Synthetic Biology Journal ›› 2023, Vol. 4 ›› Issue (6): 1178-1190.DOI: 10.12211/2096-8280.2023-045
• Invited Review • Previous Articles Next Articles
Zhiqiong WEN1, Yuzhen LI1, Jin′gang ZHANG2, Feifei Wang2, Xiaoqing MA1, Fuli LI1
Received:
2023-06-30
Revised:
2023-09-14
Online:
2024-01-19
Published:
2023-12-31
Contact:
Fuli LI
文志琼1, 李煜真1, 张金刚2, 王菲菲2, 马小清1, 李福利1
通讯作者:
李福利
作者简介:
基金资助:
CLC Number:
Zhiqiong WEN, Yuzhen LI, Jin′gang ZHANG, Feifei Wang, Xiaoqing MA, Fuli LI. Progress on bio-fixation and utilization of CO2 in acetogens driven by chemical energy[J]. Synthetic Biology Journal, 2023, 4(6): 1178-1190.
文志琼, 李煜真, 张金刚, 王菲菲, 马小清, 李福利. 化能驱动的产乙酸菌转化利用CO2研究进展[J]. 合成生物学, 2023, 4(6): 1178-1190.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2023-045
微生物 | 底物 | 产物 | 最适温度 | 最适pH | 参考文献 |
---|---|---|---|---|---|
Acetobacterium woodii | H2/CO2 | 乙酸 | 30 | 7.0 | [ |
Clostridium aceticum | H2/CO2,CO | 乙酸 | 30 | 8.3 | [ |
Clostridium autoethanogenum | H2/CO2,CO | 乙酸,乙醇,2,3-丁二醇 | 37 | 6.0 | [ |
Clostridium carboxidivorans | H2/CO2,CO | 乙酸,乙醇,丁酸,丁醇,己二醇 | 38 | 5.0~7.0 | [ |
Clostridium ljungdahlii | H2/CO2,CO | 乙酸,乙醇,2,3-丁二醇 | 37 | 6.0 | [ |
Clostridium coskatii | H2/CO2,CO | 乙酸,乙醇 | 37 | 6.0 | [ |
Clostridium ragsdalei | H2/CO2,CO | 乙酸,乙醇,2,3-丁二醇 | 37 | 6.3 | [ |
Clostridium drakei | H2/CO2,CO | 乙酸,乙醇 | 37 | 6.0 | [ |
Sporomusa ovata | H2/CO2 | 乙酸 | 34 | 6.3 | [ |
Thermoanaerobacter kivu | H2/CO2,CO | 乙酸 | 66 | 6.4 | [ |
Moorella thermoacetica | H2/CO2,CO | 乙酸 | 55 | 7 | [ |
Table 1 Characteristics of some acetogens grown on syngas
微生物 | 底物 | 产物 | 最适温度 | 最适pH | 参考文献 |
---|---|---|---|---|---|
Acetobacterium woodii | H2/CO2 | 乙酸 | 30 | 7.0 | [ |
Clostridium aceticum | H2/CO2,CO | 乙酸 | 30 | 8.3 | [ |
Clostridium autoethanogenum | H2/CO2,CO | 乙酸,乙醇,2,3-丁二醇 | 37 | 6.0 | [ |
Clostridium carboxidivorans | H2/CO2,CO | 乙酸,乙醇,丁酸,丁醇,己二醇 | 38 | 5.0~7.0 | [ |
Clostridium ljungdahlii | H2/CO2,CO | 乙酸,乙醇,2,3-丁二醇 | 37 | 6.0 | [ |
Clostridium coskatii | H2/CO2,CO | 乙酸,乙醇 | 37 | 6.0 | [ |
Clostridium ragsdalei | H2/CO2,CO | 乙酸,乙醇,2,3-丁二醇 | 37 | 6.3 | [ |
Clostridium drakei | H2/CO2,CO | 乙酸,乙醇 | 37 | 6.0 | [ |
Sporomusa ovata | H2/CO2 | 乙酸 | 34 | 6.3 | [ |
Thermoanaerobacter kivu | H2/CO2,CO | 乙酸 | 66 | 6.4 | [ |
Moorella thermoacetica | H2/CO2,CO | 乙酸 | 55 | 7 | [ |
Fig. 1 Wood-Ljungdahl pathway in acetogensTHF—Tetrahydrofolate; FDH—Formate dehydrogenase; FHS—Formyl-tetrahydrofolate synthase; FCH—Formyl-cyclohydrolase; MDH—Methylene-tetrahydrofolate dehydrogenase; MTHFR—Methylene-tetrahydrofolate reductase; MT—Methyltransferase; CoFeSP—Corrinoid iron-sulfur protein; CODH—CO dehydrogenase; ACS—Acetyl-CoA synthase; PTA—Phosphotransacetylase; ACK—Acetate kinase; Fdox—Oxidized ferredoxin; Fdred—Reduced ferredoxin; Rnf complex—ferredoxin: NAD+ oxidoreductase; Nfn—NADH-dependent Fdred:NADP+ oxidoreductase
Fig. 2 The native and non-native metabolic pathways in acetogens[51](The green and orange parts represent the native and non-native metabolic pathways, respectively) PFOR—Pyruvate:ferredoxin oxidoreductase; Ldh—Lactate dehydrogenase; Pta—Phosphotransacetylase; Ack—Acetate kinase; AdhE—Aldehyde/alcohol dehydrogenase; AOR—Acetaldehyde:ferredoxin oxidoreductase; ALsS—Acetolactate synthase; Etf—Electron transfer flavoprotein; AldC—Acetolactate decarboxylase; Bdh—Butanediol dehydrogenase; ThlA—Thiolase; Hbd—3-Hydroxybutyrate CoA dehydrogenase; Crt—Crotonase; Ptb—Phosphotransacetylase; Buk—Butyrate kinase; CtfAB—CoA transferase subunits A and B; Adc—Acetoacetate decarboxylase; Sadh—Primary/secondary alcohol dehydrogenase; Ptf2—Phosphotransacetylase; Fak—Fatty acid kinase
天然产物 | 微生物 | 原料 | 产量 /(g/L) | 参考文献 |
---|---|---|---|---|
Acetate | A. woodi | CO2/H2 | 51 | [ |
C. ljungdahlii | CO2/H2 | 35 | [ | |
Ethanol | C. ljungdahlii | CO/CO2 | 32.8 | [ |
C. autoethanogenum | CO | 2.46 | [ | |
C. ljungdahlii | CO/CO2/H2 | 28.4 | [ | |
2,3-Butanediol | C. ljungdahlii | CO/CO2 | 16.9 | [ |
C. autoethanogenum | CO/CO2/H2 | 0.2 | [ |
Table 2 Native products of acetogens
天然产物 | 微生物 | 原料 | 产量 /(g/L) | 参考文献 |
---|---|---|---|---|
Acetate | A. woodi | CO2/H2 | 51 | [ |
C. ljungdahlii | CO2/H2 | 35 | [ | |
Ethanol | C. ljungdahlii | CO/CO2 | 32.8 | [ |
C. autoethanogenum | CO | 2.46 | [ | |
C. ljungdahlii | CO/CO2/H2 | 28.4 | [ | |
2,3-Butanediol | C. ljungdahlii | CO/CO2 | 16.9 | [ |
C. autoethanogenum | CO/CO2/H2 | 0.2 | [ |
天然产物 | 微生物 | 策略 | 产量/产率 | 参考文献 |
---|---|---|---|---|
丙酮 | C. autoethanogenum | 构建丙酮合成途径并强化ctfAB的表达 | 约3 g/(L·h) | [ |
异戊二烯 | C. ljungdahlii | 质粒共表达甲羟戊酸途径及异戊二烯合成酶基因 | 1.5 ng/mL | [ |
丁酸 | C. ljungdahlii | 敲除pta、adhE1和乙酰辅酶A转移酶基因,导入丁酸合成途径 | 1.32 g/L | [ |
异丙醇 | C. ljungdahlii | 外源引入异丙醇合成途径 | 13.4 g/L | [ |
3-羟基丁酸 | C. ljungdahlii | 外源引入3-羟基丁酸合成途径 | 3.0 g/L | [ |
聚羟基丁酸 | C. autoethanogenum | 共表达phaA、phaB、phaC | 0.027 g/L | [ |
Table 3 Non-native products of acetogens
天然产物 | 微生物 | 策略 | 产量/产率 | 参考文献 |
---|---|---|---|---|
丙酮 | C. autoethanogenum | 构建丙酮合成途径并强化ctfAB的表达 | 约3 g/(L·h) | [ |
异戊二烯 | C. ljungdahlii | 质粒共表达甲羟戊酸途径及异戊二烯合成酶基因 | 1.5 ng/mL | [ |
丁酸 | C. ljungdahlii | 敲除pta、adhE1和乙酰辅酶A转移酶基因,导入丁酸合成途径 | 1.32 g/L | [ |
异丙醇 | C. ljungdahlii | 外源引入异丙醇合成途径 | 13.4 g/L | [ |
3-羟基丁酸 | C. ljungdahlii | 外源引入3-羟基丁酸合成途径 | 3.0 g/L | [ |
聚羟基丁酸 | C. autoethanogenum | 共表达phaA、phaB、phaC | 0.027 g/L | [ |
1 | HU K X, RAGHUTLA C, CHITTEDI K R, et al. The effect of energy resources on economic growth and carbon emissions: a way forward to carbon neutrality in an emerging economy[J]. Journal of Environmental Management, 2021, 298: 113448. |
2 | 许敬亮, 常春, 韩秀丽, 等. 合成气乙醇发酵技术研究进展[J]. 化工进展, 2019, 38(1): 586-597. |
XU J L, CHANG C, HAN X L, et al. Research progress on bioethanol production technologies through syngas fermentation[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 586-597. | |
3 | HENSTRA A M, SIPMA J, RINZEMA A, et al. Microbiology of synthesis gas fermentation for biofuel production[J]. Current Opinion in Biotechnology, 2007, 18(3): 200-206. |
4 | LIU Z H, WANG K, CHEN Y, et al. Third-generation biorefineries as the means to produce fuels and chemicals from CO2 [J]. Nature Catalysis, 2020, 3(3): 274-288. |
5 | DRAKE H L, GÖSSNER A S, DANIEL S L. Old acetogens, new light[J]. Annals of the New York Academy of Sciences, 2008, 1125: 100-128. |
6 | HUMPHREYS C M, MINTON N P. Advances in metabolic engineering in the microbial production of fuels and chemicals from C1 gas[J]. Current Opinion in Biotechnology, 2018, 50: 174-181. |
7 | SCHUCHMANN K, MÜLLER V. Energetics and application of heterotrophy in acetogenic bacteria[J]. Applied and Environmental Microbiology, 2016, 82(14): 4056-4069. |
8 | HEIJSTRA B D, LEANG C, JUMINAGA A. Gas fermentation: cellular engineering possibilities and scale up[J]. Microbial Cell Factories, 2017, 16(1): 60. |
9 | BALCH W E, SCHOBERTH S, TANNER R S, et al. Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing, anaerobic bacteria[J]. International Journal of Systematic Bacteriology, 1977, 27(4): 355-361. |
10 | BRAUN M, MAYER F, GOTTSCHALK G. Clostridium aceticum (Wieringa), a microorganism producing acetic acid from molecular hydrogen and carbon dioxide[J]. Archives of Microbiology, 1981, 128(3): 288-293. |
11 | MAYER A, SCHÄDLER T, TRUNZ S, et al. Carbon monoxide conversion with Clostridium aceticum [J]. Biotechnology and Bioengineering, 2018, 115(11): 2740-2750. |
12 | ABRINI J, NAVEAU H, NYNS E J. Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide[J]. Archives of Microbiology, 1994, 161(4): 345-351. |
13 | KÖPKE M, MIHALCEA C, LIEW F, et al. 2,3-Butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas[J]. Applied and Environmental Microbiology, 2011, 77(15): 5467-5475. |
14 | LIOU J S C, BALKWILL D L, DRAKE G R, et al. Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov[J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(5): 2085-2091. |
15 | LI N, YANG J J, CHAI C S, et al. Complete genome sequence of Clostridium carboxidivorans P7T, a syngas-fermenting bacterium capable of producing long-chain alcohols[J]. Journal of Biotechnology, 2015, 211: 44-45. |
16 | TANNER R S, MILLER L M, YANG D. Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I[J]. International Journal of Systematic Bacteriology, 1993, 43(2): 232-236. |
17 | KÖPKE M, HELD C, HUJER S, et al. Clostridium ljungdahlii represents a microbial production platform based on syngas[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(29): 13087-13092. |
18 | BENGELSDORF F R, POEHLEIN A, LINDER S, et al. Industrial acetogenic biocatalysts: a comparative metabolic and genomic analysis[J]. Frontiers in Microbiology, 2016, 7: 1036. |
19 | JEONG Y, SONG Y, SHIN H S, et al. Draft genome sequence of acid-tolerant Clostridium drakei SL1T, a potential chemical producer through syngas fermentation[J]. Genome Announcements, 2014, 2(3): e00387-14. |
20 | MÖLLER B, OßMER R, HOWARD B H, et al. Sporomusa, a new genus of gram-negative anaerobic bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata spec. nov[J]. Archives of Microbiology, 1984, 139(4): 388-396. |
21 | POEHLEIN A, GOTTSCHALK G, DANIEL R. First insights into the genome of the gram-negative, endospore-forming organism Sporomusa ovata strain H1 DSM 2662[J]. Genome Announcements, 2013, 1(5): e00734-13. |
22 | DANIEL S L, HSU T, DEAN S I, et al. Characterization of the H2- and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui [J]. Journal of Bacteriology, 1990, 172(8): 4464-4471. |
23 | HESS V, POEHLEIN A, WEGHOFF M C, et al. A genome-guided analysis of energy conservation in the thermophilic, cytochrome-free acetogenic bacterium Thermoanaerobacter kivui [J]. BMC Genomics, 2014, 15: 1139. |
24 | FONTAINE F E, PETERSON W H, MCCOY E, et al. A new type of glucose fermentation by Clostridium thermoaceticum [J]. Journal of Bacteriology, 1942, 43(6): 701-715. |
25 | BENGELSDORF F R, POEHLEIN A, ESSER C, et al. Complete genome sequence of the acetogenic bacterium Moorella thermoacetica DSM 2955T [J]. Genome Announcements, 2015, 3(5): e01157-15. |
26 | RAGSDALE S W, PIERCE E. Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation[J]. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2008, 1784(12): 1873-1898. |
27 | CLAASSENS N J, COTTON C A R, KOPLJAR D, et al. Making quantitative sense of electromicrobial production[J]. Nature Catalysis, 2019, 2(5): 437-447. |
28 | SCHUCHMANN K, MÜLLER V. Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria[J]. Nature Reviews Microbiology, 2014, 12(12): 809-821. |
29 | WOOLSTON B M, EMERSON D F, CURRIE D H, et al. Rediverting carbon flux in Clostridium ljungdahlii using CRISPR interference (CRISPRi)[J]. Metabolic Engineering, 2018, 48: 243-253. |
30 | ANNAN F J, AL-SINAWI B, HUMPHREYS C M, et al. Engineering of vitamin prototrophy in Clostridium ljungdahlii and Clostridium autoethanogenum [J]. Applied Microbiology and Biotechnology, 2019, 103(11): 4633-4648. |
31 | HUANG H, CHAI C S, YANG S, et al. Phage serine integrase-mediated genome engineering for efficient expression of chemical biosynthetic pathway in gas-fermenting Clostridium ljungdahlii [J]. Metabolic Engineering, 2019, 52: 293-302. |
32 | JIN S, BAE J Y, SONG Y, et al. Synthetic biology on acetogenic bacteria for highly efficient conversion of C1 gases to biochemicals[J]. International Journal of Molecular Sciences, 2020, 21(20): 7639. |
33 | BAE J Y, SONG Y, LEE H, et al. Valorization of C1 gases to value-added chemicals using acetogenic biocatalysts[J]. Chemical Engineering Journal, 2022, 428: 131325. |
34 | LIEW F E, NOGLE R, ABDALLA T, et al. Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale[J]. Nature Biotechnology, 2022, 40(3): 335-344. |
35 | RAGSDALE S W. Enzymology of the Wood-Ljungdahl pathway of acetogenesis[J]. Annals of the New York Academy of Sciences, 2008, 1125: 129-136. |
36 | KÖPKE M, SIMPSON S D. Pollution to products: recycling of 'above ground' carbon by gas fermentation[J]. Current Opinion in Biotechnology, 2020, 65: 180-189. |
37 | JEONG J, BERTSCH J, HESS V, et al. Energy conservation model based on genomic and experimental analyses of a carbon monoxide-utilizing, butyrate-forming acetogen, Eubacterium limosum KIST612[J]. Applied and Environmental Microbiology, 2015, 81(14): 4782-4790. |
38 | BERTSCH J, MÜLLER V. CO metabolism in the acetogen Acetobacterium woodii [J]. Applied and Environmental Microbiology, 2015, 81(17): 5949-5956. |
39 | WEGHOFF M C, MÜLLER V. CO metabolism in the thermophilic acetogen Thermoanaerobacter kivui [J]. Applied and Environmental Microbiology, 2016, 82(8): 2312-2319. |
40 | MOLITOR B, MARCELLIN E, ANGENENT L T. Overcoming the energetic limitations of syngas fermentation[J]. Current Opinion in Chemical Biology, 2017, 41: 84-92. |
41 | ÖPPINGER C, KREMP F, MÜLLER V. Is reduced ferredoxin the physiological electron donor for MetVF-type methylenetetrahydrofolate reductases in acetogenesis? A hypothesis[J]. International Microbiology, 2022, 25(1): 75-88. |
42 | LIEW F, MARTIN M E, TAPPEL R C, et al. Gas fermentation—a flexible platform for commercial scale production of low-carbon-fuels and chemicals from waste and renewable feedstocks[J]. Frontiers in Microbiology, 2016, 7: 694. |
43 | HESS V, SCHUCHMANN K, MÜLLER V. The ferredoxin: NAD+ oxidoreductase (Rnf) from the acetogen Acetobacterium woodii requires Na+ and is reversibly coupled to the membrane potential[J]. The Journal of Biological Chemistry, 2013, 288(44): 31496-31502. |
44 | TREMBLAY P L, ZHANG T, DAR S A, et al. The Rnf complex of Clostridium ljungdahlii is a proton-translocating ferredoxin: NAD+ oxidoreductase essential for autotrophic growth[J]. mBio, 2013, 4(1): e00406-12. |
45 | HEFFERNAN J K, VALGEPEA K, DE SOUZA PINTO LEMGRUBER R, et al. Enhancing CO2-valorization using Clostridium autoethanogenum for sustainable fuel and chemicals production[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 204. |
46 | PETERS J W, MILLER A F, JONES A K, et al. Electron bifurcation[J]. Current Opinion in Chemical Biology, 2016, 31: 146-152. |
47 | MAHAMKALI V, VALGEPEA K, DE SOUZA PINTO LEMGRUBER R, et al. Redox controls metabolic robustness in the gas-fermenting acetogen Clostridium autoethanogenum [J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(23): 13168-13175. |
48 | PAVAN M, REINMETS K, GARG S, et al. Advances in systems metabolic engineering of autotrophic carbon oxide-fixing biocatalysts towards a circular economy[J]. Metabolic Engineering, 2022, 71: 117-141. |
49 | MARTIN M E, RICHTER H, SAHA S, et al. Traits of selected Clostridium strains for syngas fermentation to ethanol[J]. Biotechnology and Bioengineering, 2016, 113(3): 531-539. |
50 | VALGEPEA K, LOI K Q, BEHRENDORFF J B, et al. Arginine deiminase pathway provides ATP and boosts growth of the gas-fermenting acetogen Clostridium autoethanogenum [J]. Metabolic Engineering, 2017, 41: 202-211. |
51 | 李婉麒, 杨凤娟, 贾德臣, 等. 合成气的生物利用与定向转化[J]. 化工进展, 2023, 42(1): 73-85. |
LI W Q, YANG F J, JIA D C, et al. Biological utilization and conversion of syngas[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 73-85. | |
52 | BERTSCH J, MÜLLER V. Bioenergetic constraints for conversion of syngas to biofuels in acetogenic bacteria[J]. Biotechnology for Biofuels, 2015, 8(1): 210. |
53 | KANG H, PARK B, OH S, et al. Metabolism perturbation caused by the overexpression of carbon monoxide dehydrogenase/acetyl-CoA synthase gene complex accelerated gas to acetate conversion rate of Eubacterium limosum KIST612[J]. Bioresource Technology, 2021, 341: 125879. |
54 | STRAUB M, DEMLER M, WEUSTER-BOTZ D, et al. Selective enhancement of autotrophic acetate production with genetically modified Acetobacterium woodii [J]. Journal of Biotechnology, 2014, 178: 67-72. |
55 | LEANG C, UEKI T, NEVIN K P, et al. A genetic system for Clostridium ljungdahlii: a chassis for autotrophic production of biocommodities and a model homoacetogen[J]. Applied and Environmental Microbiology, 2013, 79(4): 1102-1109. |
56 | ZHU H F, LIU Z Y, ZHOU X A, et al. Energy conservation and carbon flux distribution during fermentation of CO or H2/CO2 by Clostridium ljungdahlii [J]. Frontiers in Microbiology, 2020, 11: 416. |
57 | JIA D C, HE M Y, TIAN Y, et al. Metabolic engineering of gas-fermenting Clostridium ljungdahlii for efficient co-production of isopropanol, 3-hydroxybutyrate, and ethanol[J]. ACS Synthetic Biology, 2021, 10(10): 2628-2638. |
58 | KÖPKE M, GERTH M L, MADDOCK D J, et al. Reconstruction of an acetogenic 2,3-butanediol pathway involving a novel NADPH-dependent primary-secondary alcohol dehydrogenase[J]. Applied and Environmental Microbiology, 2014, 80(11): 3394-3403. |
59 | REDL S, SUKUMARA S, PLOEGER T, et al. Thermodynamics and economic feasibility of acetone production from syngas using the thermophilic production host Moorella thermoacetica [J]. Biotechnology for Biofuels, 2017, 10(1): 1-17. |
60 | KANG S, SONG Y, JIN S, et al. Adaptive laboratory evolution of Eubacterium limosum ATCC 8486 on carbon monoxide[J]. Frontiers in Microbiology, 2020, 11: 402. |
61 | LITTY D, MÜLLER V. Butyrate production in the acetogen Eubacterium limosum is dependent on the carbon and energy source[J]. Microbial Biotechnology, 2021, 14(6): 2686-2692. |
62 | DINER B A, FAN J, SCOTCHER M C, et al. Synthesis of heterologous mevalonic acid pathway enzymes in Clostridium ljungdahlii for the conversion of fructose and of syngas to mevalonate and isoprene[J]. Applied and Environmental Microbiology, 2017, 84(1): e01723-e01717. |
63 | UEKI T, NEVIN K P, WOODARD T L, et al. Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii [J]. mBio, 2014, 5(5): e01636-e01614. |
64 | ZHAO R, LIU Y Q, ZHANG H A, et al. CRISPR-Cas12a-mediated gene deletion and regulation in Clostridium ljungdahlii and its application in carbon flux redirection in synthesis gas fermentation[J]. ACS Synthetic Biology, 2019, 8(10): 2270-2279. |
65 | LIU Z Y, JIA D C, ZHANG K D, et al. Ethanol metabolism dynamics in Clostridium ljungdahlii grown on carbon monoxide[J]. Applied and Environmental Microbiology, 2020, 86(14): e00730-e00720. |
66 | LIEW F, HENSTRA A M, KӦPKE M, et al. Metabolic engineering of Clostridium autoethanogenum for selective alcohol production[J]. Metabolic Engineering, 2017, 40: 104-114. |
67 | DE SOUZA PINTO LEMGRUBER R, VALGEPEA K, TAPPEL R, et al. Systems-level engineering and characterisation of Clostridium autoethanogenum through heterologous production of poly-3-hydroxybutyrate (PHB)[J]. Metabolic Engineering, 2019, 53: 14-23. |
68 | KATSYV A, MÜLLER V. Overcoming energetic barriers in acetogenic C1 conversion[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 621166. |
69 | SKIDMORE B E, BAKER R A, BANJADE D R, et al. Syngas fermentation to biofuels: effects of hydrogen partial pressure on hydrogenase efficiency[J]. Biomass and Bioenergy, 2013, 55: 156-162. |
70 | RAGSDALE S W. Life with carbon monoxide[J]. Critical Reviews in Biochemistry and Molecular Biology, 2004, 39(3): 165-195. |
71 | EMERSON D F, WOOLSTON B M, LIU N A, et al. Enhancing hydrogen-dependent growth of and carbon dioxide fixation by Clostridium ljungdahlii through nitrate supplementation[J]. Biotechnology and Bioengineering, 2019, 116(2): 294-306. |
72 | KLASK C M, KLIEM-KUSTER N, MOLITOR B, et al. Nitrate feed improves growth and ethanol production of Clostridium ljungdahlii with CO2 and H2, but results in stochastic inhibition events[J]. Frontiers in Microbiology, 2020, 11: 724. |
73 | SONG Y, LEE J S, SHIN J, et al. Functional cooperation of the glycine synthase-reductase and Wood-Ljungdahl pathways for autotrophic growth of Clostridium drakei [J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(13): 7516-7523. |
74 | BECK M H, FLAIZ M, BENGELSDORF F R, et al. Induced heterologous expression of the arginine deiminase pathway promotes growth advantages in the strict anaerobe Acetobacterium woodii [J]. Applied Microbiology and Biotechnology, 2020, 104(2): 687-699. |
75 | CHENG C, LI W M, LIN M, et al. Metabolic engineering of Clostridium carboxidivorans for enhanced ethanol and butanol production from syngas and glucose[J]. Bioresource Technology, 2019, 284: 415-423. |
76 | SAKIMOTO K K, WONG A B, YANG P D. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production[J]. Science, 2016, 351(6268): 74-77. |
77 | GÖBBELS L, POEHLEIN A, DUMNITCH A, et al. Cysteine: an overlooked energy and carbon source[J]. Scientific Reports, 2021, 11: 2139. |
78 | TAKEMURA K, KATO J, KATO S, et al. Enhancing acetone production from H2 and CO2 using supplemental electron acceptors in an engineered Moorella thermoacetica [J]. Journal of Bioscience and Bioengineering, 2023, 136(1): 13-19. |
79 | JACK J, LO J, MANESS P C, et al. Directing Clostridium ljungdahlii fermentation products via hydrogen to carbon monoxide ratio in syngas[J]. Biomass and Bioenergy, 2019, 124: 95-101. |
80 | KUNDIYANA D K, HUHNKE R L, MADDIPATI P, et al. Feasibility of incorporating cotton seed extract in Clostridium strain P11 fermentation medium during synthesis gas fermentation[J]. Bioresource Technology, 2010, 101(24): 9673-9680. |
81 | SUN X, ATIYEH H K, ZHANG H L, et al. Enhanced ethanol production from syngas by Clostridium ragsdalei in continuous stirred tank reactor using medium with poultry litter biochar[J]. Applied Energy, 2019, 236: 1269-1279. |
82 | OH H J, KO J K, GONG G, et al. Production of hexanol as the main product through syngas fermentation by Clostridium carboxidivorans P7[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 850370. |
83 | COTTER J L, CHINN M S, GRUNDEN A M. Influence of process parameters on growth of Clostridium ljungdahlii and Clostridium autoethanogenum on synthesis gas[J]. Enzyme and Microbial Technology, 2009, 44(5): 281-288. |
84 | JUMPER J, EVANS R, PRITZEL A, et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021, 596(7873): 583-589. |
85 | BAEK M, DIMAIO F, ANISHCHENKO I, et al. Accurate prediction of protein structures and interactions using a three-track neural network[J]. Science, 2021, 373(6557): 871-876. |
[1] | Jiahao PAN, Weisong PAN, Jian QIU, Donling XIE, Qi ZOU, Chuan WU. Research progress on recombinant collagen expression system [J]. Synthetic Biology Journal, 2023, 4(4): 808-823. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||