Synthetic Biology Journal

   

Research on the Application of Optogenetic Tools in Learning and Memory

Yikun ZHENG1, Jie ZHENG2, Guopeng HU1()   

  1. 1.School of Physical Education,Huaqiao University,Quanzhou 362021,Fujian,China
    2.School of Biological and Medical Engineering,Beihang University,Beijing 100191,China
  • Received:2024-05-20 Revised:2024-09-27 Published:2024-09-30
  • Contact: Guopeng HU

光遗传学工具在学习记忆中的应用研究

郑益坤1, 郑婕2, 胡国鹏1()   

  1. 1.华侨大学体育学院,泉州 362021
    2.北京航空航天大学生物与医学工程学院,北京 100191
  • 通讯作者: 胡国鹏
  • 作者简介:郑益坤(2001—),男,硕士研究生。研究方向为神经生理学,基因工程。 E-mail:23014040042@stu.hqu.edu.cn
    郑婕(1996—),女,博士研究生。研究方向为分子生物学、仿生学,生物工程。 E-mail:zhengjie4747@buaa.edu.cn
    胡国鹏(1978—),男,博士,教授。研究方向为运动生物化学、生理学,运动康复。 E-mail:hugp@hqu.edu.cn
  • 基金资助:
    福建省自然科学基金项目(2020J01087);国家体育总局项目(20172ZB064)

Abstract:

Optogenetics represents an advanced technology that facilitates precise control of gene expression and neuronal activity in living cells through light. Introduced by neuroscientist Karl Deisseroth in 2005, this methodology has transformed neuroscience research, empowering researchers to modulate excitable tissues and neural circuits with exceptional spatiotemporal accuracy. Optogenetics necessitates the expression of light-sensitive proteins, including channelrhodopsins, halorhodopsins, and various microbial opsins, within specific cells. Employing viral vectors and tissue-specific promoters, these proteins ensure targeted expression. Exposure to designated wavelengths of light permits these proteins to activate or inhibit cellular activity, thereby modulating neuronal behavior.The implementation of optogenetics has significantly enhanced comprehension of learning, memory, and neural plasticity. This technology enables the examination of the molecular dynamics associated with synaptic plasticity, long-term potentiation (LTP), and long-term depression (LTD), which are pivotal in the formation of memory. Manipulating specific neuronal populations in real-time elucidates the intricate neural circuits involved in these phenomena. Additionally, optogenetics has facilitated the exploration of potential therapeutic approaches for neurological conditions such as Alzheimer's disease by meticulously controlling memory-associated circuits.The utility of optogenetics transcends fundamental research, yielding promising prospects in addiction studies and motor function enhancement. By modulating distinct neural circuits, it is possible to alter addiction-related behaviors and augment motor functions in animal models. Furthermore, the amalgamation of optogenetics with cutting-edge technologies like artificial intelligence and deep learning is anticipated to refine stimulation protocols, resulting in more precise and efficacious experimental outcomes.Notwithstanding its transformative capacity, the clinical application of optogenetics encounters significant obstacles, including the requisites for safe and effective gene delivery mechanisms and the formulation of light-sensitive proteins with optimal characteristics for human application. Future investigations should concentrate on surmounting these hurdles while expanding the applications of optogenetics in neuroscience and related fields. The integration of optogenetics with multidisciplinary approaches is poised to unveil new realms in brain research, yielding profound insights into the mechanisms governing memory, learning, and neural plasticity.

Key words: optogenetics, photosensitive proteins, memory, ion channels, neural plasticity

摘要:

光遗传学技术是一种结合光学和遗传学的新型细胞生物学工具。通过引入光激活通道(光敏感蛋白基因)到特定的神经元群体,光遗传学能够以毫秒级精度对这些神经元进行非侵入性光学控制。这一技术的进步为研究学习和记忆的神经生物学基础提供了强大支持。通过在活体动物中精确操控神经元活动,研究人员可以更详细地分析神经网络的功能,探索学习和记忆过程中的分子、细胞和神经回路机制。光遗传学不仅揭示了突触可塑性在记忆形成中的关键作用,还通过特定波长的光激活或抑制神经元,实现记忆的生成、消除和恢复。本文综述了光遗传学工具在学习和记忆研究中的应用,包括不同波长光照对受体的影响、光学刺激对记忆的激活和抑制,以及基于光遗传学的神经功能增强研究方法。然而,在光遗传学的应用过程中仍存在一些挑战,例如开发安全且高效的基因传递载体、优化光敏蛋白的性能、探索其在临床环境中转化的可行性等。解决这些问题对于光遗传学技术的进一步发展至关重要。未来,随着光遗传学工具的持续优化和跨学科技术的融合应用,这项技术有望在治疗神经系统疾病、增强认知功能与成瘾研究等领域提供新的理论基础和实践方法。

关键词: 光遗传学, 光敏感蛋白质, 记忆, 离子通道, 神经可塑性

CLC Number: