Synthetic Biology Journal ›› 2024, Vol. 5 ›› Issue (6): 1279-1299.DOI: 10.12211/2096-8280.2024-041
• Invited Review • Previous Articles Next Articles
Alei ZHANG, Guoguang WEI, Chi ZHANG, Lei CHEN, Xi ZHOU, Wei LIU, Kequan CHEN
Received:
2024-05-13
Revised:
2024-08-04
Online:
2025-01-10
Published:
2024-12-31
Contact:
Kequan CHEN
张阿磊, 魏国光, 张弛, 陈磊, 周奚, 刘伟, 陈可泉
通讯作者:
陈可泉
作者简介:
基金资助:
CLC Number:
Alei ZHANG, Guoguang WEI, Chi ZHANG, Lei CHEN, Xi ZHOU, Wei LIU, Kequan CHEN. Research progress on bio-degradation and valuable bio-conversion of chitinous resources[J]. Synthetic Biology Journal, 2024, 5(6): 1279-1299.
张阿磊, 魏国光, 张弛, 陈磊, 周奚, 刘伟, 陈可泉. 几丁质资源生物降解和高值转化的研究进展[J]. 合成生物学, 2024, 5(6): 1279-1299.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2024-041
生物类型 | 来源分类 | 几丁质含量 |
---|---|---|
节肢动物 | 甲壳纲:虾、蟹等 | 20%~85% |
昆虫纲:蝗虫/蝴蝶/蚊/蛾/蝇/蚕等蛹壳中 | 20%~60% | |
多足/蛛形纲:马陆、蜈蚣、蜘蛛、蝎子、螨虫等 | 4%~22% | |
软体动物 | 双神经/腹足/掘足/瓣鳃/头足纲:鲍鱼、蜗牛、角贝、牡蛎、乌贼等 | 3%~26% |
环节动物 | 原环虫/毛足纲:角涡虫、沙蚕、蚯蚓等 | 20%~38% |
原生动物 | 鞭毛虫/肉足/孢子虫/纤毛虫纲:锥体虫、变形虫、疟原虫、草履虫等 | 极少 |
腔肠动物 | 水螅虫/钵水母/珊瑚虫纲:水螅、筒螅、海月水母、海蜇、霞水母等 | 3%~30% |
海藻 | 主要是绿藻 | 少量 |
真菌 | 囊菌、担子菌、藻菌等 | 微量至45% |
动物关节 | 蹄、足的坚硬部分、动物肌肉、骨结合处等 | 少量 |
Table 1 Sources and contents of chitin[20]
生物类型 | 来源分类 | 几丁质含量 |
---|---|---|
节肢动物 | 甲壳纲:虾、蟹等 | 20%~85% |
昆虫纲:蝗虫/蝴蝶/蚊/蛾/蝇/蚕等蛹壳中 | 20%~60% | |
多足/蛛形纲:马陆、蜈蚣、蜘蛛、蝎子、螨虫等 | 4%~22% | |
软体动物 | 双神经/腹足/掘足/瓣鳃/头足纲:鲍鱼、蜗牛、角贝、牡蛎、乌贼等 | 3%~26% |
环节动物 | 原环虫/毛足纲:角涡虫、沙蚕、蚯蚓等 | 20%~38% |
原生动物 | 鞭毛虫/肉足/孢子虫/纤毛虫纲:锥体虫、变形虫、疟原虫、草履虫等 | 极少 |
腔肠动物 | 水螅虫/钵水母/珊瑚虫纲:水螅、筒螅、海月水母、海蜇、霞水母等 | 3%~30% |
海藻 | 主要是绿藻 | 少量 |
真菌 | 囊菌、担子菌、藻菌等 | 微量至45% |
动物关节 | 蹄、足的坚硬部分、动物肌肉、骨结合处等 | 少量 |
酶 | 活性 | 酶活 | 参考文献 |
---|---|---|---|
RFChiA | 持续性外切 | 6.9 U/mg | [ |
Chit46 | 内切 | 9.5 U/mg | [ |
ActChi | 持续性外切 | 3.7 U/mg | [ |
Chi304 | 内切、外切 | ND | [ |
Chit33 | 内切 | 2.7 U/mg | [ |
R-SaChiA4 | 内切 | 28 U/mg | [ |
CmChi1 | 内切、外切、N-乙酰氨基葡萄糖苷酶 | 1.1 U/mg | [ |
Table 2 Enzymes capable of catalyzing the degradation of crystalline chitin
酶 | 活性 | 酶活 | 参考文献 |
---|---|---|---|
RFChiA | 持续性外切 | 6.9 U/mg | [ |
Chit46 | 内切 | 9.5 U/mg | [ |
ActChi | 持续性外切 | 3.7 U/mg | [ |
Chi304 | 内切、外切 | ND | [ |
Chit33 | 内切 | 2.7 U/mg | [ |
R-SaChiA4 | 内切 | 28 U/mg | [ |
CmChi1 | 内切、外切、N-乙酰氨基葡萄糖苷酶 | 1.1 U/mg | [ |
来源 | 酶 | 底物 | 产物 | 寡糖产率/产量 | 参考文献 |
---|---|---|---|---|---|
Salinivibrio sp. BAO-1801 | 野生几丁质酶 | 胶体几丁质 | 几丁二糖,少量GlcNAc | 71.5% | [ |
T. gamsii R1 | 野生几丁质酶 | 胶体几丁质 | 几丁二糖、三糖 | 11.62 g/L,1.92 g/L | [ |
S. marcescens | SmChiB | 胶体几丁质 | 几丁二糖 | 2.04 g/L | [ |
堆肥宏基因组 | ActChi | 粉粒几丁质 | 几丁二糖 | 17% | [ |
T. harzianum | rChit46 | 胶体几丁质 | 几丁二糖,微量GlcNAc | 94.8% | [ |
P. barengoltzii | PbChi70 | 胶体几丁质 | 几丁二糖,微量GlcNAc | 21.6 g/L,89.5% | [ |
F. johnsoniae UW101 | FjChiB | 胶体几丁质 | 几丁二糖、三糖 | — | [ |
S. marcescens | rCHI-2 | 胶体几丁质 | 几丁二糖,微量GlcNAc | — | [ |
M. thermophila C1 | Chi1 | 溶胀几丁质 | 几丁二糖,微量GlcNAc | — | [ |
A. fumigatus df347 | AfChi28 | 胶体几丁质 | 几丁二糖到几丁四糖 | — | [ |
A. media CZW001 | AmChi | 粉粒几丁质 | 几丁五糖、六糖 | — | [ |
B. aryabhattai | BaChiA | 粉粒几丁质 | 几丁二糖到几丁六糖 | — | [ |
Corallococcus sp. EGB | CcCti1 | 胶体几丁质 | 几丁二糖到几丁六糖 | — | [ |
Table 3 Production of N-acetyl chitooligosaccharides from enzymatic degradation of chitin
来源 | 酶 | 底物 | 产物 | 寡糖产率/产量 | 参考文献 |
---|---|---|---|---|---|
Salinivibrio sp. BAO-1801 | 野生几丁质酶 | 胶体几丁质 | 几丁二糖,少量GlcNAc | 71.5% | [ |
T. gamsii R1 | 野生几丁质酶 | 胶体几丁质 | 几丁二糖、三糖 | 11.62 g/L,1.92 g/L | [ |
S. marcescens | SmChiB | 胶体几丁质 | 几丁二糖 | 2.04 g/L | [ |
堆肥宏基因组 | ActChi | 粉粒几丁质 | 几丁二糖 | 17% | [ |
T. harzianum | rChit46 | 胶体几丁质 | 几丁二糖,微量GlcNAc | 94.8% | [ |
P. barengoltzii | PbChi70 | 胶体几丁质 | 几丁二糖,微量GlcNAc | 21.6 g/L,89.5% | [ |
F. johnsoniae UW101 | FjChiB | 胶体几丁质 | 几丁二糖、三糖 | — | [ |
S. marcescens | rCHI-2 | 胶体几丁质 | 几丁二糖,微量GlcNAc | — | [ |
M. thermophila C1 | Chi1 | 溶胀几丁质 | 几丁二糖,微量GlcNAc | — | [ |
A. fumigatus df347 | AfChi28 | 胶体几丁质 | 几丁二糖到几丁四糖 | — | [ |
A. media CZW001 | AmChi | 粉粒几丁质 | 几丁五糖、六糖 | — | [ |
B. aryabhattai | BaChiA | 粉粒几丁质 | 几丁二糖到几丁六糖 | — | [ |
Corallococcus sp. EGB | CcCti1 | 胶体几丁质 | 几丁二糖到几丁六糖 | — | [ |
酶(来源) | 底物 | GlcNAc浓度/(g/L) | 转化率 | 参考文献 |
---|---|---|---|---|
C. meiyuanensis SYBC-H1发酵液 | 粉粒几丁质 | 39.3 | 98% | [ |
微生物发酵处理几丁质 | 19.2 | 96% | [ | |
超声处理几丁质 | 2.65 | 100% | [ | |
高压均质小龙虾壳 | 3.9 | — | [ | |
有机溶剂预处理几丁质 | 4.6~7.6 | 96% | [ | |
碱冻融处理几丁质 | 75 | 98% | [ | |
A. caviae CH129发酵液 | 胶体几丁质 | — | 93% | [ |
A. terreus 发酵液 | 膨胀几丁质 | 46 | 92% | [ |
S. proteamaculans NJ303发酵液 | 高压均质小龙虾壳 | 3.9 | 78% | [ |
T. harzianum发酵液 | 冻干几丁质粉 | 14 | 80% | [ |
S. albolongus 发酵液 | 胶体几丁质 | 4.4 | 89% | [ |
ScChiC, ScHEX | 粉粒几丁质 | 9.4 | 94% | [ |
SaChiA4, SvNag2557 | 胶体几丁质 | 8.0 | 80% | [ |
ChiA, BsNagZ | 胶体几丁质 | — | 88% | [ |
BpChiA, BlNagZ | 胶体几丁质 | — | 64% | [ |
CmChi1 | 胶体几丁质 | 9.8 | 98% | [ |
ChiG | 胶体几丁质 | — | — | [ |
AMCase | 胶体几丁质 | 1.2 | 87% | [ |
PbChi70突变体, NAGase | 胶体几丁质 | — | 97% | [ |
PbChi74, NAGase | 胶体几丁质 | 27.8 | 93% | [ |
Table 4 Production of GlcNAc from enzymatic degradation of chitin
酶(来源) | 底物 | GlcNAc浓度/(g/L) | 转化率 | 参考文献 |
---|---|---|---|---|
C. meiyuanensis SYBC-H1发酵液 | 粉粒几丁质 | 39.3 | 98% | [ |
微生物发酵处理几丁质 | 19.2 | 96% | [ | |
超声处理几丁质 | 2.65 | 100% | [ | |
高压均质小龙虾壳 | 3.9 | — | [ | |
有机溶剂预处理几丁质 | 4.6~7.6 | 96% | [ | |
碱冻融处理几丁质 | 75 | 98% | [ | |
A. caviae CH129发酵液 | 胶体几丁质 | — | 93% | [ |
A. terreus 发酵液 | 膨胀几丁质 | 46 | 92% | [ |
S. proteamaculans NJ303发酵液 | 高压均质小龙虾壳 | 3.9 | 78% | [ |
T. harzianum发酵液 | 冻干几丁质粉 | 14 | 80% | [ |
S. albolongus 发酵液 | 胶体几丁质 | 4.4 | 89% | [ |
ScChiC, ScHEX | 粉粒几丁质 | 9.4 | 94% | [ |
SaChiA4, SvNag2557 | 胶体几丁质 | 8.0 | 80% | [ |
ChiA, BsNagZ | 胶体几丁质 | — | 88% | [ |
BpChiA, BlNagZ | 胶体几丁质 | — | 64% | [ |
CmChi1 | 胶体几丁质 | 9.8 | 98% | [ |
ChiG | 胶体几丁质 | — | — | [ |
AMCase | 胶体几丁质 | 1.2 | 87% | [ |
PbChi70突变体, NAGase | 胶体几丁质 | — | 97% | [ |
PbChi74, NAGase | 胶体几丁质 | 27.8 | 93% | [ |
1 | ZHAO H B, HOLLADAY J E, BROWN H, et al. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural[J]. Science, 2007, 316(5831): 1597-1600. |
2 | KUMARI S, RATH P, HARI KUMAR A SRI, et al. Extraction and characterization of chitin and chitosan from fishery waste by chemical method[J]. Environmental Technology & Innovation, 2015, 3: 77-85. |
3 | WAN A C A, TAI B C U. CHITIN—a promising biomaterial for tissue engineering and stem cell technologies[J]. Biotechnology Advances, 2013, 31(8): 1776-1785. |
4 | YAN N, CHEN X. Sustainability: don’t waste seafood waste[J]. Nature, 2015, 524(7564): 155-157. |
5 | 王爱勤. 甲壳素化学[M]. 北京: 科学出版社, 2008. |
WANG A Q. Chitin chemistry[M]. Beijing: Science Press, 2008. | |
6 | CHEN X, YAN N. Novel catalytic systems to convert chitin and lignin into valuable chemicals[J]. Catalysis Surveys from Asia, 2014, 18(4): 164-176. |
7 | SHELDON R A. Green and sustainable manufacture of chemicals from biomass: state of the art[J]. Green Chemistry, 2014, 16(3): 950-963. |
8 | KAUR S, DHILLON G S. Recent trends in biological extraction of chitin from marine shell wastes: a review[J]. Critical Reviews in Biotechnology, 2015, 35(1): 44-61. |
9 | NASEEM S, PARRINO S M, BUENTEN D M, et al. Novel roles for GlcNAc in cell signaling[J]. Communicative & Integrative Biology, 2012, 5(2): 156-159. |
10 | RICHTER J, CAPKOVÁ K, HŘÍBALOVÁ V, et al. Collagen-induced arthritis: severity and immune response attenuation using multivalent N-acetyl glucosamine[J]. Clinical and Experimental Immunology, 2014, 177(1): 121-133. |
11 | 曹秀明. 壳寡糖及衍生物抗肿瘤作用、免疫调节作用及其机制的研究[D]. 青岛: 中国海洋大学, 2010. |
CAO X M. Research on the anti-tumor and immunomodulatory effects and mechanisms of chitosan oligosaccharides and their derivatives [D]. Qingdao: Ocean University of China, 2010. | |
12 | 李兆申. N-乙酰氨基葡萄糖治疗腹泻型肠易激综合征多中心临床研究[J]. 中华消化杂志, 2009, 29(4): 267-270. |
LI Z S. Treatment of diarrhea-predominant irritable bowel syndrome with N-acetyl-D-glucosamine: a randomized, double-blind, placebo-controlled multi-center study coorperative group[J]. Chinese Journal of Digestion, 2009, 29(4): 267-270. | |
13 | 张虎, 杜昱. 几丁寡糖与壳寡糖制备和功能[C]// 中国甲壳资源研究开发应用学术研讨会, 1997. |
ZHANG H, DU Y. Preparation and function of chitosan oligosaccharides and chitosan oligosaccharides [C]// the academic symposium on the research, Development and Application of Chinese Crustacean Resources, 1997. | |
14 | SHAN J W, XUN J C. Preparation method of chitin oligosaccharide zinc borone magnesium fertilizer: CN1597634[P]. 2004-08-27. |
15 | DAI J H, LI F K, FU X. Towards shell biorefinery: advances in chemical-catalytic conversion of chitin biomass to organonitrogen chemicals[J]. ChemSusChem, 2020, 13(24): 6498-6508. |
16 | CHEN X, SONG S, LI H Y, et al. Expanding the boundary of biorefinery: organonitrogen chemicals from biomass[J]. Accounts of Chemical Research, 2021, 54(7): 1711-1722. |
17 | JI X L, ZHAO Y F, LUI M Y, et al. Catalytic conversion of chitin-based biomass to nitrogen-containing chemicals[J]. iScience, 2024, 27(6): 109857. |
18 | ILANKOVAN P, HEIN S, NG C H, et al. Production of N-acetyl chitobiose from various chitin substrates using commercial enzymes[J]. Carbohydrate Polymers, 2006, 63(2): 245-250. |
19 | IL’INA A V, O Yu ZUEVA, LOPATIN S A, et al. Enzymatic hydrolysis of α-chitin[J]. Applied Biochemistry and Microbiology, 2004, 40(1): 35-38. |
20 | MULISCH M. Chitin in protistan organisms: distribution, synthesis and deposition[J]. European Journal of Protistology, 1993, 29(1): 1-18. |
21 | 伍军, 毛宏辉. 从麻辣小龙虾虾壳中提取甲壳素的研究[J]. 粮油加工, 2008(10): 128-130. |
WU J, MAO H H. Study on extracting chitin from shell of spicy crayfish[J]. Cereals and Oils Processing, 2008(10): 128-130. | |
22 | ZHANG J, XU W R, ZHANG Y C. Facile production of chitin from shrimp shells using a deep eutectic solvent and acetic acid[J]. RSC Advances, 2022, 12(35): 22631-22638. |
23 | SETOGUCHI T, KATO T, YAMAMOTO K, et al. Facile production of chitin from crab shells using ionic liquid and citric acid[J]. International Journal of Biological Macromolecules, 2012, 50(3): 861-864. |
24 | ZHU P, GU Z J, HONG S, et al. One-pot production of chitin with high purity from lobster shells using choline chloride-malonic acid deep eutectic solvent[J]. Carbohydrate Polymers, 2017, 177: 217-223. |
25 | SOROKULOVA I, KRUMNOW A, GLOBA L, et al. Efficient decomposition of shrimp shell waste using Bacillus cereus and Exiguobacterium acetylicum [J]. Journal of Industrial Microbiology & Biotechnology, 2009, 36(8): 1123-1126. |
26 | 李磊. 以嗜酸乳杆菌SWO1发酵虾头虾壳提取蛋白质和甲壳素的工艺研究[D]. 广州: 华南农业大学, 2011. |
LI L. Study on the process of extracting protein and chitin from shrimp head shells using Lactobacillus acidophilus SWO1 fermentation[D]. Guangzhou: South China Agricultural University, 2011. | |
27 | 刘斯雅, 林瑞君, 庄泽娟, 等. 植物乳杆菌发酵虾头、虾壳回收蛋白质和甲壳素的研究[J]. 现代食品科技, 2011, 27(4): 408-411, 383. |
LIU S Y, LIN R J, ZHUANG Z J, et al. Recovery of protein and chitin from shrimp waste by lactic acid fermentation with l.plantarum[J]. Modern Food Science and Technology, 2011, 27(4): 408-411, 383. | |
28 | KHANAFARI A, MARANDI R, SANATEI S. Recovery of chitin and chitosan from shrimp waste by chemical and microbial methods[J]. Iranian Journal of Enviromental Health Science & Engineering, 2008, 5(1): 19-24. |
29 | JANG M K, KONG B G, JEONG Y I, et al. Physicochemical characterization of α-chitin, β-chitin, and γ-chitin separated from natural resources[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2004, 42(14): 3423-3432. |
30 | FENG F, LIU Y, HU K A. Influence of alkali-freezing treatment on the solid state structure of chitin[J]. Carbohydrate Research, 2004, 339(13): 2321-2324. |
31 | GHOSH M, SADHUKHAN S, DEY K K. Elucidating the internal structure and dynamics of α-chitin by 2DPASS-MAS-NMR and spin-lattice relaxation measurements[J]. Solid State Nuclear Magnetic Resonance, 2019, 97: 7-16. |
32 | GUGGOLZ T, HENNE S, POLITI Y, et al. Histochemical evidence of β-chitin in parapodial glandular organs and tubes of Spiophanes (Annelida, Sedentaria: Spionidae), and first studies on selected Annelida[J]. Journal of Morphology, 2015, 276(12): 1433-1447. |
33 | GARDNER K H, BLACKWELL J. Refinement of the structure of beta-chitin[J]. Biopolymers, 1975, 14(8): 1581-1595. |
34 | SUBRAMANI A K, RAVAL R, SUNDARESHAN S, et al. A marine chitinase from Bacillus aryabhattai with antifungal activity and broad specificity toward crystalline chitin degradation[J]. Preparative Biochemistry & Biotechnology, 2022, 52(10): 1160-1172. |
35 | AKRAM F, AKRAM R, UL HAQ I, et al. Biotechnological eminence of chitinases: a focus on thermophilic enzyme sources, production strategies and prominent applications[J]. Protein and Peptide Letters, 2021, 28(9): 1009-1022. |
36 | JUPATANAKUL N, PENGON J, SELISANA S M G, et al. Serratia marcescens secretes proteases and chitinases with larvicidal activity against Anopheles dirus [J]. Acta Tropica, 2020, 212: 105686. |
37 | JEONG H C, JU W T, JO K H, et al. Purification and characterization of a 34-kDa chitobiosidase from Aeromonas sp. GJ-18[J]. Journal of the Korean Society for Applied Biological Chemistry, 2012, 55(1): 7-12. |
38 | ZHANG A L, MO X F, WEI G G, et al. The draft genome sequence and analysis of an efficiently chitinolytic bacterium Chitinibacter sp. strain GC72[J]. Current Microbiology, 2020, 77(12): 3903-3908. |
39 | LI Z K, XIA C Y, WANG Y X, et al. Identification of an endo-chitinase from Corallococcus sp. EGB and evaluation of its antifungal properties[J]. International Journal of Biological Macromolecules, 2019, 132: 1235-1243. |
40 | HAO Z K, LI J S, WANG D H, et al. Efficient production of GlcNAc in an aqueous-organic system with a Chitinolyticbacter meiyuanensis SYBC-H1 mutant[J]. Biotechnology Letters, 2022, 44(4): 623-633. |
41 | NUERO O M. Production of chitinase by Fusarium species[J]. Current Microbiology, 1995, 30(5): 287-289. |
42 | BINOD P, PUSZTAHELYI T, NAGY V, et al. Production and purification of extracellular chitinases from Penicillium aculeatum NRRL 2129 under solid-state fermentation[J]. Enzyme and Microbial Technology, 2005, 36(7): 880-887. |
43 | KHAN F I, BISETTY K, SINGH S, et al. Chitinase from Thermomyces lanuginosus SSBP and its biotechnological applications[J]. Extremophiles, 2015, 19(6): 1055-1066. |
44 | PRABAVATHY V R, MATHIVANAN N, SAGADEVAN E, et al. Self-fusion of protoplasts enhances chitinase production and biocontrol activity in Trichoderma harzianum [J]. Bioresource Technology, 2006, 97(18): 2330-2334. |
45 | GAO F, ZHANG B S, ZHAO J H, et al. Deacetylation of chitin oligomers increases virulence in soil-borne fungal pathogens[J]. Nature Plants, 2019, 5(11): 1167-1176. |
46 | HANSEN L D, ØSTENSEN M, ARSTAD B, et al. 2-Naphthol impregnation prior to steam explosion promotes LPMO-assisted enzymatic saccharification of spruce and yields high-purity lignin[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(16): 5233-5242. |
47 | LIU F, SELIN C, ZOU Z W, et al. LmCBP1, a secreted chitin-binding protein, is required for the pathogenicity of Leptosphaeria maculans on Brassica napus [J]. Fungal Genetics and Biology, 2020, 136: 103320. |
48 | THOMPSON C E. Erratum: molecular evolution and transcriptional profile of GH3 and GH20 β-N-acetylglucosaminidases in the entomopathogenic fungus Metarhizium anisopliae [J]. Genetics and Molecular Biology, 2019, 42(1): 151. |
49 | HENRISSAT B, BAIROCH A. Updating the sequence-based classification of glycosyl hydrolases[J]. Biochemical Journal, 1996, 316(Pt 2): 695-696. |
50 | CAO S N, GAO P, XIA W S, et al. Cloning and characterization of a novel GH75 family chitosanase from Penicillium oxalicum M2[J]. Process Biochemistry, 2022, 120: 41-52. |
51 | 王治伟, 刘志敏. 微生物几丁质酶研究进展[J]. 生物技术通讯, 2006, 17(3): 439-442. |
WANG Z W, LIU Z M. Advance in study and application on chitinase produced by microbes[J]. Letters in Biotechnology, 2006, 17(3): 439-442. | |
52 | CHEN Y, ZHOU N, CHEN X M, et al. Characterization of a new multifunctional GH20 β-N-acetylglucosaminidase from Chitinibacter sp. GC72 and its application in converting chitin into N-acetyl glucosamine[J]. Frontiers in Microbiology, 2022, 13: 874908. |
53 | SUN X M, LI Y J, TIAN Z N, et al. A novel thermostable chitinolytic machinery of Streptomyces sp. F-3 consisting of chitinases with different action modes[J]. Biotechnology for Biofuels, 2019, 12: 136. |
54 | DAHIYA D, PILLI A, CHIRRA P R R, et al. Morphological and structural characterization of chitin as a substrate for the screening, production, and molecular characterization of chitinase by Bacillus velezensis [J]. Environmental Science and Pollution Research, 2022, 29(57): 86550-86561. |
55 | CHAULAGAIN D, SHAMABADI N S, LESLIE S A, et al. From natural microbe screening to sustained chitinase activity in exogenous hosts[J]. ACS Synthetic Biology, 2024, 13(4): 1165-1176. |
56 | ZHANG A L, MO X F, ZHOU N, et al. Identification of chitinolytic enzymes in Chitinolyticbacter meiyuanensis and mechanism of efficiently hydrolyzing chitin to N-acetyl glucosamine[J]. Frontiers in Microbiology, 2020, 11: 572053. |
57 | 郝之奎. Chitinolyticbacter meiyuanensis的筛选鉴定及其发酵产几丁质酶研究[D]. 无锡: 江南大学, 2011. |
HAO Z K. Screening and identification of Chitinolyticbacter meiyuanensis and its fermentation for chitinase production[D]. Wuxi: Jiangnan University, 2011. | |
58 | STAM M, LANGLOIS J, CHEVALIER C, et al. NetSyn: genomic context exploration of protein families[EB/OL]. bioRxiv, 2023, 2023.02.15.528638. (2023-02-15)[2024-03-01] .. |
59 | LIU H W, ZHANG B, LI C S, et al. Knock down of chitosanase expression in phytopathogenic fungus Fusarium solani and its effect on pathogenicity[J]. Current Genetics, 2010, 56(3): 275-281. |
60 | LACOMBE-HARVEY M È, BRZEZINSKI R, BEAULIEU C. Chitinolytic functions in Actinobacteria: ecology, enzymes, and evolution[J]. Applied Microbiology and Biotechnology, 2018, 102(17): 7219-7230. |
61 | LV C Y, GU T Y, MA R, et al. Biochemical characterization of a GH19 chitinase from Streptomyces alfalfae and its applications in crystalline chitin conversion and biocontrol[J]. International Journal of Biological Macromolecules, 2021, 167: 193-201. |
62 | 程爱丽, 唐文华, 王益民. 枯草芽孢杆菌B-908几丁质酶基因的转化及表达[J]. 植物病理学报, 1996, 26(3): 204. |
