Synthetic Biology Journal ›› 2021, Vol. 2 ›› Issue (5): 815-825.DOI: 10.12211/2096-8280.2021-005
Previous Articles Next Articles
Liwen ZHANG1, István MOLNÀR2, Yuquan XU1
Received:
2021-01-12
Revised:
2021-04-16
Online:
2021-11-19
Published:
2021-11-19
Contact:
István MOLNàR, Yuquan XU
张礼文1, MOLNÁR István2, 徐玉泉1
通讯作者:
MOLNáR István,徐玉泉
作者简介:
基金资助:
CLC Number:
Liwen ZHANG, István MOLNÀR, Yuquan XU. Potential biosynthesis of nonribosomal peptides by hypocrealean entomopathogenic fungi[J]. Synthetic Biology Journal, 2021, 2(5): 815-825.
张礼文, MOLNÁR István, 徐玉泉. 虫生真菌非核糖体多肽活性产物生物合成潜力预测[J]. 合成生物学, 2021, 2(5): 815-825.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2021-005
Description | Function with HMM | Source | Cutoff (Score) | Length | Domains (SwissProt) | Domains (HEF) |
---|---|---|---|---|---|---|
Adenylation domain | AMP-binding | PFAM00501.21 | 55 | 418 | 280 | 2297 |
Condensation domain | Condensation | PFAM00668.13 | 50 | 301 | 255 | 1483 |
Thiolation domain | PP-binding | PFAM0050.20 | 30 | 67 | 312 | 2775 |
Tab. 1 Annotion for NRPS domains in hypocrealean entomopathotenic fungi (HEF)
Description | Function with HMM | Source | Cutoff (Score) | Length | Domains (SwissProt) | Domains (HEF) |
---|---|---|---|---|---|---|
Adenylation domain | AMP-binding | PFAM00501.21 | 55 | 418 | 280 | 2297 |
Condensation domain | Condensation | PFAM00668.13 | 50 | 301 | 255 | 1483 |
Thiolation domain | PP-binding | PFAM0050.20 | 30 | 67 | 312 | 2775 |
Subtype | Definition (Proteins that contain…) | Number(SwissProt) | Number(HEF) |
---|---|---|---|
Multi-modular | more than one A AND C domains | 57 | 280 |
Single-modular | ONE A AND C domains | 21 | 165 |
Pseudo | A OR C domain | 86 | 1243 |
Tab. 2 Statistic summary of NRPSs in hypocrealean entomopathotenic fungi (HEF)
Subtype | Definition (Proteins that contain…) | Number(SwissProt) | Number(HEF) |
---|---|---|---|
Multi-modular | more than one A AND C domains | 57 | 280 |
Single-modular | ONE A AND C domains | 21 | 165 |
Pseudo | A OR C domain | 86 | 1243 |
Fig. 1 Network for the subgroups of multi-modular NRPSs in Hypocrealean Entomopathogenic fungi(Nodes in the network represent A domains, and the line boldness is proportional to the identity. The nodes are colored according to the domain composition of NRPS. Referenced A domains from voucher NRPSs with known products are indicated by arrowheads. The predicted products/functions of the enzymes are listed below the clades. Boxed groups show A domains from the group of enzymes that also contain DtxS1, or superclades that are formed by closely related A domain clades such as clades #52~64 (see text for details). Sub-clades of A domains are indicated with a number-letter combination, for example 52a. NRPSs of the BGCs that contain the voucher A domains include: #27a~32a, destruxin synthetase DtxS1[9]; #32b, cyclosporine synthetase[29]; #33~39, serinocyclin synthetase[13-14]; #44~45, ACVS: N-(5-amino-5-carboxypentanoyl)-L-cysteinyl-D-valine synthetase in penicillin/cephalosporin biosynthesis; #46~51, Tex1: a peptaibol synthetase from Trichoderma virens[30]; #75~76, beauvericin and bassianolide synthetase[11-12].)
Fig. 3 Overview of the A domain distance network for monomodular, bimodular or siderophore-like NRPSs in Hypocrealean entomopathogenic fungal species(Nodes in the network represent A domains, and the line boldness is proportional to the identity. Nodes are colored according to the domain composition of NRPS. Referenced A domains from voucher NRPSs with known products are indicated by arrowheads. The predicted products/functions of the enzymes are listed below the clades. NRPSs that contain the voucher A domains include: AAR, L-aminoadipate-semialdehyde dehydrogenase[24]; LpsC and LpsB: D-lysergyl-peptide synthetase subunit 1 and 2, respectively, involved in ergot alkaloid biosynthesis[32]; ChNPS10[33-34]: an NRPS-like protein involved in morphological development; NPS2/SidC[35-36] and SidI[37]: synthetases for intracellular siderophores; SidN[38] and NPS6[39]: synthetases for extracellular siderophores. Numbers in parentheses indicate the position of the A domain in the voucher NRPS, for example (1/3) indicates the first A domain out of the three housed in the NRPS.)
1 | LÜ H N, LIU H W, KELLER N P, et al. Harnessing diverse transcriptional regulators for natural product discovery in fungi[J]. Natural Product Reports, 2020, 37(1): 6-16. |
2 | WANG H, FEWER D P, HOLM L, et al. Atlas of nonribosomal peptide and polyketide biosynthetic pathways reveals common occurrence of nonmodular enzymes[J]. Proceedings of the National Academy of the Sciences of the United States of America, 2014, 111(25): 9259-9264. |
3 | MOLNÁR I, GIBSON D M, KRASNOFF S B. Secondary metabolites from entomopathogenic Hypocrealean fungi[J]. Natural Product Reports, 2010, 27(9): 1241-1275. |
4 | GIBSON D M, DONZELLI B G G, KRASNOFF S B, et al. Discovering the secondary metabolite potential encoded within entomopathogenic fungi[J]. Natural Product Reports, 2014, 31(10): 1287-1305. |
5 | ZHANG X, WEI W, TAN R X. Symbionts, a promising source of bioactive natural products[J]. Science China Chemistry, 2015, 58(7): 1097-1109. |
6 | BEEMELMANNS C, GUO H J, RISCHER M, et al. Natural products from microbes associated with insects[J]. Beilstein Journal of Organic Chemistry, 2016, 12: 314-327. |
7 | PEDRINI N. Molecular interactions between entomopathogenic fungi (Hypocreales) and their insect host: perspectives from stressful cuticle and hemolymph battlefields and the potential of dual RNA sequencing for future studies[J]. Fungal Biology, 2018, 122(6): 538-545. |
8 | OLATUNJI O J, TANG J, TOLA A, et al. The genus Cordyceps: an extensive review of its traditional uses, phytochemistry and pharmacology[J]. Fitoterapia, 2018, 129: 293-316. |
9 | WANG B, KANG Q J, LU Y Z, et al. Unveiling the biosynthetic puzzle of destruxins in Metarhizium species[J]. Proceedings of the National Academy of the Sciences of the United States of America, 2012, 109(4): 1287-1292. |
10 | DONZELLI B G G, KRASNOFF S B, YONG S M, et al. Genetic basis of destruxin production in the entomopathogen Metarhizium robertsii[J]. Current Genetics, 2012, 58(2): 105-116. |
11 | XU Y Q, OROZCO R, WIJERATNE E M K, et al. Biosynthesis of the cyclooligomer depsipeptide beauvericin, a virulence factor of the entomopathogenic fungus Beauveria bassiana[J]. Chemistry & Biology, 2008, 15(9): 898-907. |
12 | XU Y Q, OROZCO R, WIJERATNE E M K, et al. Biosynthesis of the cyclooligomer depsipeptide bassianolide, an insecticidal virulence factor of Beauveria bassiana[J]. Fungal Genetics and Biology, 2009, 46(5): 353-364. |
13 | MOON Y S, DONZELLI B G, KRASNOFF S B, et al. Agrobacterium-mediated disruption of a nonribosomal peptide synthetase gene in the invertebrate pathogen Metarhizium anisopliae reveals a peptide spore factor[J]. Applied and Environmental Microbiology, 2008, 74(14): 4366-4380. |
14 | SBARAINI N, GUEDES R L M, ANDREIS F C, et al. Secondary metabolite gene clusters in the entomopathogen fungus Metarhizium anisopliae: genome identification and patterns of expression in a cuticle infection model[J]. BMC Genomics, 2016, 17(8): 399-417. |
15 | DE BEKKER C, OHM R A, LORETO R G, et al. Gene expression during zombie ant biting behavior reflects the complexity underlying fungal parasitic behavioral manipulation[J]. BMC Genomics, 2015, 16: 620. |
16 | LIN H Z, LÜ H N, ZHOU S, et al. Deletion of a global regulator LaeB leads to the discovery of novel polyketides in Aspergillus nidulans[J]. Organic & Biomolecular Chemistry, 2018, 16(27): 4973-4976. |
17 | RUTLEDGE P J, CHALLIS G L. Discovery of microbial natural products by activation of silent biosynthetic gene clusters[J]. Nature Reviews Microbiology, 2015, 13(8): 509-523. |
18 | COPP J N, ANDERSON D W, AKIVA E, et al. Exploring the sequence, function, and evolutionary space of protein superfamilies using sequence similarity networks and phylogenetic reconstructions[J]. Methods in Enzymology, 2019, 620: 315-347. |
19 | COPP J N, AKIVA E, BABBITT P C, et al. Revealing unexplored sequence-function space using sequence similarity networks[J]. Biochemistry, 2018, 57(31): 4651-4662. |
20 | AKIVA E, BROWN S, ALMONACID D E, et al. The structure-function linkage database[J]. Nucleic Acids Research, 2014, 42: D521-D530. |
21 | NIELSEN J C, GRIJSEELS S, PRIGENT S, et al. Global analysis of biosynthetic gene clusters reveals vast potential of secondary metabolite production in Penicillium species[J]. Nature Microbiology, 2017, 2: 17044. |
22 | ZIEMERT N, LECHNER A, WIETZ M, et al. Diversity and evolution of secondary metabolism in the marine actinomycete genus Salinispora[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(12): E1130-E1139. |
23 | GALLO A, FERRARA M, PERRONE G. Phylogenetic study of polyketide synthases and nonribosomal peptide synthetases involved in the biosynthesis of mycotoxins[J]. Toxins, 2013, 5(4): 717-742. |
24 | BUSHLEY K E, TURGEON B G. Phylogenomics reveals subfamilies of fungal nonribosomal peptide synthetases and their evolutionary relationships[J]. BMC Ecology and Evolution, 2010, 10: 26. |
25 | KROKEN S, GLASS N L, TAYLOR J W, et al. Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes[J]. Proceedings of the National Academy of the Sciences of the United States of America, 2003, 100(26): 15670-15675. |
26 | RAUSCH C, HOOF I, WEBER T, et al. Phylogenetic analysis of condensation domains in NRPS sheds light on their functional evolution[J]. BMC Evolutionary Biology, 2007, 7: 78. |
27 | LIU H, XIE L N, WANG J, et al. The stress-responsive and host-oriented role of nonribosomal peptide synthetases in an entomopathogenic fungus, Beauveria bassiana[J]. Journal of Microbiology and Biotechnology, 2017, 27(3): 439-449. |
28 | AGRAWAL Y, NARWANI T, SUBRAMANIAN S. Genome sequence and comparative analysis of clavicipitaceous insect-pathogenic fungus Aschersonia badia with Metarhizium spp[J]. BMC Genomics, 2016, 17: 367. |
29 | YANG X Q, FENG P, YIN Y, et al. Cyclosporine biosynthesis in Tolypocladium inflatum benefits fungal adaptation to the environment[J]. MBio, 2018, 9 (5): e01211-18. |
30 | WIEST A, GRZEGORSKI D, XU B W, et al. Identification of peptaibols from Trichoderma virens and cloning of a peptaibol synthetase[J]. Journal of Biological Chemistry, 2002, 277 (23): 20862-20868. |
31 | XU Y Q, ZHAN J X, WIJERATNE E M K, et al. Cytotoxic and antihaptotactic beauvericin analogues from precursor-directed biosynthesis with the insect pathogen Beauveria bassiana ATCC 7159[J]. Journal of Natural Products, 2007, 70(9): 1467-1471. |
32 | FLEETWOOD D J, SCOTT B, LANE G A, et al. A complex ergovaline gene cluster in epichloe endophytes of grasses[J]. Applied and Environmental Microbiology, 2007, 73(8): 2571-2579. |
33 | TURGEON B G, OIDE S, BUSHLEY K. Creating and screening Cochliobolus heterostrophus non-ribosomal peptide synthetase mutants[J]. Mycological Research, 2008, 112(2): 200-206. |
34 | OHM R A, FEAU N, HENRISSAT B, et al. Diverse lifestyles and strategies of plant pathogenesis encoded in the genomes of eighteen dothideomycetes fungi[J]. PLoS Pathogens, 2012, 8(12): e1003037. |
35 | GREENSHIELDS D L, LIU G S, FENG J, et al. The siderophore biosynthetic gene SID1, but not the ferroxidase gene FET3, is required for full Fusarium graminearum virulence[J]. Molecular Plant Pathology, 2007, 8(4): 411-421. |
36 | WALLNER A, BLATZER M, SCHRETTL M, et al. Ferricrocin, a siderophore involved in intra- and transcellular iron distribution in Aspergillus fumigatus[J]. Applied and Environmental Microbiology, 2009, 75 (12): 4194-4196. |
37 | YASMIN S, ALCAZAR-FUOLI L, GRÜNDLINGER M, et al. Mevalonate governs interdependency of ergosterol and siderophore biosyntheses in the fungal pathogen Aspergillus fumigatus[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(8): E497-E504. |
38 | JOHNSON L J, KOULMAN A, CHRISTENSEN M, et al. An extracellular siderophore is required to maintain the mutualistic interaction of Epichloë festucae with Lolium perenne[J]. PLoS Pathogens, 2013, 9(5): e1003332. |
39 | OIDE S, MOEDER W, KRASNOFF S, et al. NPS6, encoding a nonribosomal peptide synthetase involved in siderophore-mediated iron metabolism, is a conserved virulence determinant of plant pathogenic ascomycetes[J]. The Plant Cell, 2006, 18(10): 2836-2853. |
40 | BUSHLEY K E, RAJA R, JAISWAL P, et al. The genome of Tolypocladium inflatum: Evolution, organization, and expression of the cyclosporin biosynthetic gene cluster[J]. PLoS Genetics, 2013, 9 (6): e1003496. |
41 | DOPSTADT J, NEUBAUER L, TUDZYNSKI P, et al. The epipolythiodiketopiperazine gene cluster in claviceps purpurea: Dysfunctional cytochrome P450 enzyme prevents formation of the previously unknown clapurines[J]. PLoS One, 2016, 11(7): e0158945. |
42 | STEINCHEN W, LACKNER G, YASMIN S, et al. Bimodular peptide synthetase SidE produces fumarylalanine in the human pathogen Aspergillus fumigatus[J]. Applied and Environmental Microbiology, 2013, 79(21): 6670-6676. |
43 | DONZELLI B G G, KRASNOFF S B, Molecular genetics of secondary chemistry in Metarhizium fungi[M]LOVETTB//, LEGERR JST.Genetics and molecular biology of entomopathogenic fungi[M]// Advances in Genetics, 2016, 94: 365-436. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||