合成生物学 ›› 2024, Vol. 5 ›› Issue (6): 1264-1278.DOI: 10.12211/2096-8280.2023-062
刘宽庆1, 张以恒1,2,3
收稿日期:
2023-08-28
修回日期:
2023-11-01
出版日期:
2024-12-31
发布日期:
2025-01-10
通讯作者:
刘宽庆,张以恒
作者简介:
基金资助:
Kuanqing LIU1, Yi-Heng P.Job ZHANG1,2,3
Received:
2023-08-28
Revised:
2023-11-01
Online:
2024-12-31
Published:
2025-01-10
Contact:
Kuanqing LIU, Yi-Heng P.Job ZHANG
摘要:
木质素是木质纤维素的主要成分之一,按干重计约占15%~30%,全球年产量约200亿吨。木质素是由苯丙烷单元通过多种不同的碳碳键和碳氧键构成的一类芳香族高聚化合物,是高等陆生植物次生细胞壁的主要成分,赋予了植物刚性并保护植物体免受微生物的入侵。由于木质素产量巨大、可再生,近些年全球对木质素利用的兴趣持续升高。但是木质素的成分复杂,无论是其降解还是后续的利用都充满了挑战,因此目前多用作燃料。在众多木质素降解利用的方法中,生物法反应条件温和、绿色环保,近些年在绿色可持续发展的大背景下受到广泛关注。本文介绍了自然界中催化木质素降解的关键酶:漆酶、锰过氧化物酶、木质素过氧化物酶、染料脱色过氧化物酶、多功能过氧化物酶等,同时简要介绍了其催化机制。并总结了生物利用木质素类芳香族化合物过程中涉及的四个主要反应:O-脱甲基、脱羧、羟基化和双加氧酶介导的开环反应,以及相关的酶和催化机制。最后,简要介绍了利用合成生物学手段构建细胞工厂实现木质素高值利用的案例。木质素的生物降解和利用是一个极具潜力的领域,同时也存在诸多的挑战,例如转化效率低、反应时间长等。但相信随着合成生物学的迅猛发展,利用高效基因编辑和代谢工程改造提高关键酶的反应速率和代谢通路的效率、提高底盘细胞对有毒芳香族化合物的抵抗能力、维持还原力的平衡等,将有效提高木质素生物降解利用的效率,其工业应用也许在不久的将来就会实现。
中图分类号:
刘宽庆, 张以恒. 木质素的生物降解和生物利用[J]. 合成生物学, 2024, 5(6): 1264-1278.
Kuanqing LIU, Yi-Heng P.Job ZHANG. Biological degradation and utilization of lignin[J]. Synthetic Biology Journal, 2024, 5(6): 1264-1278.
真菌 | 参考文献 | 细菌 | 参考文献 |
---|---|---|---|
Aspergillus flavus | [ | Acinetobacter sp. | [ |
Aspergillus terreus | [ | Amycolatopsis sp. | [ |
Bjerkandera | [ | Aneurinibacillus aneurinilyticus | [ |
Ceriporiopsis subvermispora | [ | Arthrobacter globiformis | [ |
Cyathus stercoreus | [ | Bacillus atrophaeus | [ |
Dichomitus squalens | [ | Bacillus pumilus | [ |
Fusarium oxysporum | [ | Cupriavidus necator | [ |
Gloeophyllum trabeum | [ | Enterobacter lignolyticus | [ |
Lepista nuda | [ | Klebsiella pneumoniae | [ |
Penicillium citrinum | [ | Mycobacterium smegmatis | [ |
Perenniporia medulla-panis | [ | Nocardia autotrophica | [ |
Phanerochaete chrysosporium | [ | Oceanimonas doudoroffii | [ |
Phlebia radiata | [ | Ochrobactrum tritici | [ |
Pleurotus eryngii | [ | Pantoea ananatis | [ |
Pleurotus ostreatus | [ | Pseudomonas putida | [ |
Porodaedalea pini | [ | Rhodococcus erythropolis | [ |
Pycnoporus cinnabarinus | [ | Rhodococcus jostii | [ |
Schizophyllum commune | [ | Sphingomonas paucimobilis | [ |
Serpula lacrymans | [ | Streptomyces coelicolor | [ |
Trametes versicolor | [ | Streptomyces viridosporus | [ |
Tramtes hirsute | [ | ||
Wolfiporia cocos | [ |
表1 具有木质素降解能力的微生物列表
Table 1 List of lignin degrading microbes
真菌 | 参考文献 | 细菌 | 参考文献 |
---|---|---|---|
Aspergillus flavus | [ | Acinetobacter sp. | [ |
Aspergillus terreus | [ | Amycolatopsis sp. | [ |
Bjerkandera | [ | Aneurinibacillus aneurinilyticus | [ |
Ceriporiopsis subvermispora | [ | Arthrobacter globiformis | [ |
Cyathus stercoreus | [ | Bacillus atrophaeus | [ |
Dichomitus squalens | [ | Bacillus pumilus | [ |
Fusarium oxysporum | [ | Cupriavidus necator | [ |
Gloeophyllum trabeum | [ | Enterobacter lignolyticus | [ |
Lepista nuda | [ | Klebsiella pneumoniae | [ |
Penicillium citrinum | [ | Mycobacterium smegmatis | [ |
Perenniporia medulla-panis | [ | Nocardia autotrophica | [ |
Phanerochaete chrysosporium | [ | Oceanimonas doudoroffii | [ |
Phlebia radiata | [ | Ochrobactrum tritici | [ |
Pleurotus eryngii | [ | Pantoea ananatis | [ |
Pleurotus ostreatus | [ | Pseudomonas putida | [ |
Porodaedalea pini | [ | Rhodococcus erythropolis | [ |
Pycnoporus cinnabarinus | [ | Rhodococcus jostii | [ |
Schizophyllum commune | [ | Sphingomonas paucimobilis | [ |
Serpula lacrymans | [ | Streptomyces coelicolor | [ |
Trametes versicolor | [ | Streptomyces viridosporus | [ |
Tramtes hirsute | [ | ||
Wolfiporia cocos | [ |
图3 自然界利用木质素类芳香族化合物所涉及的酶反应及其进入微生物代谢途径的示意图[O-脱甲基化、羟基化、脱羧和开环反应主要参考了Erickson 等[12]和Vaillancourt等[53]。木质素类芳香族化合物进入微生物代谢途径展示了丁香酸(syringate)和儿茶酚(catechol)。代谢途径中的酶并非一定来自同一微生物:DesA[54]和LigM[55]来自少动鞘氨醇单胞菌(Sphingomonas paucimobilis SYK-6),Dmts[12]来自Novosphingobium aromaticivorans DSM12444,GalA、B、C、D[56-57]、CatB[58]、CatC[58]、PcaI[59]、PcaJ[59]、PcaF [59-61]来自恶臭假单胞菌,CatA[62]来自贝氏不动杆菌(Acinetobacter baylyi),PcaD[63]来自浑浊红球菌(Rhodococcus opacus)1CP,PaaJ [64]来自大肠杆菌(Escherichia coli)]
Fig. 3 Primary reactions for utilizing lignin derived aromatics and schematic of assimilating syringate and catechol into microbial metabolic pathways[Enzymatic reactions are mainly based off Erickson et al.[12] and Vaillancourt et al.[53]. Enzymes for assimilating lignin into microbial metabolic pathways may not come from the same species: DesA[54] and LigM[55] from Sphingomonas paucimobilis SYK-6, Dmts[12] from Novosphingobium aromaticivorans DSM 12444, GalA, B, C, D[56-57], CatB[58], CatC[58], PcaI[59], PcaJ[59], and PcaF[59-61] from Pseudomonas putida, CatA[62] from Acinetobacter baylyi, PcaD[63] from Rhodococcus opacus 1CP, and PaaJ [64] from Escherichia coli]
底物 | 产物 | 底盘细胞 | 参考文献 |
---|---|---|---|
异丁香酚、丁香酚、香草醇、阿魏酸 | 香兰素 | Bacillus pumilus Escherichia coli | [ |
苯甲酸、4-羟基肉桂酸、木质素 | 丙酮酸、乳酸、琥珀酸、衣康酸、酮己二酸 | Phanerochaete chrysosporium Pseudomonas putida | [ |
香兰素、香草酸、苯甲酸、儿茶酚 | 顺,顺-己二烯二酸 | Arthrobacter sp. Brevibacterium flavum Corynebacterium acetoacidophilum Corynebacterium glutamicum Corynebacterium lilium Corynebacterium pseudodiphtheriticum Pseudomonas sp. Pseudomonas putida Sphingobacterium sp. | [ |
儿茶酚 | 聚对苯二甲酸乙二醇酯 | Pseudomonas putida | [ |
木质素 | 脂质 | Rhodococcus opacus | [ |
木质素 | 聚羟基烷酯 | Cupriavidus basilensis Pandoraea sp. Pseudomonas putida | [ |
表2 生物法转化木质素(类芳香族化合物)生产高值产品
Table 2 Valorization of lignin and its derived aromatics
底物 | 产物 | 底盘细胞 | 参考文献 |
---|---|---|---|
异丁香酚、丁香酚、香草醇、阿魏酸 | 香兰素 | Bacillus pumilus Escherichia coli | [ |
苯甲酸、4-羟基肉桂酸、木质素 | 丙酮酸、乳酸、琥珀酸、衣康酸、酮己二酸 | Phanerochaete chrysosporium Pseudomonas putida | [ |
香兰素、香草酸、苯甲酸、儿茶酚 | 顺,顺-己二烯二酸 | Arthrobacter sp. Brevibacterium flavum Corynebacterium acetoacidophilum Corynebacterium glutamicum Corynebacterium lilium Corynebacterium pseudodiphtheriticum Pseudomonas sp. Pseudomonas putida Sphingobacterium sp. | [ |
儿茶酚 | 聚对苯二甲酸乙二醇酯 | Pseudomonas putida | [ |
木质素 | 脂质 | Rhodococcus opacus | [ |
木质素 | 聚羟基烷酯 | Cupriavidus basilensis Pandoraea sp. Pseudomonas putida | [ |
1 | LYND L R, BECKHAM G T, GUSS A M, et al. Toward low-cost biological and hybrid biological/catalytic conversion of cellulosic biomass to fuels[J]. Energy & Environmental Science, 2022, 15(3): 938-990. |
2 | BIDLACK J E, DASHEK W V. Plant cell walls[M/OL]//DASHEK W V, MIGLANI G S. Plant cells and their organelles. Hoboken, New Jersey, USA: John Wiley & Sons, 2016, 209-238 [2023-08-01]. . |
3 | HEINZE T. Cellulose: structure and properties[M/OL]//ROJAS O J. Cellulose chemistry and properties: fibers, nanocelluloses and advanced materials. Cham: Springer International Publishing, 2016: 1-52 [2023-08-01]. . |
4 | BUTTERFIELD B G, MEYLAN B A. Three-dimensional structure of wood: an ultrastructural approach[M/OL]. 2nd ed. London: Chapman and Hall Publishers, 1980[2023-08-01]. . |
5 | GÍRIO F M, FONSECA C, CARVALHEIRO F, et al. Hemicelluloses for fuel ethanol: a review[J]. Bioresource Technology, 2010, 101(13): 4775-4800. |
6 | VANHOLME R, DE MEESTER B, RALPH J, et al. Lignin biosynthesis and its integration into metabolism[J]. Current Opinion in Biotechnology, 2019, 56: 230-239. |
7 | VANHOLME R, DEMEDTS B, MORREEL K, et al. Lignin biosynthesis and structure[J]. Plant Physiology, 2010, 153(3): 895-905. |
8 | RENCORET J, ROSADO M J, KIM H, et al. Flavonoids naringenin chalcone, naringenin, dihydrotricin, and tricin are lignin monomers in papyrus[J]. Plant Physiology, 2022, 188(1): 208-219. |
9 | SANDERSON K. Lignocellulose: a chewy problem[J]. Nature, 2011, 474(7352): S12-S14. |
10 | ANTAR M, LYU D M, NAZARI M, et al. Biomass for a sustainable bioeconomy: an overview of world biomass production and utilization[J]. Renewable and Sustainable Energy Reviews, 2021, 139: 110691. |
11 | PERCIVAL ZHANG Y H, HIMMEL M E, MIELENZ J R. Outlook for cellulase improvement: screening and selection strategies[J]. Biotechnology Advances, 2006, 24(5): 452-481. |
12 | ERICKSON E, BLEEM A, KUATSJAH E, et al. Critical enzyme reactions in aromatic catabolism for microbial lignin conversion[J]. Nature Catalysis, 2022, 5(2): 86-98. |
13 | NAQVI M, YAN J Y, DAHLQUIST E. Bio-refinery system in a pulp mill for methanol production with comparison of pressurized black liquor gasification and dry gasification using direct causticization[J]. Applied Energy, 2012, 90(1): 24-31. |
14 | CHIO C L, SAIN M, QIN W S. Lignin utilization: a review of lignin depolymerization from various aspects[J]. Renewable and Sustainable Energy Reviews, 2019, 107: 232-249. |
15 | QIN Y L, LIN X L, LU Y Q, et al. Preparation of a low reducing effect sulfonated alkali lignin and application as dye dispersant[J]. Polymers, 2018, 10(9): 982. |
16 | LUO X G, XIAO Y Q, WU Q X, et al. Development of high-performance biodegradable rigid polyurethane foams using all bioresource-based polyols: lignin and soy oil-derived polyols[J]. International Journal of Biological Macromolecules, 2018, 115: 786-791. |
17 | FRANGVILLE C, RUTKEVIČIUS M, RICHTER A P, et al. Fabrication of environmentally biodegradable lignin nanoparticles[J]. ChemPhysChem, 2012, 13(18): 4235-4243. |
18 | ZIMNIEWSKA M, KOZŁOWSKI R, BATOG J. Nanolignin modified linen fabric as a multifunctional product[J]. Molecular Crystals and Liquid Crystals, 2008, 484(1): 43/[409]-50/[416]. |
19 | ÇETIN N S, ÖZMEN N. Use of organosolv lignin in phenol-formaldehyde resins for particleboard production:Ⅰ. Organosolv lignin modified resins[J]. International Journal of Adhesion and Adhesives, 2002, 22(6): 477-480. |
20 | WENG C H, PENG X W, HAN Y J. Depolymerization and conversion of lignin to value-added bioproducts by microbial and enzymatic catalysis[J]. Biotechnology for Biofuels, 2021, 14(1): 84. |
21 | BAJWA D S, POURHASHEM G, ULLAH A H, et al. A concise review of current lignin production, applications, products and their environmental impact[J]. Industrial Crops and Products, 2019, 139: 111526. |
22 | ARO T, FATEHI P. Production and application of lignosulfonates and sulfonated lignin[J]. ChemSusChem, 2017, 10(9): 1861-1877. |
23 | SJÖSTRÖM E. Wood chemistry: fundamentals and applications[M/OL]. 2nd ed. San Diego: Academic Press, 1993: 293[2023-08-01]. . |
24 | STRASSBERGER Z, TANASE S, ROTHENBERG G. The pros and cons of lignin valorisation in an integrated biorefinery[J]. RSC Advances, 2014, 4(48): 25310-25318. |
25 | SANNIGRAHI P, RAGAUSKAS A J. Fundamentals of biomass pretreatment by fractionation[M/OL]//WYMAN C E. Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. Hoboken, New Jersey, USA: John Wiley & Sons, 2013: 201-222 [2023-08-01]. . |
26 | ZAKZESKI J, JONGERIUS A L, BRUIJNINCX P C A, et al. Catalytic lignin valorization process for the production of aromatic chemicals and hydrogen[J]. ChemSusChem, 2012, 5(8): 1602-1609. |
27 | ERDOCIA X, HERNÁNDEZ-RAMOS F, MORALES A, et al. Lignin extraction and isolation methods[M/OL]//Lignin-based materials for biomedical applications. Amsterdam: Elsevier, 2021: 61-104 [2023-08-01]. . |
28 | CHIARAMONTI D, PRUSSI M, FERRERO S, et al. Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method[J]. Biomass and Bioenergy, 2012, 46: 25-35. |
29 | ZHOU S F, YANG Q, RUNGE T M. Ambient-temperature sulfuric acid pretreatment to alter structure and improve enzymatic digestibility of alfalfa stems[J]. Industrial Crops and Products, 2015, 70: 410-416. |
30 | BHAGIA S, LI H J, GAO X D, et al. Flowthrough pretreatment with very dilute acid provides insights into high lignin contribution to biomass recalcitrance[J]. Biotechnology for Biofuels, 2016, 9: 245. |
31 | USMANI Z, SHARMA M, GUPTA P, et al. Ionic liquid based pretreatment of lignocellulosic biomass for enhanced bioconversion[J]. Bioresource Technology, 2020, 304: 123003. |
32 | BRANDT A, GRÄSVIK J, HALLETT J P, et al. Deconstruction of lignocellulosic biomass with ionic liquids[J]. Green Chemistry, 2013, 15(3): 550-583. |
33 | BECKER J, WITTMANN C. A field of dreams: lignin valorization into chemicals, materials, fuels, and health-care products[J]. Biotechnology Advances, 2019, 37(6): 107360. |
34 | ATIWESH G, PARRISH C C, BANOUB J, et al. Lignin degradation by microorganisms: a review[J]. Biotechnology Progress, 2022, 38(2): e3226. |
35 | JANUSZ G, PAWLIK A, SULEJ J, et al. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution[J]. FEMS Microbiology Reviews, 2017, 41(6): 941-962. |
36 | DEL CERRO C, ERICKSON E, DONG T, et al. Intracellular pathways for lignin catabolism in white-rot fungi[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(9): e2017381118. |
37 | JOHJIMA T, ITOH N, KABUTO M, et al. Direct interaction of lignin and lignin peroxidase from Phanerochaete chrysosporium [J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(5): 1989-1994. |
38 | DUTTA S. Lignin deconstruction[M/OL]//SAHA B, FAN M H, WANG J J. Sustainable catalytic processes. Amsterdam: Elsevier, 2015: 125-155 [2023-08-01]. . |
39 | XU Z X, QIN L, CAI M F, et al. Biodegradation of Kraft lignin by newly isolated Klebsiella pneumoniae, Pseudomonas putida, and Ochrobactrum tritici strains[J]. Environmental Science and Pollution Research, 2018, 25(14): 14171-14181. |
40 | AHMAD M, ROBERTS J N, HARDIMAN E M, et al. Identification of DypB from Rhodococcus jostii RHA1 as a lignin peroxidase[J]. Biochemistry, 2011, 50(23): 5096-5107. |
41 | LI F, ZHAO Y Q, XUE L, et al. Microbial lignin valorization through depolymerization to aromatics conversion[J]. Trends in Biotechnology, 2022, 40(12): 1469-1487. |
42 | MASAI EIJI, ICHIMURA A, SATO Y, et al. Roles of the enantioselective glutathione S-transferases in cleavage of β-aryl ether[J]. Journal of Bacteriology, 2003, 185(6): 1768-1775. |
43 | YOSHIDA H. LⅩⅢ.—Chemistry of lacquer (urushi). PartⅠ. communication from the Chemical Society of Tokio[J]. Journal of The Chemical Society, Transactions, 1883, 43: 472-486. |
44 | XU F, SHIN W, BROWN S H, et al. A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity, and stability[J]. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1996, 1292(2): 303-311. |
45 | BALDRIAN P. Fungal laccases - occurrence and properties[J]. FEMS Microbiology Reviews, 2006: 30(2):215-42. |
46 | DASHTBAN M, SCHRAFT H, SYED T A, et al. Fungal biodegradation and enzymatic modification of lignin[J]. International Journal of Biochemistry and Molecular Biology, 2010, 1(1): 36-50. |
47 | WONG D W S. Structure and action mechanism of ligninolytic enzymes[J]. Applied Biochemistry and Biotechnology, 2009, 157(2): 174-209. |
48 | WESENBERG D, KYRIAKIDES I, AGATHOS S N. White-rot fungi and their enzymes for the treatment of industrial dye effluents[J]. Biotechnology Advances, 2003, 22(1/2): 161-187. |
49 | RAHMANPOUR R, REA D A, JAMSHIDI S, et al. Structure of Thermobifida fusca DyP-type peroxidase and activity towards Kraft lignin and lignin model compounds[J]. Archives of Biochemistry and Biophysics, 2016, 594: 54-60. |
50 | MASAI E J, KATAYAMA Y, NISHIKAWA S, et al. Detection and localization of a new enzyme catalyzing the β-aryl ether cleavage in the soil bacterium (Pseudomonas paucimobilis SYK-6)[J]. FEBS Letters, 1989, 249(2): 348-352. |
51 | LINGER J G, VARDON D R, GUARNIERI M T, et al. Lignin valorization through integrated biological funneling and chemical catalysis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(33): 12013-12018. |
52 | BECKHAM G T, JOHNSON C W, KARP E M, et al. Opportunities and challenges in biological lignin valorization[J]. Current Opinion in Biotechnology, 2016, 42: 40-53. |
53 | VAILLANCOURT F H, BOLIN J T, ELTIS L D. The ins and outs of ring-cleaving dioxygenases[J]. Critical Reviews in Biochemistry and Molecular Biology, 2006, 41(4): 241-267. |
54 | MASAI E J, SASAKI M, MINAKAWA Y, et al. A novel tetrahydrofolate-dependent O-demethylase gene is essential for growth of Sphingomonas paucimobilis SYK-6 with syringate[J]. Journal of Bacteriology, 2004, 186(9): 2757-2765. |
55 | ABE T, MASAI E J, MIYAUCHI K, et al. A tetrahydrofolate-dependent O-demethylase, LigM, is crucial for catabolism of vanillate and syringate in Sphingomonas paucimobilis SYK-6[J]. Journal of Bacteriology, 2005, 187(6): 2030-2037. |
56 | NOGALES J, CANALES Á, JIMÉNEZ-BARBERO J, et al. Molecular characterization of the gallate dioxygenase from Pseudomonas putida KT2440. The prototype of a new subgroup of extradiol dioxygenases [J]. Journal of Biological Chemistry, 2005, 280(42): 35382-35390. |
57 | NOGALES J, CANALES Á, JIMÉNEZ-BARBERO J, et al. Unravelling the gallic acid degradation pathway in bacteria: the gal cluster from Pseudomonas putida [J]. Molecular Microbiology, 2011, 79(2): 359-374. |
58 | ORNSTON L N. The conversion of catechol and protocatechuate to β-ketoadipate by Pseudomonas putida. 3. Enzymes of the catechol pathway[J]. Journal of Biological Chemistry, 1966, 241(16): 3795-3799. |
59 | KASCHABEK S R, KUHN B, MÜLLER D, et al. Degradation of aromatics and chloroaromatics by Pseudomonas sp. strain B13: purification and characterization of 3-oxoadipate: succinyl-coenzyme A (CoA) transferase and 3-oxoadipyl-CoA thiolase[J]. Journal of Bacteriology, 2002, 184(1): 207-215. |
60 | GÖBEL M, KASSEL-CATI K, SCHMIDT E, et al. Degradation of aromatics and chloroaromatics by Pseudomonas sp. strain B13: cloning, characterization, and analysis of sequences encoding 3-oxoadipate: succinyl-coenzyme A (CoA) transferase and 3-oxoadipyl-CoA thiolase[J]. Journal of Bacteriology, 2002, 184(1): 216-223. |
61 | NOGALES J, MACCHI R, FRANCHI F, et al. Characterization of the last step of the aerobic phenylacetic acid degradation pathway[J]. Microbiology, 2007, 153(2): 357-365. |
62 | VETTING M W, OHLENDORF D H. The 1.8 Å crystal structure of catechol 1,2-dioxygenase reveals a novel hydrophobic helical zipper as a subunit linker[J]. Structure, 2000, 8(4): 429-440. |
63 | EULBERG D, LAKNER S, GOLOVLEVA L A, et al. Characterization of a protocatechuate catabolic gene cluster from Rhodococcus opacus 1CP: evidence for a merged enzyme with 4-carboxymuconolactone-decarboxylating and 3-oxoadipate enol-lactone-hydrolyzing activity[J]. Journal of Bacteriology, 1998, 180(5): 1072-1081. |
64 | TEUFEL R, MASCARAQUE V, ISMAIL W, et al. Bacterial phenylalanine and phenylacetate catabolic pathway revealed[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(32): 14390-14395. |
65 | FERRARO D J, GAKHAR L, RAMASWAMY S. Rieske business: structure-function of Rieske non-heme oxygenases[J]. Biochemical and Biophysical Research Communications, 2005, 338(1): 175-190. |
66 | HANNEMANN F, BICHET A, EWEN K M, et al. Cytochrome P450 systems—biological variations of electron transport chains[J]. Biochimica et Biophysica Acta (BBA)- General Subjects, 2007, 1770(3): 330-344. |
67 | GUENGERICH F P. A history of the roles of cytochrome P450 enzymes in the toxicity of drugs[J]. Toxicological Research, 2021, 37(1): 1-23. |
68 | GUENGERICH F P. Mechanisms of cytochrome P450-catalyzed oxidations[J]. ACS Catalysis, 2018, 8(12): 10964-10976. |
69 | WOLF M E, HINCHEN D J, DUBOIS J L, et al. Cytochromes P450 in the biocatalytic valorization of lignin[J]. Current Opinion in Biotechnology, 2022, 73: 43-50. |
70 | GUENGERICH F P, YOSHIMOTO F K. Formation and cleavage of C—C bonds by enzymatic oxidation-reduction reactions[J]. Chemical Reviews, 2018, 118(14): 6573-6655. |
71 | ELTIS L D, KARLSON U, TIMMIS K N. Purification and characterization of cytochrome P450RR1 from Rhodococcus rhodochrous [J]. European Journal of Biochemistry, 1993, 213(1): 211-216. |
72 | MALLINSON S J B, MACHOVINA M M, SILVEIRA R L, et al. A promiscuous cytochrome P450 aromatic O-demethylase for lignin bioconversion[J]. Nature Communications, 2018, 9: 2487. |
73 | ENTSCH B, VAN BERKEL W J. Structure and mechanism of para-hydroxybenzoate hydroxylase[J]. FASEB Journal, 1995, 9(7): 476-483. |
74 | DUFFNER F M, KIRCHNER U, BAUER M P, et al. Phenol/cresol degradation by the thermophilic Bacillus thermoglucosidasius A7: cloning and sequence analysis of five genes involved in the pathway[J]. Gene, 2000, 256(1/2): 215-221. |
75 | FURUKAWA K, SUENAGA H, GOTO M. Biphenyl dioxygenases: functional versatilities and directed evolution[J]. Journal of Bacteriology, 2004, 186(16): 5189-5196. |
76 | BUGG T D H. Dioxygenase enzymes: catalytic mechanisms and chemical models[J]. Tetrahedron, 2003, 59(36): 7075-7101. |
77 | HAYAISHI O, KATAGIRI M, ROTHBERG S. Mechanism of the pyrocatechase reaction[J]. Journal of the American Chemical Society, 1955, 77(20): 5450-5451. |
78 | STANIER R Y, INGRAHAM J L. Protocatechuic acid oxidase[J]. Journal of Biological Chemistry, 1954, 210(2): 799-808. |
79 | WOLGEL S A, LIPSCOMB J D. Protocatechuate 2,3-dioxygenase from Bacillus macerans [J]. Methods in Enzymology, 1990, 188: 95-101. |
80 | DAGLEY S, GEARY P J, WOOD J M. The metabolism of protocatechuate by Pseudomonas testosteroni [J]. The Biochemical Journal, 1968, 109(4): 559-568. |
81 | LIU Z H, LI B Z, YUAN J S, et al. Creative biological lignin conversion routes toward lignin valorization[J]. Trends in Biotechnology, 2022, 40(12): 1550-1566. |
82 | KASAI D, MASAI E J, KATAYAMA Y, et al. Degradation of 3-O-methylgallate in Sphingomonas paucimobilis SYK-6 by pathways involving protocatechuate 4,5-dioxygenase[J]. FEMS Microbiology Letters, 2007, 274(2): 323-328. |
83 | ZUO K J, LI H N, CHEN J H, et al. Effective biotransformation of variety of guaiacyl lignin monomers into vanillin by Bacillus pumilus [J]. Frontiers in Microbiology, 2022, 13: 901690. |
84 | OVERHAGE J, STEINBÜCHEL A, PRIEFERT H. Highly efficient biotransformation of eugenol to ferulic acid and further conversion to vanillin in recombinant strains of Escherichia coli [J]. Applied and Environmental Microbiology, 2003, 69(11): 6569-6576. |
85 | JOHNSON C W, BECKHAM G T. Aromatic catabolic pathway selection for optimal production of pyruvate and lactate from lignin[J]. Metabolic Engineering, 2015, 28: 240-247. |
86 | HONG C Y, RYU S H, JEONG H, et al. Phanerochaete chrysosporium multienzyme catabolic system for in vivo modification of synthetic lignin to succinic acid[J]. ACS Chemical Biology, 2017, 12(7): 1749-1759. |
87 | ELMORE J R, DEXTER G N, SALVACHÚA D, et al. Production of itaconic acid from alkali pretreated lignin by dynamic two stage bioconversion[J]. Nature Communications, 2021, 12: 2261. |
88 | WERNER A, CORDELL W T, LAHIVE C W, et al. Lignin conversion to β-ketoadipic acid by Pseudomonas putida via metabolic engineering and bioprocess development[J]. Science Advances, 2023, 9(36): eadj0053. |
89 | WU C M, WU C C, SU C C, et al. Microbial synthesis of cis,cis-muconic acid from benzoate by Sphingobacterium sp. mutants[J]. Biochemical Engineering Journal, 2006, 29(1/2): 35-40. |
90 | IMADA Y, YOSHIKAWA N, MIZUNO S, et al. Process for preparing muconic acid: US04871 667A[P]. 1989-10-13[2023-08-01]. |
91 | XIE N Z, WANG Q Y, ZHU Q X, et al. Optimization of medium composition for cis, cis-muconic acid production by a Pseudomonas sp. mutant using statistical methods[J]. Preparative Biochemistry & Biotechnology, 2014, 44(4): 342-354. |
92 | LIU W H, LI R M, KUNG K H, et al. Bioconversion of benzoic acid to cis, cis-muconic acid by Corynebacterium pseudodiphtheriticum [J]. Food Science and Agricultural Chemistry, 2003, 5(1): 7-12. |
93 | SCHMIDT E, KNACKMUSS H J. Production of cis,cis-muconate from benzoate and 2-fluoro-cis,cis-muconate from 3-fluorobenzoate by 3-chlorobenzoate degrading bacteria[J]. Applied Microbiology and Biotechnology, 1984, 20(5): 351-355. |
94 | CHOI W J, LEE E Y, CHO M H, et al. Enhanced production of cis,cis-muconate in a cell-recycle bioreactor[J]. Journal of Fermentation and Bioengineering, 1997, 84(1): 70-76. |
95 | BANG S G, CHOI C Y. DO-stat fed-batch production of cis,cis-muconic acid from benzoic acid by Pseudomonas putida BM014[J]. Journal of Fermentation and Bioengineering, 1995, 79(4): 381-383. |
96 | VAN DUUREN J B J H, WIJTE D, KARGE B, et al. pH-stat fed-batch process to enhance the production of cis,cis-muconate from benzoate by Pseudomonas putida KT2440-JD1[J]. Biotechnology Progress, 2012, 28(1): 85-92. |
97 | MIZUNO S, YOSHIKAWA N, SEKI M, et al. Microbial production of cis,cis-muconic acid from benzoic acid[J]. Applied Microbiology and Biotechnology, 1988, 28(1): 20-25. |
98 | VARDON D R, RORRER N A, SALVACHÚA D, et al. cis,cis-Muconic acid: separation and catalysis to bio-adipic acid for nylon-6,6 polymerization[J]. Green Chemistry, 2016, 18(11): 3397-3413. |
99 | BECKER J, KUHL M, KOHLSTEDT M, et al. Metabolic engineering of Corynebacterium glutamicum for the production of cis,cis-muconic acid from lignin[J]. Microbial Cell Factories, 2018, 17(1): 115. |
100 | WEILAND F, BARTON N, KOHLSTEDT M, et al. Systems metabolic engineering upgrades Corynebacterium glutamicum to high-efficiency cis,cis-muconic acid production from lignin-based aromatics[J]. Metabolic Engineering, 2023, 75: 153-169. |
101 | KOHLSTEDT M, STARCK S, BARTON N, et al. From lignin to nylon: cascaded chemical and biochemical conversion using metabolically engineered Pseudomonas putida [J]. Metabolic Engineering, 2018, 47: 279-293. |
102 | KOHLSTEDT M, WEIMER A, WEILAND F, et al. Biobased PET from lignin using an engineered cis,cis-muconate-producing Pseudomonas putida strain with superior robustness, energy and redox properties[J]. Metabolic Engineering, 2022, 72: 337-352. |
103 | KOSA M, RAGAUSKAS A J. Lignin to lipid bioconversion by oleaginous Rhodococci [J]. Green Chemistry, 2013, 15(8): 2070-2074. |
104 | WEI Z, ZENG G M, HUANG F, et al. Bioconversion of oxygen-pretreated Kraft lignin to microbial lipid with oleaginous Rhodococcus opacus DSM 1069[J]. Green Chemistry, 2015, 17(5): 2784-2789. |
105 | ZHAO C, XIE S X, PU Y Q, et al. Synergistic enzymatic and microbial lignin conversion[J]. Green Chemistry, 2016, 18(5): 1306-1312. |
106 | LIU Z H, XIE S X, LIN F R, et al. Combinatorial pretreatment and fermentation optimization enabled a record yield on lignin bioconversion[J]. Biotechnology for Biofuels, 2018, 11: 21. |
107 | TOMIZAWA S, CHUAH J A, MATSUMOTO K, et al. Understanding the limitations in the biosynthesis of polyhydroxyalkanoate (PHA) from lignin derivatives[J]. ACS Sustainable Chemistry and Engineering, 2014, 2(5): 1106-1113. |
108 | KUMAR M, SINGHAL A, VERMA P K, et al. Production and characterization of polyhydroxyalkanoate from lignin derivatives by Pandoraea sp. ISTKB[J]. ACS Omega, 2017, 2(12): 9156-9163. |
109 | SHI Y, YAN X, LI Q, et al. Directed bioconversion of Kraft lignin to polyhydroxyalkanoate by Cupriavidus basilensis B-8 without any pretreatment[J]. Process Biochemistry, 2017, 52: 238-242. |
110 | XU Z Y, PAN C M, LI X L, et al. Enhancement of polyhydroxyalkanoate production by co-feeding lignin derivatives with glycerol in Pseudomonas putida KT2440[J]. Biotechnology for Biofuels, 2021, 14(1): 11. |
111 | WANG H, PENG X D, LI H, et al. Recent biotechnology advances in bio-conversion of lignin to lipids by bacterial cultures[J]. Frontiers in Chemistry, 2022, 10: 894593. |
112 | XIANG M J, KANG Q, ZHANG D W. Advances on systems metabolic engineering of Bacillus subtilis as a chassis cell[J]. Synthetic and Systems Biotechnology, 2020, 5(4): 245-251. |
113 | KOWALCZYK J E, SAHA S, MÄKELÄ M R. Application of CRISPR/Cas9 tools for genome editing in the white-rot fungus dichomitus squalens[J]. Biomolecules, 2021, 11(10): 1526. |
[1] | 张阿磊, 魏国光, 张弛, 陈磊, 周奚, 刘伟, 陈可泉. 几丁质资源生物降解和高值转化的研究进展[J]. 合成生物学, 2024, 5(6): 1279-1299. |
[2] | 叶伟, 李芮, 姜卫红, 顾阳. 二氧化碳微生物转化与体外酶催化体系研究进展[J]. 合成生物学, 2023, 4(6): 1223-1245. |
[3] | 李磊, 高鑫, 齐宏斌, 李超, 路福平, 毛淑红, 秦慧民. 现代生物技术推动塑料中聚对苯二甲酸乙二酯绿色降解的研究进展[J]. 合成生物学, 2022, 3(4): 763-780. |
[4] | 王凯, 刘子鹤, 陈必强, 王萌, 张洋, 毕浩然, 周雅莉, 霍奕影, 谭天伟. 微生物利用二氧化碳合成燃料及化学品——第三代生物炼制[J]. 合成生物学, 2020, 1(1): 60-70. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||