合成生物学

• 特约评述 •    

液体生物燃料合成与炼制的研究进展

郭姝媛1,2, 张倩楠1,2, 姑丽克孜·买买提热夏提null1,2, 杨一群1,2, 于涛1,2   

  1. 1.中国科学院深圳先进技术研究院,深圳合成生物学创新研究院,合成生物化学研究中心,广东 深圳 518055
    2.中国科学院深圳先进技术研究院,深圳合成生物学创新研究院,中国科学院定量工程生物学重点实验室,广东 深圳 518055
  • 收稿日期:2023-06-13 修回日期:2024-01-30 出版日期:2024-02-28
  • 通讯作者: 郭姝媛,于涛
  • 作者简介:郭姝媛(1991—),女,博士,助理研究员。研究方向为甲醇生物转化及产物合成。E-mail:sy.guo@siat.ac.cn
    于涛(1986—),男,博士,研究员。研究方向为酿酒酵母的合成生物学。E-mail:tao.yu@siat.ac.cn
  • 基金资助:
    国家重点研发计划(2021YFA0911000);广东省重点区域研究与发展计划项目(2022B1111080005);国家自然科学基金(NSFC32071416);深圳合成生物学创新研究院科研基金(JCHZ20200003);深圳市科技计划(ZDSYS20210623091810032);中国科学院战略重点研究项目(XDB0480000);招商局集团先进技术研究院有限公司(基于电催化CO2转化与生物炼制的绿色制造项目),二氧化碳绿色转化与生物制造联合实验室(E2Z152);深圳先进院跨所联合攻关青年团队项目(电驱动CO2转化与生物炼制规模化示范)

Advances in microbial production of liquid biofuels

Shuyuan GUO1,2, Qiannan ZHANG1,2, Gulikezi·MAIMAITIREXIATI1,2, Yiqun YANG1,2, Tao YU1,2   

  1. 1.Center for Synthetic Biochemistry,Shenzhen Institute of Synthetic Biology,Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences (CAS),Shenzhen 518055,Guangdong,China
    2.CAS key laboratory of Quantitative Engineering Biology,Shenzhen Institute of Synthetic Biology,Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences,Shenzhen 518055,Guangdong,China
  • Received:2023-06-13 Revised:2024-01-30 Online:2024-02-28
  • Contact: Shuyuan GUO, Tao YU

摘要:

人类社会发展对化石燃料的依赖导致了能源枯竭的加剧及强烈的气候变化,迫切需要开发能够代替化石资源的新型生物燃料。虽然已有生物乙醇、生物柴油等生物能源,但其生产规模和价格成 本仍然是大规模应用的主要问题。近年来,随着可再生能源技术的 发展,结合代谢工程及新兴的合成生物学技术,开发基于 CO2 的新兴生物燃料,逐渐成为未来绿色能源的重要研究方向。本文综述了生物燃料的种类及四代生物燃料的发展情况,并着重介绍了第三代 和第四代生物燃料丰富的底物原材料、多能源偶联合成生物燃料的 研究现状、合成生物学技术在其中的应用及现阶段的研究进展。文章最后概括了合成生物燃料所面临的困境,主要包括原料的供应及成本,新型液体生物燃料产量低、产品种类少等问题,并提出相应的解决办法,以二氧化碳作为主要原材料,结合自养型微生物、甲基营养型微生物等细胞工厂,通过优选固碳途径、转化二氧化碳为甲醇等低碳底物、多能源耦合等方式,利用广泛存在的二氧化碳实现多种生物燃料的合成,以期扩大生物燃料的产能及应用范围,进一步推动新型生物燃料的产业化进程。

关键词: 合成生物燃料, 新型生物能源, 一碳底物, 可再生能源, 微生物代谢工程

Abstract:

With the development of the economy and technology, the dependence of human beings on fossil fuels has led to the aggravation of energy shortage and climate change. This has created an urgent need for the development of advanced biofuels as alternatives to fossil fuels. Nowadays, widely recognized biofuels like bioethanol and biodiesel face challenges in terms of the insufficient production scale and high costs. Hence, the integration of metabolic engineering and synthetic biology has opened avenues for utilizing diverse substrates from renewable sources, such as solar energy, light energy, electric energy and biomass energy. Microbial cell factories, including microalgae, bacteria, and yeast, play a crucial role in synthesizing biofuels from these substrates. The review traces the evolution of four generations of biofuels, encompassing bioethanol, biodiesel, bio-gasoline, jet fuel and aviation fuel. In this review, we discuss how microorganisms can be explored for the production of third- and fourth-generation biofuels, including a variety of substrates (biomass, carbon dioxide, methanol, and methane), multi-energy coupling to synthesize biofuels (the utilization of lignocellulose by bacterial or yeast, CO2 conversion by microalgae or electrochemical-biological system, the conversion of methanol and methane by methyltrophic microbes) and the application of synthetic biology. Furthermore, we overview biosynthetic pathways and the engineering strategies for optimize biofuels production. These strategies can convert raw materials to various fuel compounds, including fatty acids and esters, advanced alcohols and esters, isoprenoids and polyketides. Finally, we also highlight some challenges in biofuel production, including raw material supply and cost issues, low production yields, and limited product variety. Meanwhile, to address the difficulties, we propose corresponding solutions. For example, by optimizing carbon fixation pathways, and converting carbon dioxide into low-carbon substrates like methanol, autotrophic microorganisms, methylotrophic microorganisms, and other cell factories can utilize carbon dioxide as the main raw material to synthesize various biofuels and expand the production capacity, which can broaden the application fields of biofuels and further promote the industrialization of biofuels.

Key words: synthetic biofuels, new bioenergy, one-carbon substrates, renewable energy, microbial metabolic engineering

中图分类号: