[1] |
WANG X, DING Q, GROLEAU R R, et al. Fluorescent Probes for Disease Diagnosis [J]. Chemical Reviews, 2024, 124(11): 7106-64.
|
[2] |
GHOUNEIMY A, MAHAS A, MARSIC T, et al. CRISPR-Based Diagnostics: Challenges and Potential Solutions toward Point-of-Care Applications [J]. ACS Synth Biol, 2023, 12(1): 1-16.
|
[3] |
HAN Y, YANG J, LI Y, et al. Bright and sensitive red voltage indicators for imaging action potentials in brain slices and pancreatic islets [J]. Sci Adv, 2023, 9(47): eadi4208.
|
[4] |
ZHANG Y, RóZSA M, LIANG Y, et al. Fast and sensitive GCaMP calcium indicators for imaging neural populations [J]. Nature, 2023, 615(7954): 884-91.
|
[5] |
SEKHON H, HA J H, PRESTI M F, et al. Adaptable, turn-on maturation (ATOM) fluorescent biosensors for multiplexed detection in cells [J]. Nature Methods, 2023, 20(12): 1920-9.
|
[6] |
WU Z, LIN D, LI Y. Pushing the frontiers: tools for monitoring neurotransmitters and neuromodulators [J]. Nat Rev Neurosci, 2022, 23(5): 257-74.
|
[7] |
CHANG H, CLEMENS S, GAO P, et al. Fluorogenic Rhodamine-Based Chemigenetic Biosensor for Monitoring Cellular NADPH Dynamics [J]. Journal of the American Chemical Society, 2024, 146(30): 20569-76.
|
[8] |
HU L, CAO W, JIANG Y, et al. Designing artificial fluorescent proteins and biosensors by genetically encoding molecular rotor-based amino acids [J]. Nature Chemistry, 2024, 16(12): 1960-71.
|
[9] |
LU S, HOU Y, ZHANG X E, et al. Live cell imaging of DNA and RNA with fluorescent signal amplification and background reduction techniques [J]. Front Cell Dev Biol, 2023, 11: 1216232.
|
[10] |
SONG Q, TAI X, REN Q, et al. Structure-based insights into fluorogenic RNA aptamers [J]. Acta Biochim Biophys Sin (Shanghai), 2024, 57(1): 108-18.
|
[11] |
GAO W K C Z Y, RONG X X, ET AL. . Progress in RNA dynamic imaging technology in live cells [J]. SCIENTIA SINICA Vitae, 2024, 54(4): 651-67.
|
[12] |
ZUO F T, ZHANG Y Q, YANG H M, et al. Progress on fluorescent RNA and fluorescent RNA-based biosensing technology [J]. Yi Chuan, 2024, 46(2): 92-108.
|
[13] |
LU X, KONG K Y S, UNRAU P J. Harmonizing the growing fluorogenic RNA aptamer toolbox for RNA detection and imaging [J]. Chemical Society Reviews, 2023, 52(12): 4071-98.
|
[14] |
HUANG K, CHEN X, LI C, et al. Structure-based investigation of fluorogenic Pepper aptamer [J]. Nature Chemical Biology, 2021, 17(12): 1289-95.
|
[15] |
WANG Q, XIAO F, SU H, et al. Inert Pepper aptamer-mediated endogenous mRNA recognition and imaging in living cells [J]. Nucleic Acids Res, 2022, 50(14): e84.
|
[16] |
ZHENG H, LIU X, LIU L, et al. Imaging of endogenous RNA in live cells using sequence-activated fluorescent RNA probes [J]. Nucleic Acids Res, 2024.
|
[17] |
FANG M, LI H, XIE X, et al. Imaging intracellular metabolite and protein changes in live mammalian cells with bright fluorescent RNA-based genetically encoded sensors [J]. Biosens Bioelectron, 2023, 235: 115411.
|
[18] |
CHEN Z, CHEN W, REHEMAN Z, et al. Genetically encoded RNA-based sensors with Pepper fluorogenic aptamer [J]. Nucleic Acids Research, 2023, 51(16): 8322-36.
|
[19] |
JIANG L, XIE X, SU N, et al. Large Stokes shift fluorescent RNAs for dual-emission fluorescence and bioluminescence imaging in live cells [J]. Nature Methods, 2023, 20(10): 1563-72.
|
[20] |
ZUO F, JIANG L, SU N, et al. Imaging the dynamics of messenger RNA with a bright and stable green fluorescent RNA [J]. Nature Chemical Biology, 2024, 20(10): 1272-81.
|
[21] |
JIANG L, ZUO F, PAN Y, et al. Bright and Stable Cyan Fluorescent RNA Enables Multicolor RNA Imaging in Live Escherichia coli [J]. Small, 2025, 21(9): e2405165.
|
[22] |
CHEN Z, CHEN W, XU C, et al. Near-infrared fluorogenic RNA for in vivo imaging and sensing [J]. Nature Communications, 2025, 16(1): 518.
|
[23] |
YIN P, HUANG C, ZHANG L, et al. Developing Orthogonal Fluorescent RNAs for Photoactive Dual-Color Imaging of RNAs in Live Cells [J]. Angewandte Chemie International Edition, 2025, n/a(n/a): e202424060.
|
[24] |
HOU J, GUO P, WANG J, et al. Artificial dynamic structure ensemble-guided rational design of a universal RNA aptamer-based sensing tag [J]. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121(52): e2414793121.
|
[25] |
WONG F, HE D, KRISHNAN A, et al. Deep generative design of RNA aptamers using structural predictions [J]. Nature Computational Science, 2024, 4(11): 829-39.
|
[26] |
WU Z, CUI Y, WANG H, et al. Neuronal activity-induced, equilibrative nucleoside transporter-dependent, somatodendritic adenosine release revealed by a GRAB sensor [J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(14): e2212387120.
|
[27] |
ZHUO Y, LUO B, YI X, et al. Improved green and red GRAB sensors for monitoring dopaminergic activity in vivo [J]. Nature Methods, 2024, 21(4): 680-91.
|
[28] |
ZENG J, LI X, ZHANG R, et al. Local 5-HT signaling bi-directionally regulates the coincidence time window for associative learning [J]. Neuron, 2023, 111(7): 1118-35.e5.
|
[29] |
DENG F, WAN J, LI G, et al. Improved green and red GRAB sensors for monitoring spatiotemporal serotonin release in vivo [J]. Nature Methods, 2024, 21(4): 692-702.
|
[30] |
TOUHARA K K, ROSSEN N D, DENG F, et al. Topological segregation of stress sensors along the gut crypt–villus axis [J]. Nature, 2025.
|
[31] |
QIAN T, WANG H, WANG P, et al. A genetically encoded sensor measures temporal oxytocin release from different neuronal compartments [J]. Nature Biotechnology, 2023, 41(7): 944-57.
|
[32] |
FENG J, DONG H, LISCHINSKY J E, et al. Monitoring norepinephrine release in vivo using next-generation GRAB(NE) sensors [J]. Neuron, 2024, 112(12): 1930-42.e6.
|
[33] |
WANG H, QIAN T, ZHAO Y, et al. A tool kit of highly selective and sensitive genetically encoded neuropeptide sensors [J]. Science, 2023, 382(6672): eabq8173.
|
[34] |
XIA X, LI Y. A high-performance GRAB sensor reveals differences in the dynamics and molecular regulation between neuropeptide and neurotransmitter release [J]. Nature Communications, 2025, 16(1): 819.
|
[35] |
WU T, KUMAR M, ZHANG J, et al. A genetically encoded far-red fluorescent indicator for imaging synaptically released Zn2+ [J]. Science Advances, 9(9): eadd2058.
|
[36] |
YANG L, PATHIRANAGE V, ZHOU S, et al. Genetically Encoded Red Fluorescent Indicators for Imaging Intracellular and Extracellular Potassium Ions [J]. bioRxiv, 2024: 2024.12.20.629597.
|
[37] |
LAI C, YANG L, PATHIRANAGE V, et al. Genetically encoded green fluorescent sensor for probing sulfate transport activity of solute carrier family 26 member a2 (Slc26a2) protein [J]. Communications Biology, 2024, 7(1): 1375.
|
[38] |
RAHMAN T, PATEL S. Recent developments in probing the levels and flux of selected organellar cations as well as organellar mechanosensitivity [J]. Current Opinion in Chemical Biology, 2025, 87: 102600.
|
[39] |
MARVIN J S, KOKOTOS A C, KUMAR M, et al. iATPSnFR2: A high-dynamic-range fluorescent sensor for monitoring intracellular ATP [J]. Proceedings of the National Academy of Sciences, 2024, 121(21): e2314604121.
|
[40] |
WANG K, CHEN T-L, ZHANG X-X, et al. Unveiling tryptophan dynamics and functions across model organisms via quantitative imaging [J]. BMC Biology, 2024, 22(1): 258.
|
[41] |
LIU B, ZHAO Z, WANG P, et al. GlutaR: A High‐Performance Fluorescent Protein-Based Sensor for Spatiotemporal Monitoring of Glutamine Dynamics In Vivo [J]. Angewandte Chemie International Edition, 2024.
|
[42] |
LI X, ZHANG Y, XU L, et al. Ultrasensitive sensors reveal the spatiotemporal landscape of lactate metabolism in physiology and disease [J]. Cell Metab, 2023, 35(1): 200-11 e9.
|
[43] |
LI R, LI Y, JIANG K, et al. Lighting up arginine metabolism reveals its functional diversity in physiology and pathology [J]. Cell Metabolism, 2025, 37(1): 291-304.e9.
|
[44] |
HUANG D, ZHANG C, XIAO M, et al. Redox metabolism maintains the leukemogenic capacity and drug resistance of AML cells [J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(13): e2210796120.
|
[45] |
CHANDRASEKHARAN A, TIWARI S K, MUNIRPASHA H A, et al. Genetically encoded caspase sensor and RFP-LC3 for temporal analysis of apoptosis-autophagy [J]. International Journal of Biological Macromolecules, 2024, 257(Pt 2): 128807.
|
[46] |
XU B, WANG Y, BAHRIZ S M F M, et al. Probing spatiotemporal PKA activity at the ryanodine receptor and SERCA2a nanodomains in cardomyocytes [J]. Cell Communication and Signaling, 2022, 20(1): 143.
|
[47] |
ROMERO-SUAREZ D, WULFF T, RONG Y, et al. A Reporter System for Cytosolic Protein Aggregates in Yeast [J]. ACS Synth Biol, 2021, 10(3): 466-77.
|
[48] |
LIU S, LIU J, FOOTE A, et al. Digital and Tunable Genetically Encoded Tension Sensors Based on Engineered Coiled-Coils [J]. Angewandte Chemie International Edition, 2025, 64(8): e202407359.
|
[49] |
MOLNAR K, J-B MANNEVILLE. Emerging mechanobiology techniques to probe intracellular mechanics [J]. npj Biological Physics and Mechanics, 2025, 2(1): 12.
|
[50] |
FREI M S, MEHTA S, ZHANG J. Next-Generation Genetically Encoded Fluorescent Biosensors Illuminate Cell Signaling and Metabolism [J]. Annual Review of Biophysics, 2024, 53(Volume 53, 2024): 275-97.
|
[51] |
ZHOU L, YANG R, LI X, et al. COF-Coated Microelectrode for Space-Confined Electrochemical Sensing of Dopamine in Parkinson's Disease Model Mouse Brain [J]. Journal of the American Chemical Society, 2023, 145(43): 23727-38.
|
[52] |
AGGARWAL A, LIU R, CHEN Y, et al. Glutamate indicators with improved activation kinetics and localization for imaging synaptic transmission [J]. Nature Methods, 2023, 20(6): 925-34.
|
[53] |
JI D, WANG B, LO K W, et al. Pre-Defined Stem-Loop Structure Library for the Discovery of L-RNA Aptamers that Target RNA G-Quadruplexes [J]. Angewandte Chemie International Edition in English, 2025, 64(5): e202417247.
|
[54] |
GUO S K, LIU C X, XU Y F, et al. Therapeutic application of circular RNA aptamers in a mouse model of psoriasis [J]. Nature Biotechnology, 2025, 43(2): 236-46.
|
[55] |
DING D, ZHAO H, WEI D, et al. The First-in-Human Whole-Body Dynamic Pharmacokinetics Study of Aptamer [J]. Research (Wash D C), 2023, 6: 0126.
|