合成生物学 ›› 2023, Vol. 4 ›› Issue (4): 690-702.DOI: 10.12211/2096-8280.2022-062
陈家文1, 黄建东2,3,4,5,6, 孙海涛1,2
收稿日期:
2022-11-14
修回日期:
2023-04-10
出版日期:
2023-08-31
发布日期:
2023-09-14
通讯作者:
黄建东,孙海涛
作者简介:
基金资助:
Jiawen CHEN1, Jiandong HUANG2,3,4,5,6, Haitao SUN1,2
Received:
2022-11-14
Revised:
2023-04-10
Online:
2023-08-31
Published:
2023-09-14
Contact:
Jiandong HUANG, Haitao SUN
摘要:
肿瘤的细菌治疗最早可以追溯到19世纪,人们第一次利用链球菌(Streptococcus pyogenes)成功治疗了患有无法手术切除的肉瘤患者。此后,细菌在肿瘤治疗上的研究越来越多,并取得了令人期待的结果。与其他肿瘤治疗方法相比,细菌治疗肿瘤具有许多独特的优点。随着合成生物学的发展,人们对细菌进行改造后大大增强了其在肿瘤治疗中的运用。本文介绍了细菌改造策略和应用进展,特别是鼠伤寒沙门氏菌治疗肿瘤的研究。在动物模型中,工程菌可以选择性定植到肿瘤组织中并抑制肿瘤的生长。此外,介绍了工程菌治疗肿瘤的新策略——表达抗肿瘤分子来提高肿瘤治疗的效果。最后,讨论了工程菌治疗肿瘤运用于临床还有一些需要解决的问题,如何平衡细菌毒力和抗肿瘤能力是一个关键点,需要设计更精巧的基因线路来对细菌进行改造。在减弱细菌毒力的同时,还要增强细菌靶向到肿瘤组织的能力,以减少对其他正常组织的影响。细菌的遗传不稳定性也是一个潜在的问题,因为突变可能会产生无效或有害的表型。但是,随着合成生物学的发展,在不久的将来,上述问题将会得到解决,细菌治疗将会是一种具有巨大潜力的肿瘤治疗的方法。
中图分类号:
陈家文, 黄建东, 孙海涛. 工程菌在肿瘤治疗方面的应用进展[J]. 合成生物学, 2023, 4(4): 690-702.
Jiawen CHEN, Jiandong HUANG, Haitao SUN. Current developments in the use of engineered bacteria for cancer therapy[J]. Synthetic Biology Journal, 2023, 4(4): 690-702.
抗肿瘤分子 | 描述 | 种类 |
---|---|---|
细胞因子 | ||
白介素-12(IL-2) | 一种信号分子,调节淋巴细胞的活性 | 梭状芽孢杆菌[ 沙门氏菌[ |
淋巴细胞趋化因子 | 一种趋化因子,控制T细胞、树突状细胞和NK细胞的迁移 | 沙门氏菌[ |
白介素-18(IL-18) | 一种信号分子,刺激NK细胞和T细胞释放IFN-γ | 沙门氏菌[ |
白介素-12(IL-12) | 一种信号分子,刺激活化的NK和T细胞的增殖,并诱导这些细胞产生IFN-γ | 梭状芽孢杆菌[ |
细胞毒性药物 | ||
肿瘤坏死因子相关的细胞凋亡诱导配体(TRAIL) | 一种促凋亡分子,通过死亡受体途径诱导肿瘤细胞凋亡 | 沙门氏菌[ |
血管内皮抑制素(Endostatin) | 一种血管生成抑制剂 | 沙门氏菌[ |
细胞溶素A (CytolysinA) | 在大肠杆菌和沙门氏菌、伤寒和副伤寒中发现的一种成孔的溶血性蛋白 | 沙门氏菌[ 大肠杆菌[ |
死亡受体配体(FasL) | 一种属于TNF蛋白家族的膜蛋白,与Fas受体结合后,诱导Fas表达细胞凋亡 | 沙门氏菌[ |
抗肿瘤蛋白 | ||
天青蛋白Laz | 一种抗肿瘤蛋白,可以诱导肿瘤细胞凋亡 | 沙门氏菌[ |
金属蛋白酶的组织抑制剂TIMP-2 | MMP的一个同源抑制剂家族,通过抑制MMP来控制细胞外基质的降解 | 沙门氏菌[ |
肿瘤抑制素Tum-5 | 抑制肿瘤血管的生成 | 大肠杆菌[ |
肿瘤抑制蛋白p53 | 一种与肿瘤发生和发展有关的肿瘤抑制蛋白 | 大肠杆菌[ |
前药物酶 | ||
胞嘧啶脱氨酶 | 一种可以将无毒的5-氟胞嘧啶(5-FC)转化为抗癌的5-氟尿嘧啶(5-FU)的酶 | 沙门氏菌[ |
羧肽酶G2 | 一种依赖Zn2+的83 kDa同型二聚体、可以激活一系列双功能烷基化剂和抗生素前药的酶 | 沙门氏菌[ |
嘌呤核苷磷酸化酶 | 一种可以将6-甲基嘌呤-2′-脱氧核糖苷(MePdR)转化为6-甲基嘌呤的酶 | 沙门氏菌[ |
硝基还原酶 | 一种可以激活新型DNA交联剂PR-104的酶 | 梭状芽孢杆菌[ |
siRNA | ||
程序性死亡受体-1(PD-1) | 一种重要的免疫检查点分子,可以帮助癌细胞逃脱宿主的免疫反应 | 沙门氏菌[ |
缺氧诱导因子-1 | 一个关键的转录因子,可以激活蛋白质的表达 | 沙门氏菌[ |
抗凋亡蛋白(Bcl-2) | 可显著延长细胞存活,对抗经典凋亡刺激 | 沙门氏菌[ |
信号转导和转录激活因子3(STAT3) | 在人类肿瘤中,STAT3的激活在促进癌细胞增殖和存活中起着重要作用 | 沙门氏菌[ |
氨基胺2,3-双加氧酶1(IDO) | 色氨酸分解代谢酶可在肿瘤微环境中引起免疫耐受 | 沙门氏菌[ |
其他 | ||
PD-L1纳米抗体 | 一种重要的免疫检查点分子受体,可以帮助肿瘤细胞逃脱宿主的免疫反应 | 大肠杆菌[ |
CTLA-4纳米抗体 | 细胞毒性T淋巴细胞相关蛋白-4可以使肿瘤细胞逃脱宿主的免疫反应 | 大肠杆菌[ |
L-精氨酸 | 可以有效增强抗肿瘤T细胞反应 | 大肠杆菌[ |
表1 递送抗肿瘤分子基因工程菌
Table 1 Anti-tumor therapeutic agents delivered by engineered attenuatedbacterium
抗肿瘤分子 | 描述 | 种类 |
---|---|---|
细胞因子 | ||
白介素-12(IL-2) | 一种信号分子,调节淋巴细胞的活性 | 梭状芽孢杆菌[ 沙门氏菌[ |
淋巴细胞趋化因子 | 一种趋化因子,控制T细胞、树突状细胞和NK细胞的迁移 | 沙门氏菌[ |
白介素-18(IL-18) | 一种信号分子,刺激NK细胞和T细胞释放IFN-γ | 沙门氏菌[ |
白介素-12(IL-12) | 一种信号分子,刺激活化的NK和T细胞的增殖,并诱导这些细胞产生IFN-γ | 梭状芽孢杆菌[ |
细胞毒性药物 | ||
肿瘤坏死因子相关的细胞凋亡诱导配体(TRAIL) | 一种促凋亡分子,通过死亡受体途径诱导肿瘤细胞凋亡 | 沙门氏菌[ |
血管内皮抑制素(Endostatin) | 一种血管生成抑制剂 | 沙门氏菌[ |
细胞溶素A (CytolysinA) | 在大肠杆菌和沙门氏菌、伤寒和副伤寒中发现的一种成孔的溶血性蛋白 | 沙门氏菌[ 大肠杆菌[ |
死亡受体配体(FasL) | 一种属于TNF蛋白家族的膜蛋白,与Fas受体结合后,诱导Fas表达细胞凋亡 | 沙门氏菌[ |
抗肿瘤蛋白 | ||
天青蛋白Laz | 一种抗肿瘤蛋白,可以诱导肿瘤细胞凋亡 | 沙门氏菌[ |
金属蛋白酶的组织抑制剂TIMP-2 | MMP的一个同源抑制剂家族,通过抑制MMP来控制细胞外基质的降解 | 沙门氏菌[ |
肿瘤抑制素Tum-5 | 抑制肿瘤血管的生成 | 大肠杆菌[ |
肿瘤抑制蛋白p53 | 一种与肿瘤发生和发展有关的肿瘤抑制蛋白 | 大肠杆菌[ |
前药物酶 | ||
胞嘧啶脱氨酶 | 一种可以将无毒的5-氟胞嘧啶(5-FC)转化为抗癌的5-氟尿嘧啶(5-FU)的酶 | 沙门氏菌[ |
羧肽酶G2 | 一种依赖Zn2+的83 kDa同型二聚体、可以激活一系列双功能烷基化剂和抗生素前药的酶 | 沙门氏菌[ |
嘌呤核苷磷酸化酶 | 一种可以将6-甲基嘌呤-2′-脱氧核糖苷(MePdR)转化为6-甲基嘌呤的酶 | 沙门氏菌[ |
硝基还原酶 | 一种可以激活新型DNA交联剂PR-104的酶 | 梭状芽孢杆菌[ |
siRNA | ||
程序性死亡受体-1(PD-1) | 一种重要的免疫检查点分子,可以帮助癌细胞逃脱宿主的免疫反应 | 沙门氏菌[ |
缺氧诱导因子-1 | 一个关键的转录因子,可以激活蛋白质的表达 | 沙门氏菌[ |
抗凋亡蛋白(Bcl-2) | 可显著延长细胞存活,对抗经典凋亡刺激 | 沙门氏菌[ |
信号转导和转录激活因子3(STAT3) | 在人类肿瘤中,STAT3的激活在促进癌细胞增殖和存活中起着重要作用 | 沙门氏菌[ |
氨基胺2,3-双加氧酶1(IDO) | 色氨酸分解代谢酶可在肿瘤微环境中引起免疫耐受 | 沙门氏菌[ |
其他 | ||
PD-L1纳米抗体 | 一种重要的免疫检查点分子受体,可以帮助肿瘤细胞逃脱宿主的免疫反应 | 大肠杆菌[ |
CTLA-4纳米抗体 | 细胞毒性T淋巴细胞相关蛋白-4可以使肿瘤细胞逃脱宿主的免疫反应 | 大肠杆菌[ |
L-精氨酸 | 可以有效增强抗肿瘤T细胞反应 | 大肠杆菌[ |
1 | WANG D, WEI X D, KALVAKOLANU D V, et al. Perspectives on oncolytic Salmonella in cancer immunotherapy—a promising strategy[J]. Frontiers in Immunology, 2021, 12: 615930. |
2 | MCCARTHY E F. The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas[J]. The Iowa Orthopaedic Journal, 2006, 26: 154-158. |
3 | CHOROBIK P, CZAPLICKI D, OSSYSEK K, et al. Salmonella and cancer: from pathogens to therapeutics[J]. Acta Biochimica Polonica, 2013, 60(3): 285-297. |
4 | ZHENG J H, MIN J J. Targeted cancer therapy using engineered Salmonella typhimurium [J]. Chonnam Medical Journal, 2016, 52(3): 173-184. |
5 | PARK S H, ZHENG J H, NGUYEN V H, et al. RGD peptide cell-surface display enhances the targeting and therapeutic efficacy of attenuated Salmonella-mediated cancer therapy[J]. Theranostics, 2016, 6(10): 1672-1682. |
6 | JIANG S N, PHAN T X, NAM T K, et al. Inhibition of tumor growth and metastasis by a combination of Escherichia coli-mediated cytolytic therapy and radiotherapy[J]. Molecular Therapy, 2010, 18(3): 635-642. |
7 | ZHU H, LI Z, MAO S, et al. Antitumor effect of sFlt-1 gene therapy system mediated by Bifidobacterium Infantis on Lewis lung cancer in mice[J]. Cancer Gene Therapy, 2011, 18(12): 884-896. |
8 | MALETZKI C, LINNEBACHER M, KREIKEMEYER B, et al. Pancreatic cancer regression by intratumoural injection of live Streptococcus pyogenes in a syngeneic mouse model[J]. Gut, 2008, 57(4): 483-491. |
9 | JEAN A T ST, ZHANG M M, FORBES N S. Bacterial therapies: completing the cancer treatment toolbox[J]. Current Opinion in Biotechnology, 2008, 19(5): 511-517. |
10 | LIANG K, LIU Q, LI P, et al. Genetically engineered Salmonella typhimurium: recent advances in cancer therapy[J]. Cancer Letters, 2019, 448: 168-181. |
11 | ZHOU S B, GRAVEKAMP C, BERMUDES D, et al. Tumour-targeting bacteria engineered to fight cancer[J]. Nature Reviews Cancer, 2018, 18(12): 727-743. |
12 | SZNOL M, LIN S L, BERMUDES D, et al. Use of preferentially replicating bacteria for the treatment of cancer[J]. The Journal of Clinical Investigation, 2000, 105(8): 1027-1030. |
13 | GUO Y X, CHEN Y, LIU X Q, et al. Targeted cancer immunotherapy with genetically engineered oncolytic Salmonella typhimurium [J]. Cancer Letters, 2020, 469: 102-110. |
14 | WANG Y X, CHEN J X, TANG B, et al. Systemic administration of attenuated Salmonella typhimurium in combination with interleukin-21 for cancer therapy[J]. Molecular and Clinical Oncology, 2013, 1(3): 461-465. |
15 | KIM S H, CASTRO F, PATERSON Y, et al. High efficacy of a Listeria-based vaccine against metastatic breast cancer reveals a dual mode of action[J]. Cancer Research, 2009, 69(14): 5860-5866. |
16 | 董宇轩, 曾正阳, 夏霖, 等. 肿瘤细菌疗法迎来合成生物学时代[J]. 生命科学, 2019, 31(4): 332-342. |
DONG Y X, ZENG Z Y, XIA L, et al. Bacterial anti-cancer therapy in the era of synthetic biology[J]. Chinese Bulletin of Life Sciences, 2019, 31(4): 332-342. | |
17 | GANAI S, ARENAS R B, SAUER J P, et al. In tumors Salmonella migrate away from vasculature toward the transition zone and induce apoptosis[J]. Cancer Gene Therapy, 2011, 18(7): 457-466. |
18 | TOSO J F, GILL V J, HWU P, et al. Phase Ⅰ study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma[J]. Journal of Clinical Oncology, 2002, 20(1): 142-152. |
19 | ZHOU S J, ZHAO Z G, LIN Y, et al. Suppression of pancreatic ductal adenocarcinoma growth by intratumoral delivery of attenuated Salmonella typhimurium using a dual fluorescent live tracking system[J]. Cancer Biology & Therapy, 2016, 17(7): 732-740. |
20 | LIU B H, JIANG Y N, DONG T G, et al. Blockage of autophagy pathway enhances Salmonella tumor-targeting[J]. Oncotarget, 2016, 7(16): 22873-22882. |
21 | LI C X, YU B, SHI L, et al. 'Obligate' anaerobic Salmonella strain YB1 suppresses liver tumor growth and metastasis in nude mice[J]. Oncology Letters, 2017, 13(1): 177-183. |
22 | GURBATRI C R, LIA I, VINCENT R, et al. Engineered probiotics for local tumor delivery of checkpoint blockade nanobodies[J]. Science Translational Medicine, 2020, 12(530): eaax0876. |
23 | LEVENTHAL D S, SOKOLOVSKA A, LI N, et al. Immunotherapy with engineered bacteria by targeting the STING pathway for anti-tumor immunity[J]. Nature Communications, 2020, 11: 2739. |
24 | CANALE F P, BASSO C, ANTONINI G, et al. Metabolic modulation of tumours with engineered bacteria for immunotherapy[J]. Nature, 2021, 598(7882): 662-666. |
25 | KRAMER M G, MASNER M, FERREIRA F A, et al. Bacterial therapy of cancer: promises, limitations, and insights for future directions[J]. Frontiers in Microbiology, 2018, 9: 16. |
26 | RUDER W C, LU T, COLLINS J J. Synthetic biology moving into the clinic[J]. Science, 2011, 333(6047): 1248-1252. |
27 | 刘陈立, 董宇轩, 郭旋. 合成生物学在推动肿瘤细菌疗法临床药物开发中的应用[J]. 集成技术, 2021, 10(4): 78-92. |
LIU C L, DONG Y X, GUO X. Application of synthetic biology in promoting preclinical and clinical advances of bacterial anti-cancer therapy [J]. Journal of Integration Technology, 2021, 10(4): 78-92. | |
28 | STIRLING F, BITZAN L, O'KEEFE S, et al. Rational design of evolutionarily stable microbial kill switches[J]. Molecular Cell, 2017, 68(4): 686-697.e3. |
29 | CHAN C T Y, LEE J W, CAMERON D E, et al. 'Deadman' and 'Passcode' microbial kill switches for bacterial containment[J]. Nature Chemical Biology, 2016, 12(2): 82-86. |
30 | AUSLÄNDER S, AUSLÄNDER D, FUSSENEGGER M. Synthetic biology—the synthesis of biology[J]. Angewandte Chemie International Edition, 2017, 56(23): 6396-6419. |
31 | DANINO T, MONDRAGÓN-PALOMINO O, TSIMRING L, et al. A synchronized quorum of genetic clocks[J]. Nature, 2010, 463(7279): 326-330. |
32 | DIN M O, DANINO T, PRINDLE A, et al. Synchronized cycles of bacterial lysis for in vivo delivery[J]. Nature, 2016, 536(7614): 81-85. |
33 | WANG B J, KITNEY R I, JOLY N, et al. Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology[J]. Nature Communications, 2011, 2: 508. |
34 | LIU Y C, ZENG Y Y, LIU L, et al. Synthesizing AND gate genetic circuits based on CRISPR-Cas9 for identification of bladder cancer cells[J]. Nature Communications, 2014, 5: 5393. |
35 | FORBES N S. Engineering the perfect (bacterial) cancer therapy[J]. Nature Reviews Cancer, 2010, 10(11): 785-794. |
36 | PATRA S, PRADHAN B, NAYAK R, et al. Apoptosis and autophagy modulating dietary phytochemicals in cancer therapeutics: current evidences and future perspectives[J]. Phytotherapy Research, 2021, 35(8): 4194-4214. |
37 | YANG S Y, FAN W G, LI Y Y, et al. Autophagy in tooth: physiology, disease and therapeutic implication[J]. Cell Biochemistry and Function, 2021, 39(6): 702-712. |
38 | LEE C H, LIN S T, LIU J J, et al. Salmonella induce autophagy in melanoma by the downregulation of AKT/mTOR pathway[J]. Gene Therapy, 2014, 21(3): 309-316. |
39 | ALIZADEH S, ESMAEILI A, OMIDI Y. Anti-cancer properties of Escherichia coli Nissle 1917 against HT-29 colon cancer cells through regulation of Bax/Bcl-xL and AKT/PTEN signaling pathways[J]. Iranian Journal of Basic Medical Sciences, 2020, 23(7): 886-893. |
40 | SHINNOH M, HORINAKA M, YASUDA T, et al. Clostridium butyricum MIYAIRI 588 shows antitumor effects by enhancing the release of TRAIL from neutrophils through MMP-8[J]. International Journal of Oncology, 2013, 42(3): 903-911. |
41 | DOBROVOLSKAIA M A, VOGEL S N, et al. Toll receptors, CD14, and macrophage activation and deactivation by LPS[J]. Microbes and Infection, 2002, 4(9): 903-914. |
42 | PHAN T X, NGUYEN V H, DUONG M T Q, et al. Activation of inflammasome by attenuated Salmonella typhimurium in bacteria-mediated cancer therapy[J]. Microbiology and Immunology, 2015, 59(11): 664-675. |
43 | KIM J E, PHAN T X, NGUYEN V H, et al. Salmonella typhimurium suppresses tumor growth via the pro-inflammatory cytokine interleukin-1β[J]. Theranostics, 2015, 5(12): 1328-1342. |
44 | CAI Z Y, SANCHEZ A, SHI Z C, et al. Activation of Toll-like receptor 5 on breast cancer cells by flagellin suppresses cell proliferation and tumor growth[J]. Cancer Research, 2011, 71(7): 2466-2475. |
45 | SFONDRINI L, ROSSINI A, BESUSSO D, et al. Antitumor activity of the TLR-5 ligand flagellin in mouse models of cancer[J]. Journal of Immunology, 2006, 176(11): 6624-6630. |
46 | LIN Q B, RONG L, JIA X, et al. IFN-γ-dependent NK cell activation is essential to metastasis suppression by engineered Salmonella [J]. Nature Communications, 2021, 12: 2537. |
47 | CHANDRA D, JAHANGIR A, QUISPE-TINTAYA W, et al. Myeloid-derived suppressor cells have a central role in attenuated Listeria monocytogenes-based immunotherapy against metastatic breast cancer in young and old mice[J]. British Journal of Cancer, 2013, 108(11): 2281-2290. |
48 | JAHANGIR A, CHANDRA D, QUISPE-TINTAYA W, et al. Immunotherapy with Listeria reduces metastatic breast cancer in young and old mice through different mechanisms[J]. OncoImmunology, 2017, 6(9): e1342025. |
49 | SEDIGHI M, ZAHEDI BIALVAEI A, HAMBLIN M R, et al. Therapeutic bacteria to combat cancer; current advances, challenges, and opportunities[J]. Cancer Medicine, 2019, 8(6): 3167-3181. |
50 | SALTZMAN D A, KATSANIS E, HEISE C P, et al. Antitumor mechanisms of attenuated Salmonella typhimurium containing the gene for human interleukin-2: a novel antitumor agent?[J]. Journal of Pediatric Surgery, 1997, 32(2): 301-306. |
51 | SORENSON B S, BANTON K L, FRYKMAN N L, et al. Attenuated Salmonella typhimurium with IL-2 gene reduces pulmonary metastases in murine osteosarcoma[J]. Clinical Orthopaedics & Related Research, 2008, 466(6): 1285-1291. |
52 | SORENSON B S, BANTON K L, FRYKMAN N L. Attenuated Salmonella typhimurium with interleukin 2 gene prevents the establishment of pulmonary metastases in a model of osteosarcoma[J]. Journal of Pediatric Surgery, 2008, 43(6): 1153-1158. |
53 | ZHANG Y L, LÜ R, CHANG Z S, et al. Clostridium sporogenes delivers interleukin-12 to hypoxic tumours, producing antitumour activity without significant toxicity[J]. Letters in Applied Microbiology, 2014, 59(6): 580-586 |
54 | AL-RAMADI B K, FERNANDEZ-CABEZUDO M J, EL-HASASNA H, et al. Potent anti-tumor activity of systemically-administered IL2-expressing Salmonella correlates with decreased angiogenesis and enhanced tumor apoptosis[J]. Clinical Immunology, 2009, 130(1): 89-97. |
55 | BARBÉ S, VAN MELLAERT L, THEYS J, et al. Secretory production of biologically active rat interleukin-2 by Clostridium acetobutylicum DSM792 as a tool for anti-tumor treatment[J]. FEMS Microbiology Letters, 2005, 246(1): 67-73. |
56 | LOEFFLER M, LE'NEGRATE G, KRAJEWSKA M, et al. Salmonella typhimurium engineered to produce CCL21 inhibit tumor growth[J]. Cancer Immunology, Immunotherapy, 2009, 58(5): 769-775. |
57 | LOEFFLER M, LE'NEGRATE G, KRAJEWSKA M, et al. IL-18-producing Salmonella inhibit tumor growth[J]. Cancer Gene Therapy, 2008, 15(12): 787-794. |
58 | CHEN J X, YANG B Y, CHENG X W, et al. Salmonella-mediated tumor-targeting TRAIL gene therapy significantly suppresses melanoma growth in mouse model[J]. Cancer Science, 2012, 103(2): 325-333. |
59 | GANAI S, ARENAS R B, FORBES N S. Tumour-targeted delivery of TRAIL using Salmonella typhimurium enhances breast cancer survival in mice[J]. British Journal of Cancer, 2009, 101(10): 1683-1691. |
60 | LIANG K, LIU Q, LI P, et al. Endostatin gene therapy delivered by attenuated Salmonella typhimurium in murine tumor models[J]. Cancer Gene Therapy, 2018, 25(7): 167-183. |
61 | LEE C H, WU C L, SHIAU A L. Endostatin gene therapy delivered by Salmonella choleraesuis in murine tumor models[J]. The Journal of Gene Medicine, 2004, 6(12): 1382-1393. |
62 | NGUYEN V H, KIM H S, HA J M, et al. Genetically engineered Salmonella typhimurium as an imageable therapeutic probe for cancer[J]. Cancer Research, 2010, 70(1): 18-23. |
63 | LOEFFLER M, LE'NEGRATE G, KRAJEWSKA M, et al. Inhibition of tumor growth using Salmonella expressing fas ligand[J]. Journal of the National Cancer Institute, 2008, 100(15): 1113-1116. |