CHENG A L, TANG W H, WANG Y M. The transformation and expression of chitinase gene from Bacillus subtilis B-908[J]. Acta Phytopathologica Sinica, 1996, 26(3): 204. | |
63 | VAIKUNTAPU P R, MALLAKUNTLA M K, DAS S N, et al. Applicability of endochitinase of Flavobacterium johnsoniae with transglycosylation activity in generating long-chain chitooligosaccharides[J]. International Journal of Biological Macromolecules, 2018, 117: 62-71. |
64 | SUN B, ZHAO X C, XU B R, et al. Discovering and designing a chimeric hyperthermophilic chitinase for crystalline chitin degradation[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(12): 4690-4698. |
65 | CHEN X M, ZHAI C, KANG L X, et al. High-level expression and characterization of a highly thermostable chitosanase from Aspergillus fumigatus in Pichia pastoris [J]. Biotechnology Letters, 2012, 34(4): 689-694. |
66 | WANG X H, CHI N Y, BAI F W, et al. Characterization of a cold-adapted and salt-tolerant exo-chitinase (ChiC) from Pseudoalteromonas sp. DL-6[J]. Extremophiles, 2016, 20(2): 167-176. |
67 | DAS S, DEY P, ROY D, et al. N-acetyl-D-glucosamine production by a chitinase of marine fungal origin: a case study of potential industrial significance for valorization of waste chitins[J]. Applied Biochemistry and Biotechnology, 2019, 187(1): 407-423. |
68 | YANG S Q, FU X, YAN Q J, et al. Cloning, expression, purification and application of a novel chitinase from a thermophilic marine bacterium Paenibacillus barengoltzii [J]. Food Chemistry, 2016, 192: 1041-1048. |
69 | XU Y, OUYANG B, DENG L Y, et al. Biochemical characterization of a novel hyperthermophilic chitinase from a deep-sea Thermotogae bacterium[J]. Process Biochemistry, 2024, 143: 60-72. |
70 | 王琳, 陈雅如, 程湄婕, 等. 微生物几丁质酶研究进展及应用[J]. 中国生物工程杂志, 2022, 42(12): 101-110. |
WANG L, CHEN Y R, CHENG M J, et al. Research advances in microbial chitinase and its applications[J]. China Biotechnology, 2022, 42(12): 101-110. | |
71 | NOVIKOV V Y. Acid hydrolysis of chitin and chitosan[J]. Russian Journal of Applied Chemistry, 2004, 77(3): 484-487. |
72 | ROY I, MONDAL K, GUPTA M N. Accelerating enzymatic hydrolysis of chitin by microwave pretreatment[J]. Biotechnology Progress, 2003, 19(6): 1648-1653. |
73 | XING R E, LIU S, YU H H, et al. Salt-assisted acid hydrolysis of chitosan to oligomers under microwave irradiation[J]. Carbohydrate Research, 2005, 340(13): 2150-2153. |
74 | SU H P, GAO L, SUN J A, et al. Engineering a carbohydrate binding module to enhance chitinase catalytic efficiency on insoluble chitinous substrate[J]. Food Chemistry, 2021, 355: 129462. |
75 | 陈可泉, 周宁, 张阿磊, 等. 人工构建几丁质小体多酶复合体scaford-chiC-chiA-sg的方法及应用: CN112522246A[P]. 2021-03-19. |
CHEN K Q, ZHOU N, ZHANG A L, et al. Artificial construction of scaford-chiC-chiA-sg, a multi-enzyme complex of chitinosomes, and its application: CN112522246A[P]. 2021-03-19. | |
76 | DENG J J, SHI D, MAO H H, et al. Heterologous expression and characterization of an antifungal chitinase (Chit46) from Trichoderma harzianum GIM 3.442 and its application in colloidal chitin conversion[J]. International Journal of Biological Macromolecules, 2019, 134: 113-121. |
77 | JIMÉNEZ-ORTEGA E, KIDIBULE P E, FERNÁNDEZ-LOBATO M, et al. Structure-function insights into the fungal endo-chitinase Chit33 depict its mechanism on chitinous material[J]. International Journal of Molecular Sciences, 2022, 23(14): 7599. |
78 | ZHANG A L, HE Y M, WEI G G, et al. Molecular characterization of a novel chitinase CmChi1 from Chitinolyticbacter meiyuanensis SYBC-H1 and its use in N-acetyl-D-glucosamine production[J]. Biotechnology for Biofuels, 2018, 11: 179. |
79 | GOUGERDCHI V, DORANI E, VALIZADEH M, et al. Overexpression of the chimeric chitinase (ChBD) gene in Lycopersicon esculentum L. enhanced resistance to Sclerotinia sclerotiorum [J]. Plant Cell, Tissue and Organ Culture, 2022, 151(1): 165-175. |
80 | ATAEI A, ZAMANI M, MOTALLEBI M, et al. Increased antifungal activity of Chit42 from Trichoderma atroviride by addition of a chitin binding domain[J]. Tropical Plant Pathology, 2016, 41(6): 350-356. |
81 | YAN J J, LIU W D, LI Y J, et al. Functional and structural analysis of Pichia pastoris-expressed Aspergillus niger 1,4-β- endoglucanase[J]. Biochemical and Biophysical Research Communications, 2016, 475(1): 8-12. |
82 | YANG Y, SOSSAH F L, LI Z, et al. Genome-wide identification and analysis of chitinase GH18 gene family in Mycogone perniciosa [J]. Frontiers in Microbiology, 2021, 11: 596719. |
83 | CHU F M, WANG D, LIU T, et al. An optimized cocktail of chitinolytic enzymes to produce N,N'-diacetylchitobiose and N-acetyl-D-glucosamine from defatted krill by-products[J]. International Journal of Biological Macromolecules, 2019, 133: 1029-1034. |
84 | NAKAMURA A, OKAZAKI K I, FURUTA T, et al. Processive chitinase is Brownian monorail operated by fast catalysis after peeling rail from crystalline chitin[J]. Nature Communications, 2018, 9(1): 3814. |
85 | SONGSIRIRITTHIGUL C, LAPBOONRUENG S, PECHSRICHUANG P, et al. Expression and characterization of Bacillus licheniformis chitinase (ChiA), suitable for bioconversion of chitin waste[J]. Bioresource Technology, 2010, 101(11): 4096-4103. |
86 | MENGHIU G, OSTAFE V, PRODANOVIC R, et al. Biochemical characterization of chitinase A from Bacillus licheniformis DSM8785 expressed in Pichia pastoris KM71H[J]. Protein Expression and Purification, 2019, 154: 25-32. |
87 | 潘梦妍, 徐显皓, 刘延峰, 等. 甲壳素酶Chisb的定向进化及生物转化合成几丁寡糖[J]. 生物工程学报, 2019, 35(9): 1787-1796. |
PAN M Y, XU X H, LIU Y F, et al. Directed evolution of chitinase Chisb and biosynthesis of chitooligosaccharides[J]. Chinese Journal of Biotechnology, 2019, 35(9): 1787-1796. | |
88 | XU P, NI Z F, ZONG M H, et al. Improving the thermostability and activity of Paenibacillus pasadenensis chitinase through semi-rational design[J]. International Journal of Biological Macromolecules, 2020, 150: 9-15. |
89 | GÅSEIDNES S, SYNSTAD B, JIA X H, et al. Stabilization of a chitinase from Serratia marcescens by Gly→Ala and Xxx→Pro mutations[J]. Protein Engineering, 2003, 16(11): 841-846. |
90 | ZHAO S, LIU M Y, SUN X M, et al. Engineering the relatively conserved residues in active site architecture of thermophilic chitinase SsChi18A enhanced catalytic activity[J]. Biomacromolecules, 2024, 25(1): 238-247. |
91 | LIU J W, XU Q, WU Y, et al. Carbohydrate-binding modules of ChiB and ChiC promote the chitinolytic system of Serratia marcescens BWL1001[J]. Enzyme and Microbial Technology, 2023, 162: 110118. |
92 | DOAN C T, TRAN T N, WEN I H, et al. Conversion of shrimp head waste for production of a thermotolerant, detergent-stable, alkaline protease by Paenibacillus sp[J]. Catalysts, 2019, 9(10): 798. |
93 | 罗洒, 秦臻, 陈启明, 等. 解淀粉芽孢杆菌壳聚糖酶毕赤酵母高效表达[C]//中国食品科学技术学会第十五届年会论文集. 青岛, 2018: 436. |
LUO S, QIN Z, CHEN Q M, et al. Efficient expression of chitosan enzyme from Bacillus amyloliquefaciens in Pichia pastoris [C]// Proceedings of the 15th Annual Conference of the Chinese Society for Food Science and Technology. Qingdao, 2018: 436. | |
94 | ZHOU J L, LIU X B, YUAN F, et al. Biocatalysis of heterogenously-expressed chitosanase for the preparation of desirable chitosan oligosaccharides applied against phytopathogenic fungi[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(12): 4781-4791. |
95 | 李茜茜, 杨云洁, 管世敏, 等. 壳寡糖的制备与应用研究进展[J]. 粮食与油脂, 2023, 36(9): 27-31. |
LI Q Q, YANG Y J, GUAN S M, et al. Research progress on the preparation and application of chitosan oligosaccharides[J]. Cereals & Oils, 2023, 36(9): 27-31. | |
96 | KUROIWA T, NAKAGAWA Y, TAKAYANAGI R, et al. Chitosanase-immobilized magnetite-agar gel particles as a highly stable and reusable biocatalyst for enhanced production of physiologically active chitosan oligosaccharides[J]. Enzyme and Microbial Technology, 2024, 178: 110443. |
97 | LE B, YANG S H. Characterization of a chitinase from Salinivibrio sp. BAO-1801 as an antifungal activity and a biocatalyst for producing chitobiose[J]. Journal of Basic Microbiology, 2018, 58(10): 848-856. |
98 | WANG J R, ZHU M J, WANG P, et al. Biochemical properties of a cold-active chitinase from marine Trichoderma gamsii R1 and its application to preparation of chitin oligosaccharides[J]. Marine Drugs, 2023, 21(6): 332. |
99 | LI J C, ZHENG J M, LIANG Y H, et al. Expression and characterization of a chitinase from Serratia marcescens [J]. Protein Expression and Purification, 2020, 171: 105613. |
100 | KROLICKA M, HINZ S W A, KOETSIER M J, et al. β-N-Acetylglucosaminidase MthNAG from Myceliophthora thermophila C1, a thermostable enzyme for production of N-acetylglucosamine from chitin[J]. Applied Microbiology and Biotechnology, 2018, 102(17): 7441-7454. |
101 | WU Y L, WANG S, YANG D F, et al. The discovery, enzymatic characterization and functional analysis of a newly isolated chitinase from marine-derived fungus Aspergillus fumigatus df347[J]. Marine Drugs, 2022, 20(8): 520. |
102 | DING Z W, LI T, CHEN M, et al. Purification and characterization of a chitinase from Aeromonas media CZW001 as a biocatalyst for producing chitinpentaose and chitinhexaose[J]. Biotechnology and Applied Biochemistry, 2023, 70(1): 281-289. |
103 | SUBRAMANI A K, RAMACHANDRA R, THOTE S, et al. Engineering a recombinant chitinase from the marine bacterium Bacillus aryabhattai with targeted activity on insoluble crystalline chitin for chitin oligomer production[J]. International Journal of Biological Macromolecules, 2024, 264(Pt 2): 130499. |
104 | DENG J J, ZHANG M S, LI Z W, et al. One-step processing of shrimp shell waste with a chitinase fused to a carbohydrate-binding module[J]. Green Chemistry, 2020, 22(20): 6862-6873. |
105 | 鲁梦唯, 陈晟, 吴敬. 维氏气单胞菌来源几丁质酶的克隆表达及应用[J]. 食品与生物技术学报, 2022, 41(4): 55-63. |
LU M W, CHEN S, WU J. Cloning, expression and application of chitinase from Aeromonas veronii [J]. Journal of Food Science and Biotechnology, 2022, 41(4): 55-63. | |
106 | BHUVANACHANDRA B, PODILE A R. A transglycosylating chitinase from Chitiniphilus shinanonensis (CsChiL) hydrolyzes chitin in a processive manner[J]. International Journal of Biological Macromolecules, 2020, 145: 1-10. |
107 | SINGH S, GALLAGHER R, DERRICK P J, et al. Glycosidase-catalysed oligosaccharide synthesis: preparation of the N-acetylchitooligosaccharidespenta-N-acetylchitopentaose and hexa-N-acetylchitohexaose using the β-N-acetylhexosaminidase of Aspergillus oryzae [J]. Tetrahedron: Asymmetry, 1995, 6(11): 2803-2810. |
108 | ZHANG A L, MO X F, ZHOU N, et al. A novel bacterial β-N-acetyl glucosaminidase from Chitinolyticbacter meiyuanensis possessing transglycosylation and reverse hydrolysis activities[J]. Biotechnology for Biofuels, 2020, 13: 115. |
109 | 黄晓月, 毕思远, 区家豪, 等. 木瓜蛋白酶法制备抗氧化活性壳寡糖的工艺优化[J]. 生物学杂志, 2022, 39(1): 104-109. |
HUANG X Y, BI S Y, OU J H, et al. Process optimization of preparation of antioxidant chitooligosaccharides by papain[J]. Journal of Biology, 2022, 39(1): 104-109. | |
110 | 董惠忠. 聚合度6-8壳寡糖的制备关键技术研究[D]. 上海: 华东理工大学, 2014. |
DONG H Z. Key technology research on the preparation of chitosan oligosaccharides with a polymerization degree of 6-8[D]. Shanghai: East China University of Science and Technology, 2014. | |
111 | ZHANG A L, GAO C, WANG J, et al. An efficient enzymatic production of N-acetyl-D-glucosamine from crude chitin powders[J]. Green Chemistry, 2016, 18(7): 2147-2154. |
112 | ZHANG A L, WEI G G, MO X F, et al. Enzymatic hydrolysis of chitin pretreated by bacterial fermentation to obtain pure N-acetyl-D-glucosamine[J]. Green Chemistry, 2018, 20(10): 2320-2327. |
113 | WANG Y Y, ZHANG A L, MO X F, et al. The effect of ultrasonication on enzymatic hydrolysis of chitin to N-acetyl glucosamine via sequential and simultaneous strategies[J]. Process Biochemistry, 2020, 99: 265-269. |
114 | WEI G G, ZHANG A L, CHEN K Q, et al. Enzymatic production of N-acetyl-D-glucosamine from crayfish shell wastes pretreated via high pressure homogenization[J]. Carbohydrate Polymers, 2017, 171: 236-241. |
115 | ZHOU N, YANG P F, CHEN J, et al. Effect of organic solvents treatment on structure of chitin and its enzymatic hydrolysis[J]. Polymer Degradation and Stability, 2022, 198: 109654. |
116 | ZHANG A L, WANG C Y, CHEN J, et al. Efficient enzymatic hydrolysis of chitin into N-acetyl glucosamine using alkali as a recyclable pretreatment reagent[J]. Green Chemistry, 2021, 23(8): 3081-3089. |
117 | CARDOZO F A, GONZALEZ J M, FEITOSA V A, et al. Bioconversion of α-chitin into N-acetyl-glucosamine using chitinases produced by marine-derived Aeromonas caviae isolates[J]. World Journal of Microbiology & Biotechnology, 2017, 33(11): 201. |
118 | DAS S, SEN R, ROY D. Enzymatic processing of chitinaceous wastes for N-acetyl-D-glucosamine production: an example of green and efficient environmental management[J]. Environmental Engineering and Management Journal, 2012, 11(10): 1849-1855. |
119 | LI J, HUANG W C, GAO L, et al. Efficient enzymatic hydrolysis of ionic liquid pretreated chitin and its dissolution mechanism[J]. Carbohydrate Polymers, 2019, 211: 329-335. |
120 | NGUYEN-THI N, DOUCET N. Combining chitinase C and N-acetylhexosaminidase from Streptomyces coelicolor A3(2) provides an efficient way to synthesize N-acetylglucosamine from crystalline chitin[J]. Journal of Biotechnology, 2016, 220: 25-32. |
121 | LI J, GAO K P, SECUNDO F, et al. Biochemical characterization of two β-N-acetylglucosaminidases from Streptomyces violascens for efficient production of N-acetyl-D-glucosamine[J]. Food Chemistry, 2021, 364: 130393. |
122 | SONG W, ZHANG N, YANG M, et al. Multiple strategies to improve the yield of chitinase a from Bacillus licheniformis in Pichia pastoris to obtain plant growth enhancer and GlcNAc[J]. Microbial Cell Factories, 2020, 19(1): 181. |
123 | DU C, ZHOU Y L, LIU L, et al. Bacterial surface-assembled chitinosome for dismantling chitin into N-acetyl glucosamine[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(30): 11239-11247. |
124 | OKAZAKI S, KOMATSU A, NAKANO M, et al. A novel endo-type chitinase possessing chitobiase activity derived from the chitinolytic bacterium, Chitiniphilus shinanonensis SAY3T[J]. Bioscience, Biotechnology, and Biochemistry, 2023, 87(12): 1543-1550. |
125 | DU C, JIANG S, JIANG S J, et al. A Bacillus pumilus originated β-N-acetylglucosaminidase for chitin combinatory hydrolysis and exploration of its thermostable mechanism[J]. International Journal of Biological Macromolecules, 2019, 132: 1282-1289. |
126 | HAN S S, XUE Y B, YAN Q J, et al. Development of a two-enzyme system in Aspergillus niger for efficient production of N-acetyl-β-D-glucosamine from powdery chitin[J]. Bioresource Technology, 2024, 393: 130024. |
127 | FU X, YAN Q J, YANG S Q, et al. An acidic, thermostable exochitinase with β-N-acetylglucosaminidase activity from Paenibacillus barengoltzii converting chitin to N-acetyl glucosamine[J]. Biotechnology for Biofuels, 2014, 7(1): 174. |
128 | SURESH P V, ANIL KUMAR P K. Enhanced degradation of α-chitin materials prepared from shrimp processing byproduct and production of N-acetyl-D-glucosamine by thermoactive chitinases from soil mesophilic fungi[J]. Biodegradation, 2012, 23(4): 597-607. |
129 | ZHU W X, WANG D, LIU T, et al. Production of N-acetyl-D-glucosamine from mycelial waste by a combination of bacterial chitinases and an insect N-acetyl-D-glucosaminidase[J]. Journal of Agricultural and Food Chemistry, 2016, 64(35): 6738-6744. |
130 | GAO C, ZHANG A L, CHEN K Q, et al. Characterization of extracellular chitinase from Chitinibacter sp. GC72 and its application in GlcNAc production from crayfish shell enzymatic degradation[J]. Biochemical Engineering Journal, 2015, 97: 59-64. |
131 | 吕永梅, 章晓洋, 高文博, 等. 一种几丁质脱乙酰基酶突变体及其编码基因与应用: CN116144636A[P]. 2023-05-23. |
LV Y M, ZHANG X Y, GAO W B, et al. A chitin deacetylase mutant and its coding gene and application: CN116144636A[P]. 2023-05-23. | |
132 | INOKUMA K, TAKANO M, HOSHINO K. Direct ethanol production from N-acetylglucosamine and chitin substrates by Mucor species[J]. Biochemical Engineering Journal, 2013, 72: 24-32. |
133 | LI S W, ZENG R J, SHENG G P. An excellent anaerobic respiration mode for chitin degradation by Shewanella oneidensis MR-1 in microbial fuel cells[J]. Biochemical Engineering Journal, 2017, 118: 20-24. |
134 | LIU Q Z, WEI G G, YANG P F, et al. One-pot biosynthesis of N-acetylneuraminic acid from chitin via combination of chitin-degrading enzymes, N-acetylglucosamine-2-epimerase, and N-neuraminic acid aldolase[J]. Frontiers in Microbiology, 2023, 14: 1156924. |
135 | MA X Q, GÖZAYDIN G, YANG H Y, et al. Upcycling chitin-containing waste into organonitrogen chemicals via an integrated process[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(14): 7719-7728. |
136 | HAO Y C, ZONG M H, WANG Z L, et al. Chemoenzymatic access to enantiopure N-containing furfuryl alcohol from chitin-derived N-acetyl-D-glucosamine[J]. Bioresources and Bioprocessing, 2021, 8(1): 80. |
137 | HAO Y C, ZONG M H, CHEN Q, et al. Engineering carbonyl reductase for one-pot chemobiocatalytic enantioselective synthesis of a value-added N-containing chiral alcohol from N-acetyl-D-glucosamine[J]. Green Chemistry, 2023, 25(13): 5051-5058. |
138 | 陈可泉, 魏国光, 张阿磊, 等. 一种利用N-乙酰氨基葡萄糖制备 3-氨基-5-(α-氨基乙基)四氢呋喃的方法: CN109824629B[P]. 2022-12-09. |
CHEN K Q, WEI G G, ZHANG A L, et al. A method for preparing 3-amino-5-(α-aminoethyl) tetrahydrofuranusing from N-acetylglucosamine: CN109824629B[P]. 2022-12-09. | |
139 | WU C Q, ZHANG X, LIU W, et al. Biocatalytic synthesis of two furan-based amino compounds 2-acetyl-4-aminofuran and 3-acetylamino-5-(α-aminoethyl)-furan from chitin resources[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(30): 11145-11154. |
[1] | Kuanqing LIU, Yi-Heng P.Job ZHANG. Biological degradation and utilization of lignin [J]. Synthetic Biology Journal, 2024, 5(6): 1264-1278. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||