Yikun ZHENG1, Jie ZHENG2, Guopeng HU1()
Received:
2024-05-20
Revised:
2024-09-27
Published:
2024-09-30
Contact:
Guopeng HU
通讯作者:
胡国鹏
作者简介:
基金资助:
CLC Number:
Yikun ZHENG, Jie ZHENG, Guopeng HU. Research on the Application of Optogenetic Tools in Learning and Memory[J]. Synthetic Biology Journal, DOI: 10.12211/2096-8280.2024-042.
郑益坤, 郑婕, 胡国鹏. 光遗传学工具在学习记忆中的应用研究[J]. 合成生物学, DOI: 10.12211/2096-8280.2024-042.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2024-042
Fig.1 Diagram of Synaptic Connection StrengtheningThe diagram illustrates how synaptic connections between neurons A, R, and B are strengthened through repeated electrophysiological stimulation. This process simulates the mechanism of repeated encoding of information and reflects the fundamental principles of long-term memory formation. According to Hebb's rule, if two neurons frequently and closely act together, the associated synaptic connections will be strengthened, thereby improving the efficiency of information transmission and enhancing the postsynaptic response.
Fig.2 Specific neuronal synaptic connections enhanced by Hebbian ruleThe application of Hebb's rule in synaptic plasticity indicates that repeated activation of specific neurons can enhance synaptic connections, a mechanism that is a fundamental component in the processes of learning and memory formation.
Fig.3 Signal segregation and integration transmission processing architecture(a) Input-biased—separated output architecture, in which different input signals (represented by arrows of varying thickness indicating different input strengths) are processed separately and transmitted to different output targets. (b) Integration and transmission architecture, where all input signals are integrated at an intermediate layer and transmitted to multiple target neuronal groups[32].
Fig.4 Optogenetic tools and their mechanisms of action(a) The optogenetic toolkit includes the distribution of different optogenetic actuators and sensors across various wavelengths. Depolarizing actuators include CheRiff, BLINK-1, ChR2, PAC-K, with wavelengths ranging from blue to green light. Hyperpolarizing actuators include GtACR1, Arch, NpHR, ArchT, Halo, ReaChR, Crimson, Jaws, with wavelengths ranging from green to red light. Optogenetic sensors include voltage sensors (GEVI, VSFP2.3, ArcLight, ASAP, Voltron525, FlicR1) and calcium sensors (GECI, GCaMPs, R-CaMPs, R-GECOs, Quasars, Archon1, NIR-Butterfly, NIR-GECO)[40]. (b) Excitation spectra of three main optogenetic tools: ChR2 (blue, maximum excitation wavelength approximately 470 nm), NpHR (orange, maximum excitation wavelength approximately 589 nm), Arch (green, maximum excitation wavelength approximately 575 nm). (c) Specific activation and inhibition ion channels under different spectra: In blue light, ChR2 channels open, allowing potassium ions (K+) to enter the cell, along with sodium ions (Na+) and calcium ions (Ca2+) through other channels such as CheTA, SFO, and VChR1, leading to neuronal depolarization. Under yellow or yellow-green light, NpHR channels open, allowing chloride ions (Cl-) to enter the cell, causing neuronal hyperpolarization; Arch channels open, pumping protons (H+) out of the cell, also causing hyperpolarization. Other inhibition channels such as Mac, eNpHR2.0, eBR, eNpHR3.0, GtR3 inhibit neuronal activity through similar mechanisms. (d) Specific effects of activation and inhibition channels on neuronal voltage: Activation channels, when activated by blue light, cause the neuronal membrane potential to rise from -70 mV; inhibition channels, when activated by yellow or yellow-green light, cause the membrane potential to drop from -70 mV [42].
Fig.5 Artificially inserted memories and actual memories are encoded by the same neural circuitry(a)Experimental design illustration: Mice training patterns under two different memory formation conditions. The real memory group uses a traditional pairing of odor (acetophenone) and foot shock (CS + US), and acetophenone alone (CS only). The artificial memory group uses M72 light stimulation paired with LHb-VTA projection light stimulation (CS + US), and M72 light stimulation alone (CS only).(b) Neural circuit activation diagram: Shows the brain regions activated by the two training modalities, indicating similar neural circuits are activated by different training methods.(c) Brain structure activity schematic: Analyzes CS-induced Fos expression in the central olfactory system and regions associated with associative memory one day later. Demonstrates the changes in brain structure activity during the memory formation process.(d) & (e) Comparative analysis of Fos expression: Quantifies Fos expression under true memory and artificial memory for both CS and CS+US conditions. Shows enhancement of Fos expression in brain regions after different memory trainings. (f) & (h) Detailed observation of Fos induction: Significant enhancement of Fos expression in the basolateral amygdala (BLA) in mice with real and artificial memory formation. This enhancement reflects the learning-specific activation associated with specific memory formation.(g) & (i) Sagittal section diagrams: Displays Fos induction under different conditions. The white areas represent the expression of Fos, further confirming the critical role of the BLA region in learning and memory formation (The image is sourced from reference 114) [114].
1 | ZHANG F, WANG L-P, BRAUNER M, et al. Multimodal fast optical interrogation of neural circuitry[J]. Nature, 2007, 446(7136): 633–639. |
2 | DEISSEROTH K. Optogenetics[J]. Nature Methods, 2011, 8(1): 26–29. |
3 | BOYDEN E S, ZHANG F, BAMBERG E, et al. Millisecond-timescale, genetically targeted optical control of neural activity[J]. Nature Neuroscience, 2005, 8(9): 1263–1268. |
4 | BAMBERG E, TITTOR J, OESTERHELT D. Light-driven proton or chloride pumping by halorhodopsin.[J]. Proceedings of the National Academy of Sciences, 1993, 90(2): 639–643. |
5 | MIESENBÖCK G, DE ANGELIS D A, ROTHMAN J E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins[J]. Nature, 1998, 394(6689): 192–195. |
6 | NAGEL G, OLLIG D, FUHRMANN M, et al. Channelrhodopsin-1: A Light-Gated Proton Channel in Green Algae[J]. Science, 2002, 296(5577): 2395–2398. |
7 | NAGEL G, SZELLAS T, HUHN W, et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel[J]. Proceedings of the National Academy of Sciences, 2003, 100(24): 13940–13945. |
8 | BI A, CUI J, MA Y-P, et al. Ectopic Expression of a Microbial-Type Rhodopsin Restores Visual Responses in Mice with Photoreceptor Degeneration[J]. Neuron, 2006, 50(1): 23–33. |
9 | YANG Y, WU M, WEGENER A J, et al. Preparation and use of wireless reprogrammable multilateral optogenetic devices for behavioral neuroscience[J]. Nature Protocols, 2022, 17(4): 1073–1096. |
10 | SRIDHARAN S, GAJOWA M A, OGANDO M B, et al. High-performance microbial opsins for spatially and temporally precise perturbations of large neuronal networks[J]. Neuron, 2022, 110(7): 1139-1155.e6. |
11 | YIZHAR O, FENNO L E, DAVIDSON T J, et al. Optogenetics in Neural Systems[J]. Neuron, 2011, 71(1): 9–34. |
