合成生物学

• 特约评述 •    

基于生物体-材料杂化体系的低碳生物合成的研究进展

郭心怡1, 郭树奇1,2, 李曙伟1, 焦子悦1, 费强1,2   

  1. 1.西安交通大学,化学工程与技术学院,陕西 西安 710049
    2.西安市一碳化合物生物转化技术重点实验室,陕西 西安 710049
  • 收稿日期:2024-09-18 修回日期:2024-12-26 出版日期:2024-12-28
  • 通讯作者: 费强
  • 作者简介:郭心怡(1999—),女,在读博士研究生。研究方向为嗜甲烷菌细胞工厂构建及微生物-材料杂化体系转化甲烷合成化学品。E-mail:gxy9933@stu.xjtu.edu.cn
    费 强(1980—),男,西安交通大学教授,博士生导师,陕西省杰青基金获得者、陕西高校青年创新团队负责人,一碳化合物生物转化技术西安市重点实验室主任,中国生物工程学会一碳生物技术专委会秘书长。近年承担国家重点研发计划、国家自然科学基金、陕西省重点研发计划等多项科研项目。以一碳气体的微生物固定及其高值化利用为研究目标,利用合成生物学和高密度发酵等技术改造和优化细胞工厂,实现食品、材料、化学品、能源等产品的生物制造。E-mail:feiqiang@xjtu.edu.cn
  • 基金资助:
    国家重点研发计划(2021YFC2103500);国家自然科学基金(2217281)

Progress in Biological Entity-Material Hybrid System for Low-Carbon Biosynthesis

Xinyi GUO1, Shuqi GUO1,2, Shuwei LI1, Ziyue JIAO1, Qiang FEI1,2   

  1. 1.School of Chemical Engineering and Technology,Xi’an Jiaotong University,Xi’an 710049,Shaanxi,China
    2.Xi’an Key Laboratory of C1 Compound Bioconversion Technology,Xi’an 710049,Shaanxi,China
  • Received:2024-09-18 Revised:2024-12-26 Online:2024-12-28
  • Contact: Qiang FEI

摘要:

为推进绿色低碳生物经济发展,基于生物体(工业菌种或工业酶)的低碳生物合成技术由于在温室气体等低碳原料转化和利用中展现出的巨大应用潜力而广受关注。目前,低碳原料的生物转化过程仍面临能量利用效率低、转化速率慢等问题,这已成为制约其广泛应用的主要瓶颈之一。生物体与材料的杂化体系能够通过利用光能或电能等可再生能源驱动微生物细胞或工业酶将低碳原料转化为目标产物,这为低碳生物制造领域的发展提供了新的路径。本文基于可再生能源驱动生物体转化低碳原料的新兴技术,首先探讨了通过光催化材料或电极材料从可再生能源中捕获能量的相关技术进展。然后结合光/电驱动的生物体-材料杂化体系在转化温室气体原料合成各类化学品中的应用实例,深入分析了在不同材料和电子传递机制下,杂化体系对能量供给、底物转化和耗能产物合成等效率的影响作用和最新研究进展。最后,针对杂化体系在化学品低碳合成过程中遇到的挑战,展望了具有可行性的进一步解决方案及应用前景,为“双碳”目标的实现提供了技术支撑。

关键词: 生物体-材料杂化体系, 生物催化, 低碳合成, 可再生能源, 还原力供给

Abstract:

To promote the development of green bio-economy, low-carbon biosynthesis technologies based on biological entities such as industrial microorganisms or enzymes have demonstrated significant application potential in the utilization of low-carbon substrates. One-carbon raw feedstocks such as carbon dioxide and methane can be used as substrates for biosynthesis, which can effectively avoid the use of food-based raw materials such as sugar in the biomanufacturing process and slow greenhouse gas emissions, thus achieving carbon peaking and carbon neutrality goals. Currently, the bioconversion process of low-carbon substrates still faces issues including low energy utilization efficiency and conversion rate, which have emerged as some of the main bottlenecks restricting its wide application. A biological-material hybrid system can harness renewable energy such as light energy or electricity to facilitate biocatalytic reactions and the synthesis of target products, thereby offering novel opportunities for low-carbon biomanufacturing development. Research on biocompatible photosensitive materials such as semiconductor materials, dyes, and polymer materials, as well as the construction of microbial electrochemical systems, enable low-carbon bioconversion technology to break through the limitation of insufficient energy supply in endogenous metabolic processes, therefore they have wide application prospect and development potential. Based on the emerging technology of renewable energy-driven biological conversion of low-carbon substrates, this review first explores the relevant technologies and methods for capturing energy from sustainable energy through photocatalytic materials or electrode materials. Furthermore, combined with the application examples of light/electricity-driven biological entity-material hybrid systems in the synthesis of various chemicals under different materials and electron transfer mechanisms, the effects and latest research progress of hybrid systems on cellular energy supply, substrate conversion efficiency, and synthesis of energy-consuming products were deeply analyzed. Finally, the challenges faced by hybrid systems in the synthesis of low-carbon footprint chemicals, such as photogenerated electron-hole recombination and low electron transfer efficiency at the biological solid-material interface, are outlined, and feasible solutions and application prospects are proposed.

Key words: biological entity-material hybrid system, biocatalysis, low-carbon synthesis, renewable energy sources, supply of reducing power

中图分类号: