯 | Cupriavidus basilensis Pandoraea sp. Pseudomonas putida | [ |
Table 2 Valorization of lignin and its derived aromatics
底物 | 产物 | 底盘细胞 | 参考文献 |
---|---|---|---|
异丁香酚、丁香酚、香草醇、阿魏酸 | 香兰素 | Bacillus pumilus Escherichia coli | [ |
苯甲酸、4-羟基肉桂酸、木质素 | 丙酮酸、乳酸、琥珀酸、衣康酸、酮己二酸 | Phanerochaete chrysosporium Pseudomonas putida | [ |
香兰素、香草酸、苯甲酸、儿茶酚 | 顺,顺-己二烯二酸 | Arthrobacter sp. Brevibacterium flavum Corynebacterium acetoacidophilum Corynebacterium glutamicum Corynebacterium lilium Corynebacterium pseudodiphtheriticum Pseudomonas sp. Pseudomonas putida Sphingobacterium sp. | [ |
儿茶酚 | 聚对苯二甲酸乙二醇酯 | Pseudomonas putida | [ |
木质素 | 脂质 | Rhodococcus opacus | [ |
木质素 | 聚羟基烷酯 | Cupriavidus basilensis Pandoraea sp. Pseudomonas putida | [ |
1 | LYND L R, BECKHAM G T, GUSS A M, et al. Toward low-cost biological and hybrid biological/catalytic conversion of cellulosic biomass to fuels[J]. Energy & Environmental Science, 2022, 15(3): 938-990. |
2 | BIDLACK J E, DASHEK W V. Plant cell walls[M/OL]//DASHEK W V, MIGLANI G S. Plant cells and their organelles. Hoboken, New Jersey, USA: John Wiley & Sons, 2016, 209-238 [2023-08-01]. . |
3 | HEINZE T. Cellulose: structure and properties[M/OL]//ROJAS O J. Cellulose chemistry and properties: fibers, nanocelluloses and advanced materials. Cham: Springer International Publishing, 2016: 1-52 [2023-08-01]. . |
4 | BUTTERFIELD B G, MEYLAN B A. Three-dimensional structure of wood: an ultrastructural approach[M/OL]. 2nd ed. London: Chapman and Hall Publishers, 1980[2023-08-01]. . |
5 | GÍRIO F M, FONSECA C, CARVALHEIRO F, et al. Hemicelluloses for fuel ethanol: a review[J]. Bioresource Technology, 2010, 101(13): 4775-4800. |
6 | VANHOLME R, DE MEESTER B, RALPH J, et al. Lignin biosynthesis and its integration into metabolism[J]. Current Opinion in Biotechnology, 2019, 56: 230-239. |
7 | VANHOLME R, DEMEDTS B, MORREEL K, et al. Lignin biosynthesis and structure[J]. Plant Physiology, 2010, 153(3): 895-905. |
8 | RENCORET J, ROSADO M J, KIM H, et al. Flavonoids naringenin chalcone, naringenin, dihydrotricin, and tricin are lignin monomers in papyrus[J]. Plant Physiology, 2022, 188(1): 208-219. |
9 | SANDERSON K. Lignocellulose: a chewy problem[J]. Nature, 2011, 474(7352): S12-S14. |
10 | ANTAR M, LYU D M, NAZARI M, et al. Biomass for a sustainable bioeconomy: an overview of world biomass production and utilization[J]. Renewable and Sustainable Energy Reviews, 2021, 139: 110691. |
11 | PERCIVAL ZHANG Y H, HIMMEL M E, MIELENZ J R. Outlook for cellulase improvement: screening and selection strategies[J]. Biotechnology Advances, 2006, 24(5): 452-481. |
12 | ERICKSON E, BLEEM A, KUATSJAH E, et al. Critical enzyme reactions in aromatic catabolism for microbial lignin conversion[J]. Nature Catalysis, 2022, 5(2): 86-98. |
13 | NAQVI M, YAN J Y, DAHLQUIST E. Bio-refinery system in a pulp mill for methanol production with comparison of pressurized black liquor gasification and dry gasification using direct causticization[J]. Applied Energy, 2012, 90(1): 24-31. |
14 | CHIO C L, SAIN M, QIN W S. Lignin utilization: a review of lignin depolymerization from various aspects[J]. Renewable and Sustainable Energy Reviews, 2019, 107: 232-249. |
15 | QIN Y L, LIN X L, LU Y Q, et al. Preparation of a low reducing effect sulfonated alkali lignin and application as dye dispersant[J]. Polymers, 2018, 10(9): 982. |
16 | LUO X G, XIAO Y Q, WU Q X, et al. Development of high-performance biodegradable rigid polyurethane foams using all bioresource-based polyols: lignin and soy oil-derived polyols[J]. International Journal of Biological Macromolecules, 2018, 115: 786-791. |
17 | FRANGVILLE C, RUTKEVIČIUS M, RICHTER A P, et al. Fabrication of environmentally biodegradable lignin nanoparticles[J]. ChemPhysChem, 2012, 13(18): 4235-4243. |
18 | ZIMNIEWSKA M, KOZŁOWSKI R, BATOG J. Nanolignin modified linen fabric as a multifunctional product[J]. Molecular Crystals and Liquid Crystals, 2008, 484(1): 43/[409]-50/[416]. |
19 | ÇETIN N S, ÖZMEN N. Use of organosolv lignin in phenol-formaldehyde resins for particleboard production:Ⅰ. Organosolv lignin modified resins[J]. International Journal of Adhesion and Adhesives, 2002, 22(6): 477-480. |
20 | WENG C H, PENG X W, HAN Y J. Depolymerization and conversion of lignin to value-added bioproducts by microbial and enzymatic catalysis[J]. Biotechnology for Biofuels, 2021, 14(1): 84. |
21 | BAJWA D S, POURHASHEM G, ULLAH A H, et al. A concise review of current lignin production, applications, products and their environmental impact[J]. Industrial Crops and Products, 2019, 139: 111526. |
22 | ARO T, FATEHI P. Production and application of lignosulfonates and sulfonated lignin[J]. ChemSusChem, 2017, 10(9): 1861-1877. |
23 | SJÖSTRÖM E. Wood chemistry: fundamentals and applications[M/OL]. 2nd ed. San Diego: Academic Press, 1993: 293[2023-08-01]. . |
24 | STRASSBERGER Z, TANASE S, ROTHENBERG G. The pros and cons of lignin valorisation in an integrated biorefinery[J]. RSC Advances, 2014, 4(48): 25310-25318. |
25 | SANNIGRAHI P, RAGAUSKAS A J. Fundamentals of biomass pretreatment by fractionation[M/OL]//WYMAN C E. Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. Hoboken, New Jersey, USA: John Wiley & Sons, 2013: 201-222 [2023-08-01]. . |
26 | ZAKZESKI J, JONGERIUS A L, BRUIJNINCX P C A, et al. Catalytic lignin valorization process for the production of aromatic chemicals and hydrogen[J]. ChemSusChem, 2012, 5(8): 1602-1609. |
27 | ERDOCIA X, HERNÁNDEZ-RAMOS F, MORALES A, et al. Lignin extraction and isolation methods[M/OL]//Lignin-based materials for biomedical applications. Amsterdam: Elsevier, 2021: 61-104 [2023-08-01]. . |
28 | CHIARAMONTI D, PRUSSI M, FERRERO S, et al. Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method[J]. Biomass and Bioenergy, 2012, 46: 25-35. |
29 | ZHOU S F, YANG Q, RUNGE T M. Ambient-temperature sulfuric acid pretreatment to alter structure and improve enzymatic digestibility of alfalfa stems[J]. Industrial Crops and Products, 2015, 70: 410-416. |
30 | BHAGIA S, LI H J, GAO X D, et al. Flowthrough pretreatment with very dilute acid provides insights into high lignin contribution to biomass recalcitrance[J]. Biotechnology for Biofuels, 2016, 9: 245. |
31 | USMANI Z, SHARMA M, GUPTA P, et al. Ionic liquid based pretreatment of lignocellulosic biomass for enhanced bioconversion[J]. Bioresource Technology, 2020, 304: 123003. |
32 | BRANDT A, GRÄSVIK J, HALLETT J P, et al. Deconstruction of lignocellulosic biomass with ionic liquids[J]. Green Chemistry, 2013, 15(3): 550-583. |
33 | BECKER J, WITTMANN C. A field of dreams: lignin valorization into chemicals, materials, fuels, and health-care products[J]. Biotechnology Advances, 2019, 37(6): 107360. |
34 | ATIWESH G, PARRISH C C, BANOUB J, et al. Lignin degradation by microorganisms: a review[J]. Biotechnology Progress, 2022, 38(2): e3226. |
35 | JANUSZ G, PAWLIK A, SULEJ J, et al. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution[J]. FEMS Microbiology Reviews, 2017, 41(6): 941-962. |
36 | DEL CERRO C, ERICKSON E, DONG T, et al. Intracellular pathways for lignin catabolism in white-rot fungi[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(9): e2017381118. |
37 | JOHJIMA T, ITOH N, KABUTO M, et al. Direct interaction of lignin and lignin peroxidase from Phanerochaete chrysosporium [J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(5): 1989-1994. |
38 | DUTTA S. Lignin deconstruction[M/OL]//SAHA B, FAN M H, WANG J J. Sustainable catalytic processes. Amsterdam: Elsevier, 2015: 125-155 [2023-08-01]. . |
39 | XU Z X, QIN L, CAI M F, et al. Biodegradation of Kraft lignin by newly isolated Klebsiella pneumoniae, Pseudomonas putida, and Ochrobactrum tritici strains[J]. Environmental Science and Pollution Research, 2018, 25(14): 14171-14181. |
40 | AHMAD M, ROBERTS J N, HARDIMAN E M, et al. Identification of DypB from Rhodococcus jostii RHA1 as a lignin peroxidase[J]. Biochemistry, 2011, 50(23): 5096-5107. |
41 | LI F, ZHAO Y Q, XUE L, et al. Microbial lignin valorization through depolymerization to aromatics conversion[J]. Trends in Biotechnology, 2022, 40(12): 1469-1487. |
42 | MASAI EIJI, ICHIMURA A, SATO Y, et al. Roles of the enantioselective glutathione S-transferases in cleavage of β-aryl ether[J]. Journal of Bacteriology, 2003, 185(6): 1768-1775. |
43 | YOSHIDA H. LⅩⅢ.—Chemistry of lacquer (urushi). PartⅠ. communication from the Chemical Society of Tokio[J]. Journal of The Chemical Society, Transactions, 1883, 43: 472-486. |
44 | XU F, SHIN W, BROWN S H, et al. A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity, and stability[J]. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1996, 1292(2): 303-311. |
45 | BALDRIAN P. Fungal laccases - occurrence and properties[J]. FEMS Microbiology Reviews, 2006: 30(2):215-42. |
46 | DASHTBAN M, SCHRAFT H, SYED T A, et al. Fungal biodegradation and enzymatic modification of lignin[J]. International Journal of Biochemistry and Molecular Biology, 2010, 1(1): 36-50. |
47 | WONG D W S. Structure and action mechanism of ligninolytic enzymes[J]. Applied Biochemistry and Biotechnology, 2009, 157(2): 174-209. |
48 | WESENBERG D, KYRIAKIDES I, AGATHOS S N. White-rot fungi and their enzymes for the treatment of industrial dye effluents[J]. Biotechnology Advances, 2003, 22(1/2): 161-187. |
49 | RAHMANPOUR R, REA D A, JAMSHIDI S, et al. Structure of Thermobifida fusca DyP-type peroxidase and activity towards Kraft lignin and lignin model compounds[J]. Archives of Biochemistry and Biophysics, 2016, 594: 54-60. |
50 | MASAI E J, KATAYAMA Y, NISHIKAWA S, et al. Detection and localization of a new enzyme catalyzing the β-aryl ether cleavage in the soil bacterium (Pseudomonas paucimobilis SYK-6)[J]. FEBS Letters, 1989, 249(2): 348-352. |
51 | LINGER J G, VARDON D R, GUARNIERI M T, et al. Lignin valorization through integrated biological funneling and chemical catalysis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(33): 12013-12018. |
52 | BECKHAM G T, JOHNSON C W, KARP E M, et al. Opportunities and challenges in biological lignin valorization[J]. Current Opinion in Biotechnology, 2016, 42: 40-53. |
53 | VAILLANCOURT F H, BOLIN J T, ELTIS L D. The ins and outs of ring-cleaving dioxygenases[J]. Critical Reviews in Biochemistry and Molecular Biology, 2006, 41(4): 241-267. |
54 | MASAI E J, SASAKI M, MINAKAWA Y, et al. A novel tetrahydrofolate-dependent O-demethylase gene is essential for growth of Sphingomonas paucimobilis SYK-6 with syringate[J]. Journal of Bacteriology, 2004, 186(9): 2757-2765. |
55 | ABE T, MASAI E J, MIYAUCHI K, et al. A tetrahydrofolate-dependent O-demethylase, LigM, is crucial for catabolism of vanillate and syringate in Sphingomonas paucimobilis SYK-6[J]. Journal of Bacteriology, 2005, 187(6): 2030-2037. |
56 | NOGALES J, CANALES Á, JIMÉNEZ-BARBERO J, et al. Molecular characterization of the gallate dioxygenase from Pseudomonas putida KT2440. The prototype of a new subgroup of extradiol dioxygenases [J]. Journal of Biological Chemistry, 2005, 280(42): 35382-35390. |
57 | NOGALES J, CANALES Á, JIMÉNEZ-BARBERO J, et al. Unravelling the gallic acid degradation pathway in bacteria: the gal cluster from Pseudomonas putida [J]. Molecular Microbiology, 2011, 79(2): 359-374. |
58 | ORNSTON L N. The conversion of catechol and protocatechuate to β-ketoadipate by Pseudomonas putida. 3. Enzymes of the catechol pathway[J]. Journal of Biological Chemistry, 1966, 241(16): 3795-3799. |
59 | KASCHABEK S R, KUHN B, MÜLLER D, et al. Degradation of aromatics and chloroaromatics by Pseudomonas sp. strain B13: purification and characterization of 3-oxoadipate: succinyl-coenzyme A (CoA) transferase and 3-oxoadipyl-CoA thiolase[J]. Journal of Bacteriology, 2002, 184(1): 207-215. |
60 | GÖBEL M, KASSEL-CATI K, SCHMIDT E, et al. Degradation of aromatics and chloroaromatics by Pseudomonas sp. strain B13: cloning, characterization, and analysis of sequences encoding 3-oxoadipate: succinyl-coenzyme A (CoA) transferase and 3-oxoadipyl-CoA thiolase[J]. Journal of Bacteriology, 2002, 184(1): 216-223. |
61 | NOGALES J, MACCHI R, FRANCHI F, et al. Characterization of the last step of the aerobic phenylacetic acid degradation pathway[J]. Microbiology, 2007, 153(2): 357-365. |
62 | VETTING M W, OHLENDORF D H. The 1.8 Å crystal structure of catechol 1,2-dioxygenase reveals a novel hydrophobic helical zipper as a subunit linker[J]. Structure, 2000, 8(4): 429-440. |
63 | EULBERG D, LAKNER S, GOLOVLEVA L A, et al. Characterization of a protocatechuate catabolic gene cluster from Rhodococcus opacus 1CP: evidence for a merged enzyme with 4-carboxymuconolactone-decarboxylating and 3-oxoadipate enol-lactone-hydrolyzing activity[J]. Journal of Bacteriology, 1998, 180(5): 1072-1081. |
64 | TEUFEL R, MASCARAQUE V, ISMAIL W, et al. Bacterial phenylalanine and phenylacetate catabolic pathway revealed[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(32): 14390-14395. |
65 | FERRARO D J, GAKHAR L, RAMASWAMY S. Rieske business: structure-function of Rieske non-heme oxygenases[J]. Biochemical and Biophysical Research Communications, 2005, 338(1): 175-190. |
66 | HANNEMANN F, BICHET A, EWEN K M, et al. Cytochrome P450 systems—biological variations of electron transport chains[J]. Biochimica et Biophysica Acta (BBA)- General Subjects, 2007, 1770(3): 330-344. |
67 | GUENGERICH F P. A history of the roles of cytochrome P450 enzymes in the toxicity of drugs[J]. Toxicological Research, 2021, 37(1): 1-23. |
68 | GUENGERICH F P. Mechanisms of cytochrome P450-catalyzed oxidations[J]. ACS Catalysis, 2018, 8(12): 10964-10976. |
69 | WOLF M E, HINCHEN D J, DUBOIS J L, et al. Cytochromes P450 in the biocatalytic valorization of lignin[J]. Current Opinion in Biotechnology, 2022, 73: 43-50. |
70 | GUENGERICH F P, YOSHIMOTO F K. Formation and cleavage of C—C bonds by enzymatic oxidation-reduction reactions[J]. Chemical Reviews, 2018, 118(14): 6573-6655. |
71 | ELTIS L D, KARLSON U, TIMMIS K N. Purification and characterization of cytochrome P450RR1 from Rhodococcus rhodochrous [J]. European Journal of Biochemistry, 1993, 213(1): 211-216. |
72 | MALLINSON S J B, MACHOVINA M M, SILVEIRA R L, et al. A promiscuous cytochrome P450 aromatic O-demethylase for lignin bioconversion[J]. Nature Communications, 2018, 9: 2487. |
73 | ENTSCH B, VAN BERKEL W J. Structure and mechanism of para-hydroxybenzoate hydroxylase[J]. FASEB Journal, 1995, 9(7): 476-483. |
74 | DUFFNER F M, KIRCHNER U, BAUER M P, et al. Phenol/cresol degradation by the thermophilic Bacillus thermoglucosidasius A7: cloning and sequence analysis of five genes involved in the pathway[J]. Gene, 2000, 256(1/2): 215-221. |
75 | FURUKAWA K, SUENAGA H, GOTO M. Biphenyl dioxygenases: functional versatilities and directed evolution[J]. Journal of Bacteriology, 2004, 186(16): 5189-5196. |
76 | BUGG T D H. Dioxygenase enzymes: catalytic mechanisms and chemical models[J]. Tetrahedron, 2003, 59(36): 7075-7101. |
77 | HAYAISHI O, KATAGIRI M, ROTHBERG S. Mechanism of the pyrocatechase reaction[J]. Journal of the American Chemical Society, 1955, 77(20): 5450-5451. |
78 | STANIER R Y, INGRAHAM J L. Protocatechuic acid oxidase[J]. Journal of Biological Chemistry, 1954, 210(2): 799-808. |
79 | WOLGEL S A, LIPSCOMB J D. Protocatechuate 2,3-dioxygenase from Bacillus macerans [J]. Methods in Enzymology, 1990, 188: 95-101. |
80 | DAGLEY S, GEARY P J, WOOD J M. The metabolism of protocatechuate by Pseudomonas testosteroni [J]. The Biochemical Journal, 1968, 109(4): 559-568. |
81 | LIU Z H, LI B Z, YUAN J S, et al. Creative biological lignin conversion routes toward lignin valorization[J]. Trends in Biotechnology, 2022, 40(12): 1550-1566. |
82 | KASAI D, MASAI E J, KATAYAMA Y, et al. Degradation of 3-O-methylgallate in Sphingomonas paucimobilis SYK-6 by pathways involving protocatechuate 4,5-dioxygenase[J]. FEMS Microbiology Letters, 2007, 274(2): 323-328. |
83 | ZUO K J, LI H N, CHEN J H, et al. Effective biotransformation of variety of guaiacyl lignin monomers into vanillin by Bacillus pumilus [J]. Frontiers in Microbiology, 2022, 13: 901690. |