12 | GRADINARU V, ZHANG F, RAMAKRISHNAN C, et al. Molecular and Cellular Approaches for Diversifying and Extending Optogenetics[J]. Cell, 2010, 141(1): 154–165. |
13 | ZHAO S, TING J T, ATALLAH H E, et al. Cell type–specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function[J]. Nature Methods, 2011, 8(9): 745–752. |
14 | HONG W, JIANG C, QIN M, et al. Self-adaptive cardiac optogenetics device based on negative stretching-resistive strain sensor[J]. Science Advances, 2021, 7(48): eabj4273. |
15 | FENNO L E, MATTIS J, RAMAKRISHNAN C, et al. Targeting cells with single vectors using multiple-feature Boolean logic[J]. Nature Methods, 2014, 11(7): 763–772. |
16 | SHEMESH O A, TANESE D, ZAMPINI V, et al. Temporally precise single-cell-resolution optogenetics[J]. Nature Neuroscience, 2017, 20(12): 1796–1806. |
17 | LIEWALD J F, BRAUNER M, STEPHENS G J, et al. Optogenetic analysis of synaptic function[J]. Nature Methods, 2008, 5(10): 895-902. |
18 | EHMANN N, PAULS D. Optogenetics: Illuminating neuronal circuits of memory formation[J]. Journal of Neurogenetics, 2020, 34(1): 47-54. |
19 | CHEN W, LI C, LIANG W, et al. The Roles of Optogenetics and Technology in Neurobiology: A Review[J]. Frontiers in Aging Neuroscience, 2022, 14: 867863. |
20 | SINNEN B L, BOWEN A B, FORTE J S, et al. Optogenetic Control of Synaptic Composition and Function[J]. Neuron, 2017, 93(3): 646-660.e5. |
21 | BÄUML K-H T, TRIßL L. Selective memory retrieval can revive forgotten memories[J]. Proceedings of the National Academy of Sciences, 2022, 119(8): e2114377119. |
22 | CHANALES A J H, DUDUKOVIC N M, RICHTER F R, et al. Interference between overlapping memories is predicted by neural states during learning[J]. Nature Communications, 2019, 10(1): 5363. |
23 | COWAN N. Short-term memory based on activated long-term memory: A review in response to Norris (2017).[J]. Psychological Bulletin, 2019, 145(8): 822–847. |
24 | DAHAL P, RAUHALA O J, KHODAGHOLY D, et al. Hippocampal–cortical coupling differentiates long-term memory processes[J]. Proceedings of the National Academy of Sciences, 2023, 120(7): e2207909120. |
25 | BERDUGO-VEGA G, ARIAS-GIL G, LÓPEZ-FERNÁNDEZ A, et al. Increasing neurogenesis refines hippocampal activity rejuvenating navigational learning strategies and contextual memory throughout life[J]. Nature Communications, 2020, 11(1): 135. |
26 | FISHER S D, ROBERTSON P B, BLACK M J, et al. Reinforcement determines the timing dependence of corticostriatal synaptic plasticity in vivo[J]. Nature Communications, 2017, 8(1): 334. |
27 | HONORÉ E, KHLAIFIA A, BOSSON A, et al. Hippocampal Somatostatin Interneurons, Long-Term Synaptic Plasticity and Memory[J]. Frontiers in Neural Circuits, 2021, 15: 687558. |
28 | GERSTNER W. Biological Learning: Synaptic Plasticity, Hebb Rule and Spike TimingDependent Plasticity[A]. 见: C. Sammut, G.I. Webb. Encyclopedia of Machine Learning[M]. Boston, MA: Springer US, 2011: 111-132. |
29 | CARONI P, DONATO F, MULLER D. Structural plasticity upon learning: regulation and functions[J]. Nature Reviews Neuroscience, 2012, 13(7): 478-490. |
30 | YANG Y, CALAKOS N. Presynaptic long-term plasticity[J]. Frontiers in Synaptic Neuroscience, 2013, 5. |
31 | BAILEY C H, KANDEL E R, HARRIS K M. Structural Components of Synaptic Plasticity and Memory Consolidation[J]. Cold Spring Harbor Perspectives in Biology, 2015, 7(7): a021758. |
32 | LUO L. Architectures of neuronal circuits[J]. Science, 2021, 373(6559): eabg7285. |
33 | KIM C Y, KU M J, QAZI R, et al. Soft subdermal implant capable of wireless battery charging and programmable controls for applications in optogenetics[J]. Nature Communications, 2021, 12(1): 535. |
34 | BECK S, YU-STRZELCZYK J, PAULS D, et al. Synthetic Light-Activated Ion Channels for Optogenetic Activation and Inhibition[J]. Frontiers in Neuroscience, 2018, 12: 643. |
35 | ADAMANTIDIS A, ARBER S, BAINS J S, et al. Optogenetics: 10 years after ChR2 in neurons—views from the community[J]. Nature Neuroscience, 2015, 18(9): 1202–1212. |
36 | MAJUMDER R, FEOLA I, TEPLENIN A S, et al. Optogenetics enables real-time spatiotemporal control over spiral wave dynamics in an excitable cardiac system[J]. eLife, 2018, 7: e41076. |
37 | HONJO K, HWANG R Y, TRACEY W D. Optogenetic manipulation of neural circuits and behavior in Drosophila larvae[J]. Nature Protocols, 2012, 7(8): 1470–1478. |
38 | LIN J Y, KNUTSEN P M, MULLER A, et al. ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation[J]. Nature Neuroscience, 2013, 16(10): 1499–1508. |
39 | CHENG M Y, WANG E H, WOODSON W J, et al. Optogenetic neuronal stimulation promotes functional recovery after stroke[J]. Proceedings of the National Academy of Sciences, 2014, 111(35): 12913-12918. |
40 | ENTCHEVA E, KAY M W. Cardiac optogenetics: a decade of enlightenment[J]. Nature Reviews Cardiology, 2021, 18(5): 349-367. |
41 | HUANG S, DING M, ROELFSEMA M R G, et al. Optogenetic control of the guard cell membrane potential and stomatal movement by the light-gated anion channel Gt ACR1[J]. Science Advances, 2021, 7(28): eabg4619. |
42 | PASTRANA E. Optogenetics: controlling cell function with light[J]. Nature Methods, 2011, 8(1): 24-25. |
43 | CHENG M Y, ASWENDT M, STEINBERG G K. Optogenetic Approaches to Target Specific Neural Circuits in Post-stroke Recovery[J]. Neurotherapeutics, 2016, 13(2): 325-340. |
44 | JOSHI J, RUBART M, ZHU W. Optogenetics: Background, Methodological Advances and Potential Applications for Cardiovascular Research and Medicine[J]. Frontiers in Bioengineering and Biotechnology, 2020, 7: 466. |
45 | IYER S M, DELP S L. Optogenetic Regeneration[J]. Science, 2014, 344(6179): 44-45. |
46 | RONZITTI E, CONTI R, ZAMPINI V, et al. Submillisecond Optogenetic Control of Neuronal Firing with Two-Photon Holographic Photoactivation of Chronos[J]. The Journal of Neuroscience, 2017, 37(44): 10679-10689. |
47 | BANSAL H, PYARI G, ROY S. Optogenetic Generation of Neural Firing Patterns with Temporal Shaping of Light Pulses[J]. Photonics, 2023, 10(5): 571. |
48 | MIRZAYI P, SHOBEIRI P, KALANTARI A, et al. Optogenetics: implications for Alzheimer's disease research and therapy[J]. Molecular Brain, 2022, 15(1): 20. |
49 | KOL A, ADAMSKY A, GROYSMAN M, et al. Astrocytes contribute to remote memory formation by modulating hippocampal-cortical communication during learning[J]. Nature Neuroscience, 2020, 23(10): 1229–1239. |
50 | MANSOURI A, TASLIMI S, BADHIWALA J H, et al. Deep brain stimulation for Parkinson's disease: meta-analysis of results of randomized trials at varying lengths of follow-up[J]. Journal of Neurosurgery, 2018, 128(4): 1199-1213. |
51 | HUANG W A, STITT I M, NEGAHBANI E, et al. Transcranial alternating current stimulation entrains alpha oscillations by preferential phase synchronization of fast-spiking cortical neurons to stimulation waveform[J]. Nature Communications, 2021, 12(1): 3151. |
52 | CHEN P-Y, J-R CHEEN, Y-C JHENG, et al. Clinical applications and consideration of interventions of electrotherapy for orthopedic and neurological rehabilitation[J]. Journal of the Chinese Medical Association, 2022, 85(1): 24-29. |
53 | YANG Q, SONG D, XIE Z, et al. Optogenetic stimulation of CA3 pyramidal neurons restores synaptic deficits to improve spatial short-term memory in APP/PS1 mice[J]. Progress in Neurobiology, 2022, 209: 102209. |
54 | DENG W, WU G, MIN L, et al. Optogenetic Neuronal Stimulation Promotes Functional Recovery After Spinal Cord Injury[J]. Frontiers in Neuroscience, 2021, 15: 640255. |
55 | LU C, WU X, MA H, et al. Optogenetic Stimulation Enhanced Neuronal Plasticities in Motor Recovery after Ischemic Stroke[J]. Neural Plasticity, 2019, 2019: 1-9. |
56 | PATEL M, LI Y, ANDERSON J, et al. Gsx1 promotes locomotor functional recovery after spinal cord injury[J]. Molecular Therapy, 2021, 29(8): 2469–2482. |
57 | OSAKI T, UZEL S G M, KAMM R D. Microphysiological 3D model of amyotrophic lateral sclerosis (ALS) from human iPS-derived muscle cells and optogenetic motor neurons[J]. Science Advances, 2018, 4(10): eaat5847. |
58 | KOBLINGER K, JEAN-XAVIER C, SHARMA S, et al. Optogenetic Activation of A11 Region Increases Motor Activity[J]. Frontiers in Neural Circuits, 2018, 12: 86. |
59 | WATANABE H, SANO H, CHIKEN S, et al. Forelimb movements evoked by optogenetic stimulation of the macaque motor cortex[J]. Nature Communications, 2020, 11(1): 3253. |
60 | CONTI E, SCAGLIONE A, DE VITO G, et al. Combining Optogenetic Stimulation and Motor Training Improves Functional Recovery and Perilesional Cortical Activity[J]. Neurorehabilitation and Neural Repair, 2022, 36(2): 107–118. |
61 | TAN J K, NAZAR F H, MAKPOL S, et al. Zebrafish: A Pharmacological Model for Learning and Memory Research[J]. Molecules, 2022, 27(21): 7374. |
62 | FRANKLAND P W, JOSSELYN S A, KÖHLER S. The neurobiological foundation of memory retrieval[J]. Nature Neuroscience, 2019, 22(10): 1576-1585. |
63 | TANG L, PRUITT P J, YU Q, et al. Differential Functional Connectivity in Anterior and Posterior Hippocampus Supporting the Development of Memory Formation[J]. Frontiers in Human Neuroscience, 2020, 14: 204. |
64 | DRISKILL C M, CHILDS J E, ITMER B, et al. Acute Vagus Nerve Stimulation Facilitates Short Term Memory and Cognitive Flexibility in Rats[J]. Brain Sciences, 2022, 12(9): 1137. |
65 | NABAVI S, FOX R, PROULX C D, et al. Engineering a memory with LTD and LTP[J]. Nature, 2014, 511(7509): 348-352. |
66 | YAMAMOTO N, MARKS W D, KITAMURA T. Cell-Type-Specific Optogenetic Techniques Reveal Neural Circuits Crucial for Episodic Memories[A]. 见: H. Yawo, H. Kandori, A. Koizumi,et al. Optogenetics[M]. Singapore: Springer Singapore, 2021, 1293: 429–447. |
67 | WANG Y, WANG K, HU X, et al. Optogenetics-Inspired Fluorescent Synaptic Devices with Nonvolatility[J]. ACS Nano, 2023, 17(4): 3696-3704. |
68 | KLOC M L, VELASQUEZ F, NIEDECKER R W, et al. Disruption of hippocampal rhythms via optogenetic stimulation during the critical period for memory development impairs spatial cognition[J]. Brain Stimulation, 2020, 13(6): 1535-1547. |
69 | LEBLANC H, RAMIREZ S. Linking Social Cognition to Learning and Memory[J]. The Journal of Neuroscience, 2020, 40(46): 8782–8798. |
70 | NAGASAWA Y, UEDA H H, KAWABATA H, et al. LOV2-based photoactivatable CaMKII and its application to single synapses: Local Optogenetics[J]. Biophysics and Physicobiology, 2023, 20(2): n/a. |
71 | BHATTACHARYYA M, KARANDUR D, KURIYAN J. Structural Insights into the Regulation of Ca 2+ /Calmodulin-Dependent Protein Kinase II (CaMKII)[J]. Cold Spring Harbor Perspectives in Biology, 2020, 12(6): a035147. |
72 | ROSTAS J A P, SKELDING K A. Calcium/Calmodulin-Stimulated Protein Kinase II (CaMKII): Different Functional Outcomes from Activation, Depending on the Cellular Microenvironment[J]. Cells, 2023, 12(3): 401. |
73 | ZHANG X, CONNELLY J, LEVITAN E S, et al. Calcium/Calmodulin–Dependent Protein Kinase II in Cerebrovascular Diseases[J]. Translational Stroke Research, 2021, 12(4): 513-529. |
74 | PEREDA D, AL‐OSTA I, OKOROCHA A E, et al. Changes in presynaptic calcium signalling accompany age‐related deficits in hippocampal LTP and cognitive impairment[J]. Aging Cell, 2019, 18(5): e13008. |
75 | YASUDA R, HAYASHI Y, HELL J W. CaMKII: a central molecular organizer of synaptic plasticity, learning and memory[J]. Nature Reviews Neuroscience, 2022, 23(11): 666–682. |
76 | WIDEMAN C E, HUFF A E, MESSER W S, et al. Muscarinic receptor activation overrides boundary conditions on memory updating in a calcium/calmodulin-dependent manner[J]. Neuropsychopharmacology, 2023, 48(9): 1358–1366. |
77 | GOTO A, BOTA A, MIYA K, et al. Stepwise synaptic plasticity events drive the early phase of memory consolidation[J]. Science, 2021, 374(6569): 857–863. |
78 | ROBINSON N T M, DESCAMPS L A L, RUSSELL L E, et al. Targeted Activation of Hippocampal Place Cells Drives Memory-Guided Spatial Behavior[J]. Cell, 2020, 183(6): 1586-1599.e10. |
79 | CALÌ T, BRINI M, CARAFOLI E. Regulation of Cell Calcium and Role of Plasma Membrane Calcium ATPases[A]. 见: International Review of Cell and Molecular Biology[M]. Elsevier, 2017, 332: 259–296. |
80 | HOLAHAN M R, TZAKIS N, OLIVEIRA F A. Developmental Aspects of Glucose and Calcium Availability on the Persistence of Memory Function Over the Lifespan[J]. Frontiers in Aging Neuroscience, 2019, 11: 253. |
81 | VIGIL F A, GIESE K P. Calcium/calmodulin‐dependent kinase II and memory destabilization: a new role in memory maintenance[J]. Journal of Neurochemistry, 2018, 147(1): 12-23. |
82 | KOOK Y H, LEE H, LEE J, et al. AAV-compatible optogenetic tools for activating endogenous calcium channels in vivo[J]. Molecular Brain, 2023, 16(1): 73. |
83 | WILLETT R T, BAYIN N S, LEE A S, et al. Cerebellar nuclei excitatory neurons regulate developmental scaling of presynaptic Purkinje cell number and organ growth[J]. eLife, 2019, 8: e50617. |
84 | SZABO A, SOMOGYI J, CAULI B, et al. Calcium-Permeable AMPA Receptors Provide a Common Mechanism for LTP in Glutamatergic Synapses of Distinct Hippocampal Interneuron Types[J]. The Journal of Neuroscience, 2012, 32(19): 6511–6516. |
85 | ORJATSALO M, ALAKUIJALA A, PARTINEN M. Heart Rate Variability in Head-Up Tilt Tests in Adolescent Postural Tachycardia Syndrome Patients[J]. Frontiers in Neuroscience, 2020, 14: 725. |
86 | KYUNG T, LEE S, KIM J E, et al. Optogenetic control of endogenous Ca2+ channels in vivo[J]. Nature Biotechnology, 2015, 33(10): 1092–1096. |
87 | DELABY C, ALCOLEA D, CARMONA-IRAGUI M, et al. Differential levels of Neurofilament Light protein in cerebrospinal fluid in patients with a wide range of neurodegenerative disorders[J]. Scientific Reports, 2020, 10(1): 9161. |
88 | SEIDENTHAL M, JÁNOSI B, ROSENKRANZ N, et al. pOpsicle: An all-optical reporter system for synaptic vesicle recycling combining pH-sensitive fluorescent proteins with optogenetic manipulation of neuronal activity[J]. Frontiers in Cellular Neuroscience, 2023, 17: 1120651. |
