• 特约评述 •
李毅, 李因双, 李爽, 凌沛学, 房俊强
收稿日期:
2025-05-29
修回日期:
2025-07-29
出版日期:
2025-07-30
通讯作者:
房俊强
作者简介:
基金资助:
LI Yi, LI Yinshuang, LI Shuang, LING Peixue, FANG Junqiang
Received:
2025-05-29
Revised:
2025-07-29
Online:
2025-07-30
Contact:
FANG Junqiang
摘要:
人乳寡糖是存在于人乳中的天然活性寡糖,对新生儿健康至关重要。人乳寡糖具有多种健康益处,如益生元活性、抗炎和抗菌特性、抗病毒以及促进新生儿认知发展作用等,已经成为婴儿配方奶粉、临床婴儿营养品、膳食补充剂或功能食品的重要组分。随着越来越多人乳寡糖获批应用于婴儿配方奶粉,其在商业领域的价值愈发凸显,人乳寡糖规模化制备技术也成为研究热点。鉴于人乳寡糖广阔的应用前景与市场需求,以及体外生物转化(ivBT)在大宗糖类产品生产中展现的高效、绿色、可规模化放大等显著优势,本文综述了人乳寡糖的结构组成、功能特性和合成方法,尤其是体外生物转化在人乳寡糖规模制备领域的研究进展,为相关基础研究与产业转化提供理论依据与技术参考。未来ivBT将向原料绿色化、酶元件改造智能化、过程连续化纵深发展,进一步降低人乳寡糖高效规模化生产的综合成本,为产业化注入新动能。
中图分类号:
李毅, 李因双, 李爽, 凌沛学, 房俊强. 人乳寡糖的体外生物转化合成研究进展[J]. 合成生物学, DOI: 10.12211/2096-8280.2025-052.
LI Yi, LI Yinshuang, LI Shuang, LING Peixue, FANG Junqiang. Recent Progress on the in vitro Bio-transformation Synthesis of Human Milk Oligosaccharides[J]. Synthetic Biology Journal, DOI: 10.12211/2096-8280.2025-052.
合成方法 | 产物 | 技术路线的特点 | 产量/产率 | 参考文献 |
---|---|---|---|---|
酶法合成 | 3′-SL | 酶工程改造Trypanosoma rangeli sialidase,以CGMP为糖基供体,以乳糖为受体合成3’-SL | 31% | [ |
6′-SL | Bacteroides fragilis sialidase以多聚N-乙酰基神经氨酸为糖基供体,以乳糖为受体合成6’-SL | 22% | [ | |
2-FL | Fusarium graminearum fucosidase以木葡聚糖为糖基供体,以乳糖为受体合成2-FL | 14% | [ | |
3-FL | 重组表达岩藻糖基转移酶α1,3-HpFucT,以GDP-Fucose为糖基供体,以乳糖为糖基受体催化合成3-FL | 96% | [ | |
LNFP I | 重组表达岩藻糖基转移酶α1,2-Te2FT,以一锅多酶合成的GDP-Fucose为糖基供体,以LNT为糖基受体催化合成LNFP I | 95% | [ | |
全细胞生物催化 | LNnT | E. coli K12 MG1655为工程菌,敲除lacZ、wcaJ、ugd;过表达galE、CpsIaJ、lgtA | 20.33 g/L | [ |
3′-SL | E. coli BL21(DE3)为工程菌,敲除lacZ、nanA、nanK;过表达neuC、neuB、neuA、α2,3-SiaT | 31.4 g/L | [ | |
6′-SL | E. coli DH1为工程菌,敲除lacZ、lacA、nanK、nanE、nanT、nanA;过表达neuB、neuC、neuA、ST6 | 30 g/L | [ | |
2′-FL | E. coli C41(DE3)为工程菌,敲除lacZ、wcaJ、nudD;过表达manB、manC、gmd、wcaG、wbgL、rcsA、rcsB | 79.23 g/L | [ | |
ivBT | LacNAc | 构建多磷酸激酶(PPK)/多磷酸盐(polyPn)的NTP再生催化系统 | >90% | [ |
LNT Ⅱ | 筛选新型酶元件HaHex74并进行酶元件定向进化和改造 | 15.0 g/L | [ | |
LNT | 筛选新型β-半乳糖苷酶LzBgal35A并在E. coli中实现可溶性表达 | 6.4 g/L | [ | |
LNnT | 多酶级联催化反应体系 | 93% | [ | |
6′-SL | 多层级多孔材料用于共固定化CMP-唾液酸合成酶和α-2,6-唾液酸转移酶 | >80% | [ | |
DSLNnT | 多酶级联催化反应体系 | 96% | [ | |
2′-FL | 体外多酶级联催化实现ATP和GTP的循环利用;筛选高效的α-1,2-岩藻糖基转移酶TeFucT | 27.07 g/L | [ | |
LNFP I | 新型酶元件的筛选 | 91% | [ |
表1 HMOs主要合成方法对比
Table 1 Comparison of Major Synthesis Methods for HMOs
合成方法 | 产物 | 技术路线的特点 | 产量/产率 | 参考文献 |
---|---|---|---|---|
酶法合成 | 3′-SL | 酶工程改造Trypanosoma rangeli sialidase,以CGMP为糖基供体,以乳糖为受体合成3’-SL | 31% | [ |
6′-SL | Bacteroides fragilis sialidase以多聚N-乙酰基神经氨酸为糖基供体,以乳糖为受体合成6’-SL | 22% | [ | |
2-FL | Fusarium graminearum fucosidase以木葡聚糖为糖基供体,以乳糖为受体合成2-FL | 14% | [ | |
3-FL | 重组表达岩藻糖基转移酶α1,3-HpFucT,以GDP-Fucose为糖基供体,以乳糖为糖基受体催化合成3-FL | 96% | [ | |
LNFP I | 重组表达岩藻糖基转移酶α1,2-Te2FT,以一锅多酶合成的GDP-Fucose为糖基供体,以LNT为糖基受体催化合成LNFP I | 95% | [ | |
全细胞生物催化 | LNnT | E. coli K12 MG1655为工程菌,敲除lacZ、wcaJ、ugd;过表达galE、CpsIaJ、lgtA | 20.33 g/L | [ |
3′-SL | E. coli BL21(DE3)为工程菌,敲除lacZ、nanA、nanK;过表达neuC、neuB、neuA、α2,3-SiaT | 31.4 g/L | [ | |
6′-SL | E. coli DH1为工程菌,敲除lacZ、lacA、nanK、nanE、nanT、nanA;过表达neuB、neuC、neuA、ST6 | 30 g/L | [ | |
2′-FL | E. coli C41(DE3)为工程菌,敲除lacZ、wcaJ、nudD;过表达manB、manC、gmd、wcaG、wbgL、rcsA、rcsB | 79.23 g/L | [ | |
ivBT | LacNAc | 构建多磷酸激酶(PPK)/多磷酸盐(polyPn)的NTP再生催化系统 | >90% | [ |
LNT Ⅱ | 筛选新型酶元件HaHex74并进行酶元件定向进化和改造 | 15.0 g/L | [ | |
LNT | 筛选新型β-半乳糖苷酶LzBgal35A并在E. coli中实现可溶性表达 | 6.4 g/L | [ | |
LNnT | 多酶级联催化反应体系 | 93% | [ | |
6′-SL | 多层级多孔材料用于共固定化CMP-唾液酸合成酶和α-2,6-唾液酸转移酶 | >80% | [ | |