64 | MANSOUR M, ISMAIL S, ABOU-AISHA K. Bacterial delivery of the anti-tumor azurin-like protein Laz to glioblastoma cells[J]. AMB Express, 2020, 10(1): 59. |
65 | Wen M, Zheng J H, Choi J M, et al. Genetically-engineered Salmonella typhimurium expressing TIMP-2 as a therapeutic intervention in an orthotopic glioma mouse model[J]. Cancer Letters, 2018, 433: 140-146. |
66 | HE L, YANG H J, LIU F, et al. Escherichia coli Nissle 1917 engineered to express Tum-5 can restrain murine melanoma growth[J]. Oncotarget, 2017, 8(49): 85772-85782. |
67 | HE L, YANG H J, TANG J L, et al. Intestinal probiotics E. coli Nissle 1917 as a targeted vehicle for delivery of p53 and Tum-5 to solid tumors for cancer therapy[J]. Journal of Biological Engineering, 2019, 13: 58. |
68 | NEJMAN D, LIVYATAN I, FUKS G, et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria[J]. Science, 2020, 368(6494): 973-980. |
69 | LIU S C, MINTON N, GIACCIA A, et al. Anticancer efficacy of systemically delivered anaerobic bacteria as gene therapy vectors targeting tumor hypoxia/necrosis[J]. Gene Therapy, 2002, 9(4): 291-296. |
70 | KING I, BERMUDES D, LIN S, et al. Tumor-targeted Salmonella expressing cytosine deaminase as an anticancer agent[J]. Human Gene Therapy, 2002, 13(10): 1225-1233. |
71 | FRIEDLOS F, LEHOURITIS P, OGILVIE L, et al. Attenuated Salmonella targets prodrug activating enzyme carboxypeptidase G2 to mouse melanoma and human breast and colon carcinomas for effective suicide gene therapy[J]. Clinical Cancer Research, 2008, 14(13): 4259-4266. |
72 | FU W, LAN H, LI S, et al. Synergistic antitumor efficacy of suicide/ePNP gene and 6-methylpurine 2′-deoxyriboside via Salmonella against murine tumors[J]. Cancer Gene Therapy, 2008, 15(7): 474-484. |
73 | LIU S C, AHN G O, KIOI M, et al. Optimized Clostridium-directed enzyme prodrug therapy improves the antitumor activity of the novel DNA cross-linking agent PR-104[J]. Cancer Research, 2008, 68(19): 7995-8003. |
74 | WANG J, LU Z, WIENTJESET M G, al. Delivery of siRNA therapeutics: barriers and carriers[J]. The AAPS Journal, 2010, 12(4): 492-503. |
75 | SAJID M I, MOAZZAM M, KATO S, et al. Overcoming barriers for siRNA therapeutics: from bench to bedside[J]. Pharmaceuticals, 2020, 13(10): 294. |
76 | GU J L, LI Y, ZENG J, et al. Knockdown of HIF-1α by siRNA-expressing plasmid delivered by attenuated Salmonella enhances the antitumor effects of cisplatin on prostate cancer[J]. Scientific Reports, 2017, 7: 7546. |
77 | AI Z H, LU Y, QIU S B, et al. Overcoming cisplatin resistance of ovarian cancer cells by targeting HIF-1-regulated cancer metabolism[J]. Cancer Letters, 2016, 373(1): 36-44. |
78 | PARDOLL D M. The blockade of immune checkpoints in cancer immunotherapy[J]. Nature Reviews Cancer, 2012, 12(4): 252-264. |
79 | ZHAO T S, WEI T, GUO J, et al. PD-1-siRNA delivered by attenuated Salmonella enhances the antimelanoma effect of pimozide[J]. Cell Death & Disease, 2019, 10(3): 164. |
80 | TURAJLIC S, SWANTON C. Metastasis as an evolutionary process[J]. Science, 2016, 352(6282): 169-175. |
81 | KORSMEYER S J. BCL-2 gene family and the regulation of programmed cell death[J]. Cancer Research, 1999, 59(7 ): 1693s-1700s. |
82 | HAFEZI S, RAHMANI M. Targeting BCL-2 in cancer: advances, challenges, and perspectives[J]. Cancers, 2021, 13(6): 1292. |
83 | YANG N, ZHU X Y, CHEN L S, et al. Oral administration of attenuated S. typhimurium carrying shRNA-expressing vectors as a cancer therapeutic[J]. Cancer Biology & Therapy, 2008, 7(1): 145-151. |
84 | PHAM T H, PARK H M, KIM J, et al. STAT3 and p53: dual target for cancer therapy[J]. Biomedicines, 2020, 8(12): 637. |
85 | KUAN Y D, LEE C H. Salmonella overcomes tumor immune tolerance by inhibition of tumor indoleamine 2, 3-dioxygenase 1 expression[J]. Oncotarget, 2016, 7(1): 374-385. |
86 | BLACHE C A, MANUEL E R, KALTCHEVA T I, et al. Systemic delivery of Salmonella typhimurium transformed with IDO shRNA enhances intratumoral vector colonization and suppresses tumor growth[J]. Cancer Research, 2012, 72(24): 6447-6456. |
87 | O'DONNELL J S, LONG G V, SCOLYER R A, et al. Resistance to PD1/PDL1 checkpoint inhibition[J]. Cancer Treatment Reviews, 2017, 52: 71-81. |
88 | IWAI Y, HAMANISHI J, CHAMOTO K, et al. Cancer immunotherapies targeting the PD-1 signaling pathway[J]. Journal of Biomedical Science, 2017, 24(1): 26. |
89 | CHOWDHURY S, CASTRO S, COKER C, et al. Programmable bacteria induce durable tumor regression and systemic antitumor immunity[J]. Nature Medicine, 2019, 25(7): 1057-1063. |
[1] | 马孟丹, 尚梦宇, 刘宇辰. CRISPR-Cas9系统在肿瘤生物学中的应用及前景[J]. 合成生物学, 2023, 4(4): 703-719. |
[2] | 谢君鸿, 何晶晶, 周鹏辉. 合成生物学与工程化T细胞治疗[J]. 合成生物学, 2023, 4(2): 373-393. |
[3] | 吴晓昊, 廖荣东, 李飞云, 欧阳中天, 冉怡, 公维远, 曲明灏, 陈明珏, 林荔军, 肖国芝. 合成生物学在疾病诊疗中的应用[J]. 合成生物学, 2023, 4(2): 244-262. |
[4] | 陈青黎, 童贻刚. 工程噬菌体的合成生物学“智造”[J]. 合成生物学, 2023, 4(2): 283-300. |
[5] | 于袁欢, 周阳, 王欣怡, 孔德强, 叶海峰. 光遗传学照进生物医学研究进展[J]. 合成生物学, 2023, 4(1): 102-140. |
[6] | 林思思, 潘超, 张一帆, 刘尽尧. 基于表面涂层益生菌的肿瘤抗原口服递送系统[J]. 合成生物学, 2022, 3(4): 810-820. |
[7] | 许仕琳, 许海燕. 双特异性抗体及纳米技术在肿瘤免疫治疗中的应用进展[J]. 合成生物学, 2022, 3(2): 352-368. |
[8] | 宋斐, 刘宇辰, 蔡志明, 黄卫人. 基于CRISPR/Cas工具的肿瘤基因线路构建及应用[J]. 合成生物学, 2022, 3(1): 53-65. |
[9] | 袁盛建, 马迎飞. 噬菌体合成生物学研究进展和应用[J]. 合成生物学, 2020, 1(6): 635-655. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||