89 | REDONDO R L, KIM J, ARONS A L, et al. Bidirectional switch of the valence associated with a hippocampal contextual memory engram[J]. Nature, 2014, 513(7518): 426–430. |
90 | TONEGAWA S, PIGNATELLI M, ROY D S, et al. Memory engram storage and retrieval[J]. Current Opinion in Neurobiology, 2015, 35: 101–109. |
91 | ROY D S, ARONS A, MITCHELL T I, et al. Memory retrieval by activating engram cells in mouse models of early Alzheimer's disease[J]. Nature, 2016, 531(7595): 508–512. |
92 | HAJJO R, SABBAH D A, ABUSARA O H, et al. A Review of the Recent Advances in Alzheimer's Disease Research and the Utilization of Network Biology Approaches for Prioritizing Diagnostics and Therapeutics[J]. Diagnostics, 2022, 12(12): 2975. |
93 | ABUBAKAR M B, SANUSI K O, UGUSMAN A, et al. Alzheimer's Disease: An Update and Insights Into Pathophysiology[J]. Frontiers in Aging Neuroscience, 2022, 14: 742408. |
94 | ROY D S, Y-G PARK, KIM M E, et al. Brain-wide mapping reveals that engrams for a single memory are distributed across multiple brain regions[J]. Nature Communications, 2022, 13(1): 1799. |
95 | ROY D S, KITAMURA T, OKUYAMA T, et al. Distinct Neural Circuits for the Formation and Retrieval of Episodic Memories[J]. Cell, 2017, 170(5): 1000-1012.e19. |
96 | KIM S, KIM N, LEE J, et al. Dynamic Fas signaling network regulates neural stem cell proliferation and memory enhancement[J]. Science Advances, 2020, 6(17): eaaz9691. |
97 | MCNALLY G P, JEAN-RICHARD-DIT-BRESSEL P, MILLAN E Z, et al. Pathways to the persistence of drug use despite its adverse consequences[J]. Molecular Psychiatry, 2023, 28(6): 2228–2237. |
98 | TOZER L. Massive genetic study finds genes linked to cannabis addiction[J]. Nature, 2023: d41586-023-03629–8. |
99 | LEVEY D F, GALIMBERTI M, DEAK J D, et al. Multi-ancestry genome-wide association study of cannabis use disorder yields insight into disease biology and public health implications[J]. Nature Genetics, 2023, 55(12): 2094–2103. |
100 | LI M D, BURMEISTER M. New insights into the genetics of addiction[J]. Nature Reviews Genetics, 2009, 10(4): 225–231. |
101 | ISABELLA A J, LEYVA-DÍAZ E, KANEKO T, et al. The field of neurogenetics: where it stands and where it is going[J]. Genetics, 2021, 218(4): iyab085. |
102 | CAO Z F H, BURDAKOV D, SARNYAI Z. Optogenetics: potentials for addiction research[J]. Addiction Biology, 2011, 16(4): 519–531. |
103 | PASCOLI V, TERRIER J, HIVER A, et al. Sufficiency of Mesolimbic Dopamine Neuron Stimulation for the Progression to Addiction[J]. Neuron, 2015, 88(5): 1054–1066. |
104 | RICH M T, HUANG Y H, TORREGROSSA M M. Plasticity at Thalamo-amygdala Synapses Regulates Cocaine-Cue Memory Formation and Extinction[J]. Cell Reports, 2019, 26(4): 1010-1020.e5. |
105 | RICH M T, HUANG Y H, TORREGROSSA M M. Using Optogenetics to Reverse Neuroplasticity and Inhibit Cocaine Seeking in Rats[J]. Journal of Visualized Experiments, 2021(176): 63185. |
106 | VICKSTROM C R, SNARRENBERG S T, FRIEDMAN V, et al. Application of optogenetics and in vivo imaging approaches for elucidating the neurobiology of addiction[J]. Molecular Psychiatry, 2022, 27(1): 640–651. |
107 | TYREE S M, JENNINGS K J, GONZALEZ O C, et al. Optogenetic and pharmacological interventions link hypocretin neurons to impulsivity in mice[J]. Communications Biology, 2023, 6(1): 74. |
108 | ADAMCZYK A K, ZAWADZKI P. The Memory-Modifying Potential of Optogenetics and the Need for Neuroethics[J]. NanoEthics, 2020, 14(3): 207–225. |
109 | MONTANEZ‐MIRANDA C, BRAMLETT S N, HEPLER J R. RGS14 expression in CA2 hippocampus, amygdala, and basal ganglia: Implications for human brain physiology and disease[J]. Hippocampus, 2023, 33(3): 166–181. |
110 | KIM H K, GSCHWIND T, NGUYEN T M, et al. Optogenetic intervention of seizures improves spatial memory in a mouse model of chronic temporal lobe epilepsy[J]. Epilepsia, 2020, 61(3): 561–571. |
111 | KIM W B, CHO J-H. Encoding of contextual fear memory in hippocampal–amygdala circuit[J]. Nature Communications, 2020, 11(1): 1382. |
112 | FENG J, ZHANG L, CHEN C, et al. A cognitive neurogenetic approach to uncovering the structure of executive functions[J]. Nature Communications, 2022, 13(1): 4588. |
113 | DAVIS C J, VANDERHEYDEN W M. Optogenetic sleep enhancement improves fear-associated memory processing following trauma exposure in rats[J]. Scientific Reports, 2020, 10(1): 18025. |
114 | VETERE G, TRAN L M, MOBERG S, et al. Memory formation in the absence of experience[J]. Nature Neuroscience, 2019, 22(6): 933–940. |
115 | WANG K-W, YE X-L, HUANG T, et al. Optogenetics-induced activation of glutamate receptors improves memory function in mice with Alzheimer's disease[J]. Neural Regeneration Research, 2019, 14(12): 2147. |
116 | PRESTORI F, MONTAGNA I, D'ANGELO E, et al. The Optogenetic Revolution in Cerebellar Investigations[J]. International Journal of Molecular Sciences, 2020, 21(7): 2494. |
117 | SHIN H, SON Y, CHAE U, et al. Multifunctional multi-shank neural probe for investigating and modulating long-range neural circuits in vivo[J]. Nature Communications, 2019, 10(1): 3777. |
118 | FENG Y-S, TAN Z-X, WU L-Y, et al. The involvement of NLRP3 inflammasome in the treatment of Alzheimer's disease[J]. Ageing Research Reviews, 2020, 64: 101192. |
119 | JAEGER B N, LINKER S B, PARYLAK S L, et al. A novel environment-evoked transcriptional signature predicts reactivity in single dentate granule neurons[J]. Nature Communications, 2018, 9(1): 3084. |
120 | JOHN R A, ACHARYA J, ZHU C, et al. Optogenetics inspired transition metal dichalcogenide neuristors for in-memory deep recurrent neural networks[J]. Nature Communications, 2020, 11(1): 3211. |
121 | 于袁欢,周阳,王欣怡,等.光遗传学照进生物医学研究进展[J].合成生物学,2023,4(01):102-140. |
YU Y H, ZHOU Y, WANG X Y, et al. Progress in biomedical research illuminated by optogenetics [J]. Synthetic Biology, 2023, 4(01): 102-140. | |
122 | ORDAZ J, WU W, XU X-M. Optogenetics and its application in neural degeneration and regeneration[J]. Neural Regeneration Research, 2017, 12(8): 1197. |
123 | SUN Y, LI M, CAO S, et al. Optogenetics for Understanding and Treating Brain Injury: Advances in the Field and Future Prospects[J]. International Journal of Molecular Sciences, 2022, 23(3): 1800. |
124 | LIU X, QIAO Z, CHAI Y, et al. Nonthermal and reversible control of neuronal signaling and behavior by midinfrared stimulation[J]. Proceedings of the National Academy of Sciences, 2021, 118(10): e2015685118. |
[1] | Jingyu ZHAO, Jian ZHANG, Qingsheng QI, Qian WANG. Research progress in biosensors based on bacterial two-component systems [J]. Synthetic Biology Journal, 2024, 5(1): 38-52. |
[2] | Renmei LIU, Leshi LI, Xiaoyan YANG, Xianjun CHEN, Yi YANG. Technologies for precise spatiotemporal control of post-transcriptional RNA metabolism [J]. Synthetic Biology Journal, 2023, 4(1): 141-164. |
[3] | Yuanhuan YU, Yang ZHOU, Xinyi WANG, Deqiang KONG, Haifeng YE. Advances in optogenetics for biomedical research [J]. Synthetic Biology Journal, 2023, 4(1): 102-140. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||