DSLNnT | 多酶级联催化反应体系 | 96% | [ | |
2′-FL | 体外多酶级联催化实现ATP和GTP的循环利用;筛选高效的α-1,2-岩藻糖基转移酶TeFucT | 27.07 g/L | [ | |
LNFP I | 新型酶元件的筛选 | 91% | [ |
[1] | AUTRAN C A, KELLMAN B P, KIM J H, et al. Human milk oligosaccharide composition predicts risk of necrotising enterocolitis in preterm infants [J]. Gut, 2018, 67: 1064-70. |
[2] | DINLEYICI M, BARBIEUR J, DINLEYICI E C, et al. Functional effects of human milk oligosaccharides (HMOs) [J]. Gut Microbes, 2023, 15(1): 2186115. |
[3] | ESTORNINOS E, LAWENKO R B, PALESTROQUE E, et al. Term infant formula supplemented with milk-derived oligosaccharides shifts the gut microbiota closer to that of human milk-fed infants and improves intestinal immune defense: a randomized controlled trial [J]. The American journal of clinical nutrition, 2022, 115(1): 142-53. |
[4] | AKKERMAN R, FAAS M M, DE VOS P. Non-digestible carbohydrates in infant formula as substitution for human milk oligosaccharide functions: Effects on microbiota and gut maturation [J]. Critical Reviews in Food Science and Nutrition, 2019, 59(9): 1486-97. |
[5] | WALKER A. Breast Milk as the Gold Standard for Protective Nutrients [J]. The Journal of Pediatrics, 2010, 156(2, ): S3-S7. |
[6] | ZHU Y Y, CAO H Z, WANG H, et al. Biosynthesis of human milk oligosaccharides via metabolic engineering approaches: current advances and challenges [J]. Current Opinion in Biotechnology, 2022, 78: 102841. |
[7] | ZHANG Y H, ZHU Z G, YOU C, et al. In Vitro BioTransformation (ivBT): Definitions, Opportunities, and Challenges [J]. Synthetic Biology and Engineering, 2023, 1(2): 10013. |
[8] | CHEN X. Human Milk Oligosaccharides (HMOS): Structure, Function, and Enzyme-Catalyzed Synthesis [J]. Advances in Carbohydrate Chemistry and Biochemistry, 2015, 72: 113-90. |
[9] | JIN W J, LU Y, LI C, et al. Improved Glycoqueuing Strategy Reveals Novel alpha2,3-Linked Di-/Tri-Sialylated Oligosaccharide Isomers in Human Milk [J]. Journal of Agricultural and Food Chemistry, 2022, 70(43): 13996-4004. |
[10] | WU S, TAO N, GERMAN J B, et al. Development of an Annotated Library of Neutral Human Milk Oligosaccharides [J]. Journal of Proteome Research, 2010, 9(8): 4138-51. |
[11] | BODE L. Human Milk Oligosaccharides: Structure and Functions [J]. Nestle Nutrition Institute Workshop Series, 2020, 94: 115-23. |
[12] | NATHAN N N, PHILPOTT D J, GIRARDIN S E. The intestinal microbiota: from health to disease, and back [J]. Microbes Infect, 2021, 23(6-7): 104849. |
[13] | GOEHRING K C, KENNEDY A D, PRIETO P A, et al. Direct evidence for the presence of human milk oligosaccharides in the circulation of breastfed infants [J]. PLoS One, 2014, 9(7): e101692. |
[14] | DOTZ V, RUDLOFF S, MEYER C, et al. Metabolic fate of neutral human milk oligosaccharides in exclusively breast-fed infants [J]. Molecular Nutrition & Food Research, 2015, 59(2): 355-64. |
[15] | LIU Z M, SUBBARAJ A, FRASER K, et al. Human milk and infant formula differentially alters the microbiota composition and functional gene relative abundance in the small and large intestines in weanling rats [J]. European Journal of Nutrition, 2020, 59(5): 2131-43. |
[16] | UNDERWOOD M A, GAERLAN S, DE LEOZ M L, et al. Human milk oligosaccharides in premature infants: absorption, excretion, and influence on the intestinal microbiota [J]. Pediatric research, 2015, 78(6): 670-7. |
[17] | KITAOKA M. Bifidobacterial enzymes involved in the metabolism of human milk oligosaccharides [J]. Advances in Nutrition, 2012, 3(3): 422S-9S. |
[18] | SINGH R P, NIHARIKA J, KONDEPUDI K K, et al. Recent understanding of human milk oligosaccharides in establishing infant gut microbiome and roles in immune system [J]. Food Research International, 2022, 151: 110884. |
[19] | XIAO L, VAN DE WORP W R, STASSEN R, et al. Human milk oligosaccharides promote immune tolerance via direct interactions with human dendritic cells [J]. European Journal of Immunology 2019, 49(7): 1001-14. |
[20] | KURAKEVICH E, HENNET T, HAUSMANN M, et al. Milk oligosaccharide sialyl(α2,3)lactose activates intestinal CD11c+ cells through TLR4 [J]. Proceedings of the National Academy of Sciences, 2013, 110(43): 17444-9. |
[21] | VERMA R, LEE C, JEUN E J, et al. Cell surface polysaccharides of Bifidobacterium bifidum induce the generation of Foxp3+ regulatory T cells [J]. Science Immunology, 2018, 3(28): eaat6975. |
[22] | GUO S S, GILLINGHAM T, GUO Y M, et al. Secretions of Bifidobacterium infantis and Lactobacillus acidophilus Protect Intestinal Epithelial Barrier Function [J]. Journal of Pediatric Gastroenterology and Nutrition, 2017, 64(3): 404-12. |
[23] | CHUTIPONGTANATE S, MORROW A L, NEWBURG D S. Human Milk Oligosaccharides: Potential Applications in COVID-19 [J]. Biomedicines, 2022, 10(2): 346. |
[24] | COSTERTON J W, IRVIN R T, CHENG K J. The Bacterial Glycocalyx in Nature and Disease [J]. Annual Review of Microbiology, 1981, 35: 299-324. |
[25] | RUIZ-PALACIOS G M, CERVANTES L E, RAMOS P, et al. Campylobacter jejuni binds intestinal H(O) antigen (Fuc alpha 1, 2Gal beta 1, 4GlcNAc), and fucosyloligosaccharides of human milk inhibit its binding and infection [J]. The Journal of biological chemistry, 2003, 278(16): 14112-20. |
[26] | YU Z T, NANTHAKUMAR N N, NEWBURG D S. The Human Milk Oligosaccharide 2'-Fucosyllactose Quenches Campylobacter jejuni-Induced Inflammation in Human Epithelial Cells HEp-2 and HT-29 and in Mouse Intestinal Mucosa [J]. The Journal of nutrition, 2016, 146(10): 1980-90. |
[27] | COPPA G V, ZAMPINI L, GALEAZZI T, et al. Human milk oligosaccharides inhibit the adhesion to Caco-2 cells of diarrheal pathogens: Escherichia coli, Vibrio cholerae, and Salmonella fyris [J]. Pediatric research, 2006, 59(3): 377-82. |
[28] | RAMANI S, STEWART C J, LAUCIRICA D R, et al. Human milk oligosaccharides, milk microbiome and infant gut microbiome modulate neonatal rotavirus infection [J]. Nature Communications, 2018, 9(1): 5010. |
[29] | KOROMYSLOVA A, TRIPATHI S, MOROZOV V, et al. Human norovirus inhibition by a human milk oligosaccharide [J]. Virology, 2017, 508: 81-9. |
[30] | LAUCIRICA D R, TRIANTIS V, SCHOEMAKER R, et al. Milk Oligosaccharides Inhibit Human Rotavirus Infectivity in MA104 Cells [J]. The Journal of nutrition, 2017, 147(9): 1709-14. |
[31] | HANISCH F G, HANSMAN G S, MOROZOV V, et al. Avidity of α-fucose on human milk oligosaccharides and blood group-unrelated oligo/polyfucoses is essential for potent norovirus-binding targets [J]. The Journal of biological chemistry, 2018, 293(30): 11955–65. |
[32] | CARR L E, VIRMANI M D, ROSA F, et al. Role of Human Milk Bioactives on Infants' Gut and Immune Health [J]. Frontiers in Immunology, 2021, 12: 604080. |
[33] | HOLSCHER H D, DAVIS S R, TAPPENDEN K A. Human milk oligosaccharides influence maturation of human intestinal Caco-2Bbe and HT-29 cell lines [J]. The Journal of nutrition, 2014, 144(5): 586-91. |
[34] | KONG C L, ELDERMAN M, CHENG L H, et al. Modulation of Intestinal Epithelial Glycocalyx Development by Human Milk Oligosaccharides and Non-Digestible Carbohydrates [J]. Molecular Nutrition & Food Research 2019, 63(17): e1900303. |
[35] | CHICHLOWSKI M, DE LARTIGUE G, GERMAN J B, et al. Bifidobacteria isolated from infants and cultured on human milk oligosaccharides affect intestinal epithelial function [J]. Journal of pediatric gastroenterology and nutrition 2012, 55(3): 321-7. |
[36] | LIU F, SIMPSON A B, D'COSTA E, et al. Sialic acid, the secret gift for the brain [J]. Critical Reviews in Food Science and Nutrition, 2022, 63(29): 9875-94. |
[37] | COMSTOCK S S, LI M, WANG M, et al. Dietary Human Milk Oligosaccharides but Not Prebiotic Oligosaccharides Increase Circulating Natural Killer Cell and Mesenteric Lymph Node Memory T Cell Populations in Noninfected and Rotavirus-Infected Neonatal Piglets [J]. The Journal of nutrition, 2017, 147(6): 1041-7. |
[38] | PISA E, MARTIRE A, CHIODI V, et al. Exposure to 3'Sialyllactose-Poor Milk during Lactation Impairs Cognitive Capabilities in Adulthood [J]. Nutrients, 2021, 13(12): 4191-211. |
[39] | OLIVEROS E, VAZQUEZ E, BARRANCO A, et al. Sialic Acid and Sialylated Oligosaccharide Supplementation during Lactation Improves Learning and Memory in Rats [J]. Nutrients, 2018, 10(10): 1519. |
[40] | BERGER P K, ONG M L, BODE L, et al. Human Milk Oligosaccharides and Infant Neurodevelopment: A Narrative Review [J]. Nutrients, 2023, 15(3): 719. |
[41] | WILLEMSEN Y, BEIJERS R, GU F J, et al. Fucosylated Human Milk Oligosaccharides during the First 12 Postnatal Weeks Are Associated with Better Executive Functions in Toddlers [J]. Nutrients, 2023, 15(6): 1463. |
[42] | OLIVEROS E, RAMIREZ M, VAZQUEZ E, et al. Oral supplementation of 2'-fucosyllactose during lactation improves memory and learning in rats [J]. Journal of Nutritional Biochemistry, 2016, 31: 20-7. |
[43] | EFSA PANEL ON DIETETIC PRODUCTS N A A. Safety of 2′‐O‐fucosyllactose as a novel food ingredient pursuant to Regulation (EC) No 258/97 [J]. EFSA Journal, 2015, 13(7): 4184. |
[44] | EFSA PANEL ON NUTRITION N F, FOOD A, TURCK D, et al. Safety of 3-FL (3-Fucosyllactose) as a novel food pursuant to Regulation (EU) 2015/2283 [J]. EFSA Journal, 2021, 19(6): 6662. |
[45] | EFSA PANEL ON NUTRITION N F, FOOD A, TURCK D, et al. Safety of lacto-N-tetraose (LNT) as a novel food pursuant to Regulation (EU) 2015/2283 [J]. EFSA Journal, 2019, 17(12): 5907. |
[46] | EFSA PANEL ON DIETETIC PRODUCTS N, ALLERGIES. Safety of lacto-N-neotetraose as a novel food ingredient pursuant to Regulation (EC) No 258/97 [J]. EFSA Journal, 2015, 13(7): 4183. |
[47] | EFSA PANEL ON NUTRITION N F, FOOD A, TURCK D, et al. Safety of 3'-Sialyllactose (3'-SL) sodium salt as a novel food pursuant to Regulation (EU) 2015/2283 [J]. EFSA Journal, 2020, 18(5): 6098. |
[48] | EFSA PANEL ON NUTRITION N F, FOOD A, TURCK D, et al. Safety of 6'-Sialyllactose (6'-SL) sodium salt as a novel food pursuant to Regulation (EU) 2015/2283 [J]. EFSA Journal, 2020, 18(5): 6097. |
[49] | EFSA PANEL ON NUTRITION N F, FOOD A, TURCK D, et al. Safety of 2'-fucosyllactose/difucosyllactose mixture as a novel food pursuant to Regulation (EU) 2015/2283 [J]. EFSA Journal, 2019, 17(6): 5717. |
[50] | TURCK D, BOHN T, CASTENMILLER J, et al. Safety of lacto-N-fucopentaose I/2'-fucosyllactose (LNFP-I/2'-FL) mixture as a novel food pursuant to Regulation (EU) 2015/2283 [J]. EFSA Journal, 2023, 21(12): 8412. |
[51] | WANG S Y, YANG Y, ZHU Q, et al. Chemical synthesis of polysaccharides [J]. Current Opinion in Chemical Biology, 2022, 69: 102154. |
[52] | AGOSTON K, HEDEROS M J, BAJZA I, et al. Kilogram scale chemical synthesis of 2'-fucosyllactose [J]. Carbohydrate Research, 2019, 476: 71-7. |
[53] | BANDARA M D, STINE K J, DEMCHENKO A V. The chemical synthesis of human milk oligosaccharides: Lacto-N-neotetraose (Galbeta1-->4GlcNAcbeta1-->3Galbeta1-->4Glc) [J]. Carbohydrate Research, 2019, 483: 107743. |
[54] | ESPOSITO D, HUREVICH M, CASTAGNER B, et al. Automated synthesis of sialylated oligosaccharides [J]. Beilstein Journal of Organic Chemistry, 2012, 8: 1601-9. |
[55] | ARBOE JENNUM C, HAUCH FENGER T, BRUUN L M, et al. One-Pot Glycosylations in the Synthesis of Human Milk Oligosaccharides [J]. European Journal of Organic Chemistry, 2014, 2014(15): 3232-41. |
[56] | XU L L, TOWNSEND S D. Synthesis as an Expanding Resource in Human Milk Science [J]. Journal of the American Chemical Society 2021, 143(30): 11277-90. |
[57] | SINGH Y, ESCOPY S, SHADRICK M, et al. Chemical Synthesis of Human Milk Oligosaccharides: para-Lacto-N-hexaose and para-Lacto-N-neohexaose [J]. Chemistry, 2023, 29(64): e202302288. |
[58] | ZHAO M L, ZHU Y Y, WANG H, et al. An Overview of Sugar Nucleotide-Dependent Glycosyltransferases for Human Milk Oligosaccharide Synthesis [J]. Journal of Agricultural and Food Chemistry, 2023, 71(33): 12390-402. |
[59] | ZHENG J, XU H, FANG J Q, et al. Enzymatic and chemoenzymatic synthesis of human milk oligosaccharides and derivatives [J]. Carbohydrate Polymers, 2022, 291: 119564. |
[60] | MA S Z, GAO J H, TIAN Y P, et al. Recent progress in chemoenzymatic synthesis of human glycans [J]. Organic & Biomolecular Chemistry, 2024, 22(38): 7767-85. |
[61] | TAUJALE R, VENKAT A, HUANG L-C, et al. Deep evolutionary analysis reveals the design principles of fold A glycosyltransferases [J]. eLife, 2020, 9: e54532. |
[62] | BAI L, LI H. Protein N-glycosylation and O-mannosylation are catalyzed by two evolutionarily related GT-C glycosyltransferases [J]. Current Opinion in Structural Biology, 2021, 68: 66-73. |
[63] | PEREZ C, SZYMANSKI C M. More than one way to add a sugar into bacterial polysaccharides [J]. Proceedings of the National Academy of Sciences, 2024, 121(25): e2408556121 |
[64] | NISHIMOTO M. Large scale production of lacto-N-biose I, a building block of type I human milk oligosaccharides, using sugar phosphorylases [J]. Bioscience, Biotechnology, and Biochemistry, 2020, 84(1): 17-24. |
[65] | NEKVASILOVá P, HOVORKOVá M, MéSZáROS Z, et al. Engineered Glycosidases for the Synthesis of Analogs of Human Milk Oligosaccharides [J]. International Journal of Molecular Sciences, 2022, 23(8): 4106. |
[66] | LIU Y H, WANG L, HUANG P, et al. Efficient sequential synthesis of lacto-N-triose II and lacto-N-neotetraose by a novel beta-N-acetylhexosaminidase from Tyzzerella nexilis [J]. Food Chemistry, 2020, 332: 127438. |
[67] | BENSIMON J, LU X N. Human milk oligosaccharides produced by synthetic biology [J]. Journal of Agriculture and Food Research, 2024, 18: 101361. |
[68] | TENG Y X, JIANG T, YAN Y J. The expanded CRISPR toolbox for constructing microbial cell factories [J]. Trends in Biotechnology, 2024, 42(1): 104-18. |
[69] | GUPTA R, GUPTA N, SHARMA R. ABC Transporters and Group Translocation [M]. Fundamentals of Bacterial Physiology and Metabolism. Springer Singapore. 2021: 209-33. |
[70] | DREW D, NORTH R A, NAGARATHINAM K, et al. Structures and General Transport Mechanisms by the Major Facilitator Superfamily (MFS) [J]. Chemical Reviews, 2021, 121(9): 5289-335. |
[71] | JECKELMANN J M, ERNI B. Transporters of glucose and other carbohydrates in bacteria [J]. Pflugers Archiv : European journal of physiology, 2020, 472(9): 1129-53. |
[72] | SUGITA T, KOKETSU K. Transporter Engineering Enables the Efficient Production of Lacto-N-triose II and Lacto-N-tetraose in Escherichia coli [J]. Journal of Agricultural and Food Chemistry, 2022, 70(16): 5106-14. |
[73] | LI Y S, LI Y, LI P F, et al. Whole-Cell Biosynthesis of Branched Human Milk Hexasaccharide Lacto-N-neohexaose [J]. Journal of Agricultural and Food Chemistry, 2025, 73(28): 17814-23. |
[74] | LI N, YAN S F, XIA H Z, et al. Metabolic Engineering of Escherichia coli BL21(DE3) for 2'-Fucosyllactose Synthesis in a Higher Productivity [J]. ACS Synthetic Biology, 2025, 14(2): 441-52. |
[75] | LIAO Y X, LAO C W, WU J Y, et al. High-Yield Synthesis of Lacto-N-Neotetraose from Glycerol and Glucose in Engineered Escherichia coli [J]. Journal of Agricultural and Food Chemistry, 2024, 72(10): 5325-38. |
[76] | HUANG H Y, YU W W, XU X H, et al. Combinatorial Engineering of Escherichia coli for Enhancing 3-Fucosyllactose Production [J]. ACS Synthetic Biology, 2024, 13(6): 1866-78. |
[77] | QIAN Q Y, YANG L H, ZHAO C H, et al. Highly efficient production of lacto-N-tetraose in plasmid-free Escherichia coli through chromosomal integration of multicopy key glycosyltransferase genes [J]. International Journal of Biological Macromolecules, 2025, 284(Pt 1): 137987. |
[78] | LI C C, LI M L, HU M M, et al. Metabolic Engineering of Escherichia coli for High-Titer Biosynthesis of 3'-Sialyllactose [J]. Journal of Agricultural and Food Chemistry, 2024, 72(10): 5379-90. |
[79] | LIU Y L, QIAO L P, YU L M, et al. Highly efficient biosynthesis of 6′-sialyllactose in a metabolically engineered plasmid-free Escherichia coli using a novel α2,6-sialyltransferase from Nicoletella semolina [J]. International Journal of Biological Macromolecules, 2025, 284: 138151. |
[80] | LIANG S Q, QUAN Q, LIU D, et al. Regulation of Metabolic Pathways to Enhance Difucosyllactose Biosynthesis in Escherichia coli [J]. Journal of Agricultural and Food Chemistry, 2025, 73(1): 727-34. |
[81] | LI Z Y, ZHU Y Y, HUANG Z L, et al. Engineering Escherichia coli for high-level production of lacto-N-fucopentaose I by stepwise de novo pathway construction [J]. Carbohydrate Polymers, 2023, 315: 121028. |
[82] | XU M Y, MENG X F, ZHANG W X, et al. Improved production of 2'-fucosyllactose in engineered Saccharomyces cerevisiae expressing a putative alpha-1, 2-fucosyltransferase from Bacillus cereus [J]. Microbial Cell Factories, 2021, 20(1): 165-78. |
[83] | LI Y, WANG X, CHEN K D, et al. Efficient production of 2'-fucosyllactose in Pichia pastoris through metabolic engineering and constructing an orthogonal energy supply system [J]. Synthetic and Systems Biotechnology, 2025, 10(3): 807-15. |
[84] | DONG X M, LI N, LIU Z M, et al. Modular pathway engineering of key precursor supply pathways for lacto-N-neotetraose production in Bacillus subtilis [J]. Biotechnology for biofuels, 2019, 12: 212. |
[85] | LEE Y G, JO H Y, LEE D H, et al. De novo biosynthesis of 2'-fucosyllactose by bioengineered Corynebacterium glutamicum [J]. Biotechnology journal, 2024, 19(1): e2300461. |
[86] | JERS C, MICHALAK M, LARSEN D M, et al. Rational design of a new Trypanosoma rangeli trans-sialidase for efficient sialylation of glycans [J]. PLoS One, 2014, 9(1): e83902. |
[87] | GUO L C, CHEN X D, XU L, et al. Enzymatic Synthesis of 6'-Sialyllactose, a Dominant Sialylated Human Milk Oligosaccharide, by a Novel exo-α-Sialidase from Bacteroides fragilis NCTC9343 [J]. Applied and Environmental Microbiology, 2018, 84(13): e00071-18. |
[88] | ZEUNER B, MUSCHIOL J, HOLCK J, et al. Substrate specificity and transfucosylation activity of GH29 α-l-fucosidases for enzymatic production of human milk oligosaccharides [J]. Nature Biotechnology, 2018, 41: 34-45. |
[89] | CHOI Y H, KIM J H, PARK B S, et al. Solubilization and Iterative Saturation Mutagenesis of α1,3-fucosyltransferase from Helicobacter pylori to enhance its catalytic efficiency [J]. Biotechnology and Bioengineering, 2016, 113(8): 1666-75. |
[90] | ZHAO C, WU Y J, YU H, et al. The one-pot multienzyme (OPME) synthesis of human blood group H antigens and a human milk oligosaccharide (HMOS) with highly active Thermosynechococcus elongates α1-2-fucosyltransferase [J]. Chemical Communications, 2016, 52(20): 3899-902. |
[91] | TAO M T, YANG L H, ZHAO C H, et al. Implementation of a Quorum-Sensing System for Highly Efficient Biosynthesis of Lacto-N-neotetraose in Engineered Escherichia coli MG1655 [J]. Journal of Agricultural and Food Chemistry, 2024, 72(13): 7179-86. |
[92] | ZHANG J M, ZHU Y Y, ZHANG W L, et al. Efficient Production of a Functional Human Milk Oligosaccharide 3'-Sialyllactose in Genetically Engineered Escherichia coli [J]. ACS Synthetic Biology, 2022, 11(8): 2837-45. |
[93] | DROUILLARD S, MINE T, KAJIWARA H, et al. Efficient synthesis of 6'-sialyllactose, 6,6'-disialyllactose, and 6'-KDO-lactose by metabolically engineered E. coli expressing a multifunctional sialyltransferase from the Photobacterium sp. JT-ISH-224 [J]. Carbohydrate Research, 2010, 345(10): 1394-9. |
[94] | LIU Y L, ZHU Y Y, WAN L, et al. High-Level De Novo Biosynthesis of 2'-Fucosyllactose by Metabolically Engineered Escherichia coli [J]. Journal of Agricultural and Food Chemistry, 2022, 70(29): 9017-25. |
[95] | JIAO R, ZHANG L, YOU R, et al. Efficient and Cost-Effective Synthesis of N-Acetyllactosamine by Sequential Modular Enzymatic Cascade Reactions Involving NTP Regeneration [J]. Journal of Agricultural and Food Chemistry, 2024, 72(50): 28060-71. |
[96] | LIU Y H, YAN Q J, MA J W, et al. Directed evolution of a beta-N-acetylhexosaminidase from Haloferula sp. for lacto-N-triose II and lacto-N-neotetraose synthesis from chitin [J]. Enzyme and Microbial Technology, 2023, 164: 110177. |
[97] | LI T, LI J, YAN Q J, et al. Biochemical characterization of a novel beta-galactosidase from Lacticaseibacillus zeae and its application in synthesis of lacto-N-tetraose [J]. Journal of Dairy Science, 2023, 106(10): 6623-34. |
[98] | CHEN C C, ZHANG Y, XUE M Y, et al. Sequential one-pot multienzyme (OPME) synthesis of lacto-N-neotetraose and its sialyl and fucosyl derivatives [J]. Chemical Communications, 2015, 51(36): 7689-92. |
[99] | PENG X, PEI C X, QIAN E W, et al. Co-immobilization of a bi-enzymatic cascade into hierarchically porous MIL-53 for efficient 6'-sialyllactose production [J]. Nanoscale, 2024, 16(31): 14932-9. |
[100] | YU H, YAN X B, AUTRAN C A, et al. Enzymatic and Chemoenzymatic Syntheses of Disialyl Glycans and Their Necrotizing Enterocolitis Preventing Effects [J]. The Journal of Organic Chemistry, 2017, 82(24): 13152-60. |
[101] | LI C, WU M, GAO X, et al. Efficient Biosynthesis of 2'-Fucosyllactose Using an In Vitro Multienzyme Cascade [J]. Journal of Agricultural and Food Chemistry, 2020, 68(39): 10763-71. |
[102] | YANG Y Y, THORHALLSSON A T, ROVIRA C, et al. Improved Enzymatic Production of the Fucosylated Human Milk Oligosaccharide LNFP II with GH29B alpha-1,3/4-l-Fucosidases [J]. Journal of Agricultural and Food Chemistry, 2024, 72(19): 11013-28. |
[103] | ZHANG Y H. Production of biofuels and biochemicals by in vitro synthetic biosystems: Opportunities and challenges [J]. Biotechnology Advances, 2015, 33(7): 1467-83. |
[104] | ZHANG Y H P, SUN J B, MA Y H. Biomanufacturing: history and perspective [J]. Journal of Industrial Microbiology and Biotechnology, 2017, 44(4-5): 773-84. |
[105] | MENG J W, ZHU Y Y, WANG H, et al. Biosynthesis of Human Milk Oligosaccharides: Enzyme Cascade and Metabolic Engineering Approaches [J]. Journal of Agricultural and Food Chemistry, 2023, 71(5): 2234-43. |
[106] | YU H, CHOKHAWALA H, KARPEL R, et al. A Multifunctional Pasteurella multocida Sialyltransferase: A Powerful Tool for the Synthesis of Sialoside Libraries [J]. Journal of the American Chemical Society, 2005, 127(50): 17618-9. |
[107] | XU Y Y, FAN Y Y, YE J F, et al. Successfully Engineering a Bacterial Sialyltransferase for Regioselective α2,6-sialylation [J]. ACS Catalysis, 2018, 8(8): 7222-7. |
[108] | JIAO R M, PENG X, WANG B, et al. Highly Efficient and Economical One-Pot Two-Step Multienzymatic Synthesis of 6'/3'-Sialyllactosamine from In Situ-Produced N-Acetyllactosamine [J]. Journal of Agricultural and Food Chemistry, 2025, 73(23): 14444-52. |
[109] | TAN Y M, ZHANG Y, HAN Y B, et al. Directed evolution of an α1,3-fucosyltransferase using a single-cell ultrahigh-throughput screening method [J]. Science Advances, 2019, 5(10): eaaw8451. |
[110] | BOTELHO V A, MATEUS M, PETRUS J C C, et al. Membrane Bioreactor for Simultaneous Synthesis and Fractionation of Oligosaccharides [J]. Membranes (Basel), 2022, 12(2): 17397–405 |
[111] | RUZIC L, BOLIVAR J M, NIDETZKY B. Glycosynthase reaction meets the flow: Continuous synthesis of lacto-N-triose II by engineered beta-hexosaminidase immobilized on solid support [J]. Biotechnology and Bioengineering, 2020, 117(5): 1597-602. |
[112] | WU Y R, SUN Y Z, PEI C X, et al. Automated chemoenzymatic modular synthesis of human milk oligosaccharides on a digital microfluidic platform [J]. RSC Advances, 2024, 14(25): 17397-405. |
[113] | LI T H, LIU L, WEI N, et al. An automated platform for the enzyme-mediated assembly of complex oligosaccharides [J]. Nature Chemistry, 2019, 11(3): 229-36. |
[1] | 盛周煌, 陈智仙, 张彦. 酵母甘露糖蛋白的研究进展[J]. 合成生物学, 2025, 6(2): 408-421. |
[2] | 石婷, 宋展, 宋世怡, 张以恒. 体外生物转化(ivBT):生物制造的新前沿[J]. 合成生物学, 2024, 5(6): 1437-1460. |
[3] | 史然, 江正强. 2'-岩藻糖基乳糖的酶法合成研究进展和展望[J]. 合成生物学, 2020, 1(4): 481-494. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||