Yuanxu JIANG1,2, Yingying FAN1, Ping WEI1,2
Received:
2024-12-18
Revised:
2025-03-04
Published:
2025-03-06
Contact:
Ping WEI
姜源旭1,2, 范盈盈1, 魏平1,2
通讯作者:
魏平
作者简介:
基金资助:
CLC Number:
Yuanxu JIANG, Yingying FAN, Ping WEI. Design principles and artificial synthesis of biological oscillators[J]. Synthetic Biology Journal, DOI: 10.12211/2096-8280.2024-096.
姜源旭, 范盈盈, 魏平. 生物振荡的设计原理与人工合成[J]. 合成生物学, DOI: 10.12211/2096-8280.2024-096.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2024-096
Fig. 1 The Main Requirements for Generating Biological Oscillations(A: Single-node or dual-node negative feedback network (as shown above) with the curves of transcription rate and degradation rate varying with protein concentration A in the system. B: The dynamic behavior of the system gradually changes from damped oscillations to sustained oscillations as the delay increases. C: Three forms of time delay: direct slow steps (left), multi-step intermediate reactions (middle), and additional positive feedback (right). D: The effect of the Hill coefficient n on the shape of the response function curve. E: The relationship between oscillation generation and the Hill coefficient in a simple dual-node negative feedback circuit.)
Fig. 2 Synchronization of Biological Oscillations(A: Schematic diagram of Arnold's tongue, with the blue shaded area in the middle representing the frequency-locking range. The upper graph shows the dynamic curve of the system when synchronization occurs, while the lower graph illustrates the dynamic curve under non-synchronized conditions. B: Schematic diagram of the traveling wave of Hes7 in early embryos. C: The experimental system (left, schematic) and the pattern generated by computational simulation (right).)
Figure 3 Representative Synthetic Oscillatory Circuits(A: The classical repressilator system. B: An oscillator system with intertwined negative and positive feedback. C: The synthetic NF-κB oscillatory system. D: A metabolic-transcriptional oscillatory system. E: An E. coli quorum sensing oscillatory system.)
1 | REPPERT S M, WEAVER D R. Coordination of circadian timing in mammals [J]. Nature, 2002, 418(6901): 935-941. |
2 | KORONOWSKI K B, SASSONE-CORSI P. Communicating clocks shape circadian homeostasis [J]. Science, 2021, 371(6530): eabd0951. |
3 | KÖBLER C, SCHMELLING N M, WIEGARD A, et al. Two KaiABC systems control circadian oscillations in one cyanobacterium [J]. Nature Communications, 2024, 15(1): 7674. |
4 | NAKAJIMA M, IMAI K, ITO H, et al. Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro [J]. Science, 2005, 308(5720): 414-415. |
5 | FERRELL J E, TSAI T Y, YANG Q. Modeling the cell cycle: why do certain circuits oscillate? [J]. Cell, 2011, 144(6): 874-885. |
6 | POMERENING J R, KIM S Y, FERRELL J E. Systems-level dissection of the cell-cycle oscillator: bypassing positive feedback produces damped oscillations [J]. Cell, 2005, 122(4): 565-578. |
7 | CHANG J B, FERRELL J E. Mitotic trigger waves and the spatial coordination of the Xenopus cell cycle [J]. Nature, 2013, 500(7464): 603-607. |
8 | MOJICA-BENAVIDES M, VAN NIEKERK D D, MIJALKOV M, et al. Intercellular communication induces glycolytic synchronization waves between individually oscillating cells [J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(6): e2010075118. |
9 | BETZ A, BECKER J U. Phase dependent phase shifts induced by pyruvate and acetaldehyde in oscillating NADH of yeast cells [J]. J Interdiscip Cycle Res, 1975, 6: 167-173. |
10 | RICHARD P, BAKKER B M, TEUSINK B, et al. Acetaldehyde mediates the synchronization of sustained glycolytic oscillations in populations of yeast cells [J]. European Journal of Biochemistry, 1996, 235(1-2): 238-241. |
11 | YOSHIOKA-KOBAYASHI K, MATSUMIYA M, NINO Y, et al. Coupling delay controls synchronized oscillation in the segmentation clock [J]. Nature, 2020, 580(7801): 119-123. |
12 | DIAZ-CUADROS M, WAGNER D E, BUDJAN C, et al. In vitro characterization of the human segmentation clock [J]. Nature, 2020, 580(7801): 113-118. |
13 | SONNEN K F, LAUSCHKE V M, URAJI J, et al. Modulation of Phase Shift between Wnt and Notch Signaling Oscillations Controls Mesoderm Segmentation [J]. Cell, 2018, 172(5): 1079-1090.e12. |
14 | HO C, JUTRAS-DUBÉ L, ZHAO M L, et al. Nonreciprocal synchronization in embryonic oscillator ensembles [J]. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121(36): e2401604121. |
15 | HOFFMANN A, LEVCHENKO A, SCOTT M L, et al. The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation [J]. Science, 2002, 298(5596): 1241-1245. |
16 | LIN Y, SOHN C H, DALAL C K, et al. Combinatorial gene regulation by modulation of relative pulse timing [J]. Nature, 2015, 527(7576): 54-58. |
17 | PURVIS J E, KARHKOH K W, MOCK C, et al. p53 dynamics control cell fate [J]. Science, 2012, 336(6087): 1440-1444. |
18 | CAI L, DALAL C K, et al. Frequency-modulated nuclear localization bursts coordinate gene regulation [J]. Nature, 2008, 455(7212): 485-490. |
19 | GREGOR T, FUJIMOTO K, MASAKI N, et al. The onset of collective behavior in social amoebae [J]. Science, 2010, 328(5981): 1021-1025. |
20 | CHEN C, LIU S, SHI X Q, et al. Weak synchronization and large-scale collective oscillation in dense bacterial suspensions [J]. Nature, 2017, 542(7640): 210-214. |
21 | SHNIDERMAN E, AVRAHAM Y, SHAHAL S, et al. How synchronized human networks escape local minima [J]. Nature Communications, 2024, 15(1): 9298. DOI: 10.1038/s41467-024-53540-7 . |
22 | COGNO S G, OBENHAUS H A, LAUTRUP A, et al. Minute-scale oscillatory sequences in medial entorhinal cortex [J]. Nature, 2024, 625(7994): 338-344. |
23 | FITZHUGH R. Thresholds and plateaus in the Hodgkin-Huxley nerve equations [J]. The Journal of General Physiology, 1960, 43(5): 867-896. |
24 | HAMILL O P. Arterial pulses link heart-brain oscillations [J]. Science, 2024, 383(6682): 482-483. |
25 | SARFATI R, HAYES J C, SARFATI É, et al. Spatio-temporal reconstruction of emergent flash synchronization in firefly swarms via stereoscopic 360-degree cameras [J]. Journal of the Royal Society Interface, 2020, 17(170): 20200179. |
26 | MIROLLO R, STROGATZ S. Synchronization of Pulse-Coupled Biological Oscillators [J]. SIAM J Appl Math, 1990, 50: 1645-1662. |
27 | JONES D L, JONES R L, RATNAM R. Calling dynamics and call synchronization in a local group of unison bout callers [J]. Journal of Comparative Physiology A, 2014, 200(1): 93-107. |
28 | ELWITZ M, LIM W A. Build life to understand it [J]. Nature, 2010, 468(7326): 889-890. |
29 | RICHTER P H, ROSS J. Concentration oscillations and efficiency: glycolysis [J]. Science, 1981, 211(4483): 715-717. |
30 | PYE K, CHANCE B. Sustained sinusoidal oscillations of reduced pyridine nucleotide in a cell-free extract of Saccharomyces carlsbergensis [J]. Proc Natl Acad Sci USA, 1966, 55: 888-894. |
31 | CAO Y, WANG H, OUYANG Q, et al. The free energy cost of accurate biochemical oscillations [J]. Nature Physics, 2015, 11(9): 772-778. |
32 | ZHANG D, CAO Y, OUYANG Q, et al. The energy cost and optimal design for synchronization of coupled molecular oscillators [J]. Nature Physics, 2020, 16(1): 95-100. |
33 | HIGGINS J. Theory of oscillating reactions [J]. Ind Eng Chem, 1967, 59: 19-62. |
34 | NOVÁK B, TYSON J J. Design principles of biochemical oscillators [J]. Nature Reviews Molecular Cell Biology, 2008, 9(12): 981-991. |
35 | FERRELL J E. Feedback loops and reciprocal regulation: recurring motifs in the systems biology of the cell cycle [J]. Current Opinion in Cell Biology, 2013, 25(6): 676-686. |
36 | GOLDBETER A. Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of Periodic and Chaotic Behaviour [M]. Cambridge University Press, 1996. |
37 | THOMAS R. On the Relation Between the Logical Structure of Systems and Their Ability to Generate Multiple Steady States or Sustained Oscillations[C]// DELLA DORA J, DEMONGEOT J, LACOLLE B (eds). Numerical Methods in the Study of Critical Phenomena. Springer Series in Synergetics, vol 9. Berlin, Heidelberg: Springer, 1981: 180-193 |
38 | FRANÇOIS P, HAKIM V. Design of genetic networks with specified functions by evolution in silico [J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(2): 580-585. |
39 | ROSENFELD N, ELOWITZ M B, ALON U. Negative autoregulation speeds the response times of transcription networks [J]. Journal of Molecular Biology, 2002, 323(5): 785-793. |
40 | GRÖNLUND A, LÖTSTEDT P, ELF J. Transcription factor binding kinetics constrain noise suppression via negative feedback [J]. Nature Communications, 2013, 4: 1864. |
41 | MONK N A M. Oscillatory expression of Hes1, p53, and NF-kappaB driven by transcriptional time delays [J]. Current Biology, 2003, 13(16): 1409-1413. |
42 | SWINBURNE I A, MIGUEZ D G, LANDGRAF D, et al. Intron length increases oscillatory periods of gene expression in animal cells [J]. Genes & Development, 2008, 22(17): 2342-2346. |
43 | RUÉ P, GARCIA-OJALVO J. Modeling gene expression in time and space [J]. Annual Review of Biophysics, 2013, 42: 605-627. |
44 | KHOLODENKO B N. Cell-signalling dynamics in time and space [J]. Nature Reviews Molecular Cell Biology, 2006, 7(3): 165-176. |
45 | PURVIS J E, LAHAV G. Encoding and decoding cellular information through signaling dynamics [J]. Cell, 2013, 152(5): 945-956. |
46 | CHENG Q J, OHTA S, SHEU K M, et al. NF-κB dynamics determine the stimulus specificity of epigenomic reprogramming in macrophages [J]. Science, 2021, 372(6548): 1349-1353. |
47 | MANGAN S, ZASLAVAR A, ALON U. The coherent feedforward loop serves as a sign-sensitive delay element in transcription networks [J]. Journal of Molecular Biology, 2003, 334(2): 197-204. |
48 | MANGAN S, ALON U. Structure and function of the feed-forward loop network motif [J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(21): 11980-11985. |
49 | HAO N, O'SHEA E K. Signal-dependent dynamics of transcription factor translocation controls gene expression [J]. Nature Structural & Molecular Biology, 2011, 19(1): 31-39. |
50 | CHEN S Y, OSIMIRI L C, CHEVALIER M, et al. Optogenetic Control Reveals Differential Promoter Interpretation of Transcription Factor Nuclear Translocation Dynamics [J]. Cell Systems, 2020, 11(4): 336-353.e24. |
51 | STRICKER J, COOKSON S, BENNETT M R, et al. A fast, robust and tunable synthetic gene oscillator [J]. Nature, 2008, 456(7221): 516-519. |
52 | GOODWIN B C. Temporal Organization in Cells. A Dynamic Theory of Cellular Control Processes [M]. Academic Press, 1963. |
53 | TSAI T Y, CHOI Y S, MA W, et al. Robust, tunable biological oscillations from interlinked positive and negative feedback loops [J]. Science, 2008, 321(5885): 126-129. |
54 | TOMAZOU M, BARAHONA M, POLIZZI K M, et al. Computational Re-design of Synthetic Genetic Oscillators for Independent Amplitude and Frequency Modulation [J]. Cell Systems, 2018, 6(4): 508-520.e5. |
55 | ZHANG F, SUN Y, ZHANG Y, et al. Independent control of amplitude and period in a synthetic oscillator circuit with modified repressilator [J]. Communications Biology, 2022, 5(1): 23. |
56 | HELTBERG M S, JIANG Y, FAN Y, et al. Coupled oscillator cooperativity as a control mechanism in chronobiology [J]. Cell Systems, 2023, 14(5): 382-391.e5. |
57 | ZHANG Z B, WANG Q Y, KE Y X, et al. Design of Tunable Oscillatory Dynamics in a Synthetic NF-κB Signaling Circuit [J]. Cell Systems, 2017, 5(5): 460-470.e5. |
58 | ELOVITZ M B, LEVINE A J, JACQUES S T, et al. Stochastic gene expression in a single cell [J]. Science, 2002, 297(5584): 1183-1186. |
59 | MCADAMS H H, ARKIN A. Stochastic mechanisms in gene expression [J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(3): 814-819. |
60 | GAMMAITONI L, HÄNGGI P, JUNG P, et al. Stochastic resonance [J]. Reviews of Modern Physics, 1998, 70(1): 223. |
61 | PIKOVSKY A S, KURTHS J. Coherence resonance in a noise-driven excitable system [J]. Physical Review Letters, 1997, 78(5): 775. |
62 | KELLOGG R A, TAY S. Noise facilitates transcriptional control under dynamic inputs . Cell, 2015, 160(3): 381-392. |
63 | ZHENG Y, ET AL. Collective phase response of coupled oscillators [J]. Physical Review Letters, 2014, 112(5): 054102. |
64 | HASTY J, ET AL. Noise-based switches and amplifiers for gene expression [J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(15): 8144-8148. |
65 | POTVIN-TROTTIER L, LORD N D, VINNICOMBE G, PAULSSON J. Synchronous long-term oscillations in a synthetic gene circuit [J]. Nature, 2016, 538(7626): 514-517. |
66 | QIAO L, ZHANG Z B, ZHAO W, WEI P, ZHANG L. Network design principle for robust oscillatory behaviors with respect to biological noise [J]. eLife, 2022, 11: e76188. |
67 | ZORZAN I, LOPEZ A R, MALYSHAVA A, ELLIS T, BARBERIS M. Synthetic designs regulating cellular transitions: Fine-tuning of switches and oscillators[J]. Current Opinion in Systems Biology, 2021, 25: 11-26. |
68 | ARNOL'D V I. Small denominators. I. Mappings of the circumference onto itself[J]. American Mathematical Society Translations: Series 2, 1965, 46: 213-284. |
69 | JENSEN M H, BAK P, BOHR T. Transition to chaos by interaction of resonances in dissipative systems. I: Circle maps[J]. Physical Review A, 1984, 30: 1960-1969. |
70 | GLASS L. Synchronization and rhythmic processes in physiology [J]. Nature, 2001, 410(6825): 277-284. |
71 | MONDRAGÓN-PALOMINO O, DANINO T, SELIMKHANOV J, et al. Entrainment of a population of synthetic genetic oscillators [J]. Science, 2011, 333(6047): 1315-1319. |
72 | ZAMBRANO S, DE TOMA I, PIFFER A, et al. NF-κB oscillations translate into functionally related patterns of gene expression [J]. eLife, 2016, 5: e09100. |
73 | HELTBERG M, KELLOGG R A, KRISHNA S, et al. Noise Induces Hopping between NF-κB Entrainment Modes [J]. Cell Systems, 2016, 3(6): 532-539.e3. |
74 | HELTBERG M L, KRISHNA S, JENSEN M H. On chaotic dynamics in transcription factors and the associated effects in differential gene regulation [J]. Nature Communications, 2019, 10: 71-10. |
75 | REN H, LI Y, HAN C, et al. Pancreatic α and β cells are globally phase-locked [J]. Nature Communications, 2022, 13(1): 3721. |
76 | TURING A M. The chemical basis of morphogenesis [J]. Philosophical Transactions of the Royal Society B, 1952, 237(641) |
77 | CHENG H, LEDERER W J. Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle [J]. Circulation Research, 2008. |
78 | WANG H, ZHANG K, OUYANG Q. Resonant-pattern formation induced by additive noise in periodically forced reaction-diffusion systems [J]. Physical Review E, 2006, 74: 036210. |
79 | RAJASEKARAN R, CHANG C C, WEIX E W Z, et al. A programmable reaction-diffusion system for spatiotemporal cell signaling circuit design [J]. Cell, 2024, 187(2): 345-359.e16. |
80 | ELOWITZ M B, LEIBLER S. A synthetic oscillatory network of transcriptional regulators [J]. Nature, 2000, 403(6767): 335-338. |
81 | BRAY D. Protein molecules as computational elements in living cells [J]. Nature, 1995, 376(6538): 307-312. |
82 | RAMOS J L, MARTÍNEZ-BUENO M, MOLINA-HENARES A J, et al. The TetR family of transcriptional repressors [J]. Microbiology and Molecular Biology Reviews, 2005, 69(2): 326-356. |
83 | TIGGES M, MARQUEZ-LAGO T T, STELLING J, FUSSENEGGER M. A tunable synthetic mammalian oscillator [J]. Nature, 2009, 457(7227): 309-312. |
84 | SANTOS-MORENO J, TASIUDI E, STELLING J, SCHÄRLI Y. Multistable and dynamic CRISPRi-based synthetic circuits [J]. Nature Communications, 2020, 11(1): 2746. |
85 | PARK J H, HOLLO G, SCHÄRLI Y. From resonance to chaos by modulating spatiotemporal patterns through a synthetic optogenetic oscillator [J]. Nature Communications, 2024, 15(1): 7284. |
86 | KIMCHI O, GOODRICH C P, COURBET A, et al. Self-assembly-based posttranslational protein oscillators [J]. Science Advances, 2020, 6(51): eabc1939. |
87 | TOETTCHER J E, MOCK C, BATCHELOR E, et al. A synthetic-natural hybrid oscillator in human cells [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(39): 17047-17052. |
88 | FUNG E, WONG W W, SUEN J K, et al. A synthetic gene-metabolic oscillator [J]. Nature, 2005, 435(7038): 118-122. |
89 | DANINO T, MONDRAGÓN-PALOMINO O, TSIMRING L, HASTY J. A synchronized quorum of genetic clocks [J]. Nature, 2010, 463(7279): 326-330. |
90 | CHEN Y, KIM J K, HIRNING A J, et al. Emergent genetic oscillations in a synthetic microbial consortium [J]. Science, 2015, 349(6251): 986-989. |
91 | LIU C, FU X, LIU L, et al. Sequential establishment of stripe patterns in an expanding cell population [J]. Science, 2011, 334(6053): 238-241. |
92 | FU X, TANG L H, LIU C, et al. Stripe formation in bacterial systems with density-suppressed motility [J]. Physical Review Letters, 2012, 108(19): 198102. |
93 | GUO L, LIU M, BI Y, et al. Using a synthetic machinery to improve carbon yield with acetylphosphate as the core [J]. Nature Communications, 2023, 14(1): 5286. |
94 | ZHANG J, HASTY J, ZARRINPAR A. Live bacterial therapeutics for detection and treatment of colorectal cancer [J]. Nature Reviews Gastroenterology & Hepatology, 2024, 21(5): 295-296. |
95 | DIN M O, DANINO T, PRINDLE A, et al. Synchronized cycles of bacterial lysis for in vivo delivery [J]. Nature, 2016, 536(7614): 81-85. |
96 | LI Y, JIANG Y, PAXMAN J, et al. A programmable fate decision landscape underlies single-cell aging in yeast [J]. Science, 2020, 369(6501): 325-329. |
97 | JIN M, LI Y, O'LAUGHLIN R, et al. Divergent Aging of Isogenic Yeast Cells Revealed through Single-Cell Phenotypic Dynamics [J]. Cell Systems, 2019, 8(3): 242-253.e3. DOI: 10.1016/j.cels.2019.02.002 |
98 | ZHOU Z, LIU Y, FENG Y, et al. Engineering longevity-design of a synthetic gene oscillator to slow cellular aging [J]. Science, 2023, 380(6643): 376-381. |
99 | MICHALSON A M. From genetic association to genetic switch [J]. Science, 2008, 322(5909): 1803-1804. |
100 | SHU J, WU C, WU Y, et al. Induction of Pluripotency in Mouse Somatic Cells with Lineage Specifiers [J]. Cell, 2015, 161(5): 1229. |
101 | LOH K M, LIM B. A precarious balance: pluripotency factors as lineage specifiers [J]. Cell Stem Cell, 2011, 8(4): 363-369. |
102 | WU F, SU R Q, LAI Y C, WANG X. Engineering of a synthetic quadrastable gene network to approach Waddington landscape and cell fate determination [J]. eLife, 2017, 6: e23702. |
103 | ZHU R, DEL RIO-SALGADO J M, GARCIA-OJALVO J, ELOWITZ M B. Synthetic multistability in mammalian cells [J]. Science, 2022, 375(6578): eabg9765. |
104 | WANG Y, NARASIMHAMURTHY R, QU M, et al. Circadian regulation of cancer stem cells and the tumor microenvironment during metastasis [J]. Nature Cancer, 2024, 5(4): 546-556. DOI: 10.1038/s43018-024-00759-4 |
105 | WANG C, LUTES L K, BARNOUR C, SCHEIERMANN C. The circadian immune system [J]. Science Immunology, 2022, 7(72): eabm2465. |
106 | WANG C, ZENG Q, GÜL Z M, et al. Circadian tumor infiltration and function of CD8+ T cells dictate immunotherapy efficacy [J]. Cell, 2024, 187(11): 2690-2702.e17. |
107 | MASRI S, SASSONE-CORSI P. The emerging link between cancer, metabolism, and circadian rhythms [J]. Nature Medicine, 2018, 24(12): 1795-1803. |
108 | FORTIN B M, PFEIFFER S M, INSAUSTI-ALONSO J, et al. Circadian control of tumor immunosuppression affects efficacy of immune checkpoint blockade [J]. Nature Immunology, 2024, 25(7): 1257-1269. |
109 | KUBLI S P, BERGER T, ARAUJO D V, et al. Beyond immune checkpoint blockade: emerging immunological strategies [J]. Nature Reviews Drug Discovery, 2021, 20(12): 899-919. |
110 | PFERDEHIRT L, DAMATO A R, DUDEK M, et al. Synthetic gene circuits for preventing disruption of the circadian clock due to interleukin-1-induced inflammation [J]. Science Advances, 2022, 8(21): eabj8892. |
111 | POMERENING J R, SONTAG E D, FERRELL J E. Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2 [J]. Nature Cell Biology, 2003, 5(4): 346-351. |
112 | WANG C, BARNOUR C, CENERENTI M, et al. Dendritic cells direct circadian anti-tumour immune responses [J]. Nature, 2023, 614(7946): 136-143. |
[1] | Wei YAN, Hao GAO, Yujia JIANG, Xiujuan QIAN, Jie ZHOU, Weiliang DONG, Wenming ZHANG, Fengxue XIN, Min JIANG. Research progress in 2-phenylethanol production through biological processes [J]. Synthetic Biology Journal, 2021, 2(6): 1030-1045. |
[2] | Jiaole FANG, Zhongyuan LYU, Chenfan SUN, Yifan LIU, Weifeng XU, Xuming MAO, Yongquan LI. An overview on regulatory mechanism of daptomycin biosynthesis [J]. Synthetic Biology Journal, 2020, 1(6): 722-731. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||