Please wait a minute...
IMAGE/TABLE DETAILS
Synthetic biology and applications of high-adhesion protein materials
LI Quanfei, CHEN Qian, LIU Hao, HE Kundong, PAN Liang, LEI Peng, GU Yi’an, SUN Liang, LI Sha, QIU Yibin, WANG Rui, XU Hong
Synthetic Biology Journal    2025, 6 (4): 806-828.   DOI: 10.12211/2096-8280.2025-043
Abstract   (186 HTML14 PDF(pc) (3859KB)(155)  

Due to their exceptional bioadhesive properties and potential biocompatibility, high-viscosity protein materials exhibit significant application prospects in the fields of biomedical materials and adhesives. However, traditionally sourced high-viscosity protein materials encounter numerous challenges, including low yields, structural complexity, and difficulties in scaling up production. Synthetic biology, as an emerging interdisciplinary field, offers innovative strategies to address these bottlenecks. This review systematically summarizes recent advances in the biosynthesis, modification, and applications of high-viscosity protein materials, focusing on the advantages of synthetic biology in addressing issues related to the yield, controllability, and functional diversity of these materials. The precise design and efficient expression of adhesive proteins, such as mussel adhesive proteins, barnacle cement proteins, and scallop foot proteins, achieved through genetic engineering, are comprehensively reviewed, demonstrating the overcoming of limitations in the production and controllability of high-viscosity protein materials. Furthermore, the unique advantages of these protein materials in bioadhesives and functional medical coatings, such as the wet adhesion of mussel proteins, the strong adhesion of barnacle cement proteins, and the tunable properties of elastin-like proteins, are summarized. By employing synthetic biology approaches, limitations in the yield, performance, and functionality of high-viscosity protein materials can be overcome, thereby accelerating their application in areas such as tissue engineering and surface modification. Finally, the latest advancements and innovations in the field of synthetic biology for high-viscosity protein materials are summarized, and future development directions are envisioned, offering new ideas and strategies for the development of high-performance, multifunctional high-viscosity protein materials.


纯化方法原理优点缺点
亲和色谱基于目标蛋白与特定配体(如抗体、金属离子、辅酶等)之间的高特异性结合高特异性、高纯度、操作简便可能需要添加标签,洗脱条件可能较为苛刻,某些配体价格昂贵
离子交换色谱基于目标蛋白与固定化的带电基团之间的静电相互作用适用于大规模纯化,成本较低特异性不如亲和色谱,需要优化洗脱条件
凝胶过滤色谱基于目标蛋白的分子大小进行分离操作简便,可以确定蛋白的分子量分辨率较低,不适用于分离分子量相近的蛋白
疏水相互作用色谱基于目标蛋白表面的疏水性与固定化的疏水基团之间的相互作用适用于分离疏水性蛋白需要优化盐浓度和洗脱条件
超滤/透析利用半透膜对分子大小的截留作用操作简便,适用于大规模处理不能分离分子大小相近的蛋白
沉淀法通过改变溶液的条件(如盐浓度、pH 值、温度等),使目标蛋白溶解度降低,从而沉淀析出成本低廉,适用于大规模初步纯化特异性较低,可能需要后续的精细纯化
Table 2 Comparison of characteristics of common protein purification methods
Extracts from the Article
重组蛋白的纯化是获得高纯度蛋白的关键步骤。常见的纯化方法包括亲和色谱、离子交换色谱、分子筛色谱和疏水色谱等,它们各有特点,常需联合使用(表2)。然而,高黏蛋白的纯化面临蛋白聚集、氧化和内毒素污染等特殊挑战,需采取针对性策略[53]。
同时,一种利用理性设计结合模块基因策略的方法被用于水下黏合材料。通过这种方法构建的多结构域蛋白能够自组装形成性能媲美甚至超越天然材料的分子材料。钟超教授团队[19]将哺乳动物细胞DNA结合蛋白TDP43的低复杂结构域LC与Mfp-5融合,制备了重组蛋白TLC-M。TLC-M融合蛋白在低温下通过LC结构域的液-液相分离性质形成蛋白浓度很高的凝结体。该液态凝结体易逐层吸附在基底表面,最终能够进一步脱水组装成致密的淀粉样蛋白纤维涂层,表现出很强的水下黏附性能。这为构建基于液固相转变和自组装驱动的可控功能蛋白材料提供了新方向[图2(c)]。该团队还将Mfp与大肠杆菌淀粉样蛋白CsgA融合,构建了多功能水下黏合剂。该杂化材料能够自组装成Mfp黏附域暴露于CsgA淀粉样蛋白核心之外的高阶结构,水下黏附能可达20.9 mJ/m2,是目前生物衍生蛋白质黏合剂的1.5倍。其性能优于单独的Mfp或CsgA纤维,且在pH≥7.0时具有更强的抗氧化性[86][图2(d)]。
Other Images/Table from this Article