84 | OVERHAGE J, STEINBÜCHEL A, PRIEFERT H. Highly efficient biotransformation of eugenol to ferulic acid and further conversion to vanillin in recombinant strains of Escherichia coli [J]. Applied and Environmental Microbiology, 2003, 69(11): 6569-6576. |
85 | JOHNSON C W, BECKHAM G T. Aromatic catabolic pathway selection for optimal production of pyruvate and lactate from lignin[J]. Metabolic Engineering, 2015, 28: 240-247. |
86 | HONG C Y, RYU S H, JEONG H, et al. Phanerochaete chrysosporium multienzyme catabolic system for in vivo modification of synthetic lignin to succinic acid[J]. ACS Chemical Biology, 2017, 12(7): 1749-1759. |
87 | ELMORE J R, DEXTER G N, SALVACHÚA D, et al. Production of itaconic acid from alkali pretreated lignin by dynamic two stage bioconversion[J]. Nature Communications, 2021, 12: 2261. |
88 | WERNER A, CORDELL W T, LAHIVE C W, et al. Lignin conversion to β-ketoadipic acid by Pseudomonas putida via metabolic engineering and bioprocess development[J]. Science Advances, 2023, 9(36): eadj0053. |
89 | WU C M, WU C C, SU C C, et al. Microbial synthesis of cis,cis-muconic acid from benzoate by Sphingobacterium sp. mutants[J]. Biochemical Engineering Journal, 2006, 29(1/2): 35-40. |
90 | IMADA Y, YOSHIKAWA N, MIZUNO S, et al. Process for preparing muconic acid: US04871 667A[P]. 1989-10-13[2023-08-01]. |
91 | XIE N Z, WANG Q Y, ZHU Q X, et al. Optimization of medium composition for cis, cis-muconic acid production by a Pseudomonas sp. mutant using statistical methods[J]. Preparative Biochemistry & Biotechnology, 2014, 44(4): 342-354. |
92 | LIU W H, LI R M, KUNG K H, et al. Bioconversion of benzoic acid to cis, cis-muconic acid by Corynebacterium pseudodiphtheriticum [J]. Food Science and Agricultural Chemistry, 2003, 5(1): 7-12. |
93 | SCHMIDT E, KNACKMUSS H J. Production of cis,cis-muconate from benzoate and 2-fluoro-cis,cis-muconate from 3-fluorobenzoate by 3-chlorobenzoate degrading bacteria[J]. Applied Microbiology and Biotechnology, 1984, 20(5): 351-355. |
94 | CHOI W J, LEE E Y, CHO M H, et al. Enhanced production of cis,cis-muconate in a cell-recycle bioreactor[J]. Journal of Fermentation and Bioengineering, 1997, 84(1): 70-76. |
95 | BANG S G, CHOI C Y. DO-stat fed-batch production of cis,cis-muconic acid from benzoic acid by Pseudomonas putida BM014[J]. Journal of Fermentation and Bioengineering, 1995, 79(4): 381-383. |
96 | VAN DUUREN J B J H, WIJTE D, KARGE B, et al. pH-stat fed-batch process to enhance the production of cis,cis-muconate from benzoate by Pseudomonas putida KT2440-JD1[J]. Biotechnology Progress, 2012, 28(1): 85-92. |
97 | MIZUNO S, YOSHIKAWA N, SEKI M, et al. Microbial production of cis,cis-muconic acid from benzoic acid[J]. Applied Microbiology and Biotechnology, 1988, 28(1): 20-25. |
98 | VARDON D R, RORRER N A, SALVACHÚA D, et al. cis,cis-Muconic acid: separation and catalysis to bio-adipic acid for nylon-6,6 polymerization[J]. Green Chemistry, 2016, 18(11): 3397-3413. |
99 | BECKER J, KUHL M, KOHLSTEDT M, et al. Metabolic engineering of Corynebacterium glutamicum for the production of cis,cis-muconic acid from lignin[J]. Microbial Cell Factories, 2018, 17(1): 115. |
100 | WEILAND F, BARTON N, KOHLSTEDT M, et al. Systems metabolic engineering upgrades Corynebacterium glutamicum to high-efficiency cis,cis-muconic acid production from lignin-based aromatics[J]. Metabolic Engineering, 2023, 75: 153-169. |
101 | KOHLSTEDT M, STARCK S, BARTON N, et al. From lignin to nylon: cascaded chemical and biochemical conversion using metabolically engineered Pseudomonas putida [J]. Metabolic Engineering, 2018, 47: 279-293. |
102 | KOHLSTEDT M, WEIMER A, WEILAND F, et al. Biobased PET from lignin using an engineered cis,cis-muconate-producing Pseudomonas putida strain with superior robustness, energy and redox properties[J]. Metabolic Engineering, 2022, 72: 337-352. |
103 | KOSA M, RAGAUSKAS A J. Lignin to lipid bioconversion by oleaginous Rhodococci [J]. Green Chemistry, 2013, 15(8): 2070-2074. |
104 | WEI Z, ZENG G M, HUANG F, et al. Bioconversion of oxygen-pretreated Kraft lignin to microbial lipid with oleaginous Rhodococcus opacus DSM 1069[J]. Green Chemistry, 2015, 17(5): 2784-2789. |
105 | ZHAO C, XIE S X, PU Y Q, et al. Synergistic enzymatic and microbial lignin conversion[J]. Green Chemistry, 2016, 18(5): 1306-1312. |
106 | LIU Z H, XIE S X, LIN F R, et al. Combinatorial pretreatment and fermentation optimization enabled a record yield on lignin bioconversion[J]. Biotechnology for Biofuels, 2018, 11: 21. |
107 | TOMIZAWA S, CHUAH J A, MATSUMOTO K, et al. Understanding the limitations in the biosynthesis of polyhydroxyalkanoate (PHA) from lignin derivatives[J]. ACS Sustainable Chemistry and Engineering, 2014, 2(5): 1106-1113. |
108 | KUMAR M, SINGHAL A, VERMA P K, et al. Production and characterization of polyhydroxyalkanoate from lignin derivatives by Pandoraea sp. ISTKB[J]. ACS Omega, 2017, 2(12): 9156-9163. |
109 | SHI Y, YAN X, LI Q, et al. Directed bioconversion of Kraft lignin to polyhydroxyalkanoate by Cupriavidus basilensis B-8 without any pretreatment[J]. Process Biochemistry, 2017, 52: 238-242. |
110 | XU Z Y, PAN C M, LI X L, et al. Enhancement of polyhydroxyalkanoate production by co-feeding lignin derivatives with glycerol in Pseudomonas putida KT2440[J]. Biotechnology for Biofuels, 2021, 14(1): 11. |
111 | WANG H, PENG X D, LI H, et al. Recent biotechnology advances in bio-conversion of lignin to lipids by bacterial cultures[J]. Frontiers in Chemistry, 2022, 10: 894593. |
112 | XIANG M J, KANG Q, ZHANG D W. Advances on systems metabolic engineering of Bacillus subtilis as a chassis cell[J]. Synthetic and Systems Biotechnology, 2020, 5(4): 245-251. |
113 | KOWALCZYK J E, SAHA S, MÄKELÄ M R. Application of CRISPR/Cas9 tools for genome editing in the white-rot fungus dichomitus squalens[J]. Biomolecules, 2021, 11(10): 1526. |
[1] | Alei ZHANG, Guoguang WEI, Chi ZHANG, Lei CHEN, Xi ZHOU, Wei LIU, Kequan CHEN. Research progress on bio-degradation and valuable bio-conversion of chitinous resources [J]. Synthetic Biology Journal, 2024, 5(6): 1279-1299. |
[2] | Wei YE, Rui LI, Weihong JIANG, Yang GU. Microbial conversion and in vitro enzymatic catalysis for carbon dioxide utilization: a review [J]. Synthetic Biology Journal, 2023, 4(6): 1223-1245. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||