合成生物学 ›› 2025, Vol. 6 ›› Issue (2): 306-319.DOI: 10.12211/2096-8280.2024-063
张萍1,2,3, 张维娇1,2,3, 胥睿睿1,2,3, 李江华2,3, 陈坚2,3, 康振1,2,3
收稿日期:
2024-08-16
修回日期:
2024-12-13
出版日期:
2025-04-30
发布日期:
2025-05-20
通讯作者:
康振
作者简介:
基金资助:
ZHANG Ping1,2,3, ZHANG Weijiao1,2,3, XU Ruirui1,2,3, LI Jianghua2,3, CHEN Jian2,3, KANG Zhen1,2,3
Received:
2024-08-16
Revised:
2024-12-13
Online:
2025-04-30
Published:
2025-05-20
Contact:
KANG Zhen
摘要:
类菌孢素氨基酸(mycosporine-like amino acid,MAA)是一类由水生生物产生的小分子化合物,具有抵御紫外线辐射的功能,近年来作为环保型防晒剂在化妆品领域得到了广泛关注。然而,MAA在生物体中的低积累量、复杂的提取工艺和极低的得率限制了其应用前景。利用合成生物技术,在微生物细胞中重构MAA合成路径,有望实现MAA的规模化生产,为解决MAA供应不足问题提供有效策略。本文系统总结了目前MAA生物合成的研究进展,涵盖了结构多样性分析、生物合成途径解析、底盘细胞构建等方面。重点关注了近期MAA的微生物从头生物合成研究进展,探讨了目前MAA生物合成研究面临的挑战,包括前体含量少、关键酶催化效率低等问题。最后,展望了MAA微生物合成的未来发展方向,如转运蛋白的改造、关键酶的解析等,旨在推动MAA的绿色、高效生物合成。
中图分类号:
张萍, 张维娇, 胥睿睿, 李江华, 陈坚, 康振. 防晒化合物类菌孢素氨基酸的生物合成[J]. 合成生物学, 2025, 6(2): 306-319.
ZHANG Ping, ZHANG Weijiao, XU Ruirui, LI Jianghua, CHEN Jian, KANG Zhen. Research advances on the biosynthesis of mycosporine-like amino acids[J]. Synthetic Biology Journal, 2025, 6(2): 306-319.
菌株 | 基因 | 产物 | 参考文献 |
---|---|---|---|
Nostoc linkia NIES-25 | NIES25_64130-mysA | mycosporine-glycine | [ |
NIES25_64140-mysB | palythine-serine | ||
NIES25_64150-mysC | shinorine and porphyra-334 | ||
NIES25_64160-mysD | |||
NIES25_64110-mysH | |||
Anabaena variabilis ATCC 29413 | Ava_3858-DDGS | shinorine | [ |
Ava_3857-O-MT | |||
Ava_3856-ATP-grasp | |||
Ava_3855-NRPS | |||
Cylindrospermum stagnale PCC7417 | mysA | mycosporine-ornithine | [ |
mysB | mycosporine-lysine | ||
mysC2 | |||
mysC3 | |||
mysD | |||
Scytonema cf.crispum UCFS10 | UCFS10_04336 | mycosporine-glycine | [ |
UCFS10_04337 | shinorine | ||
UCFS10_04338 | |||
UCFS10_04339 | |||
N. flagelliforme CCNUN1 | mysA | mycosporine-2-(4-deoxygadusolyl-ornithine) (M-2DO) | [ |
mysB | |||
mysC2 | |||
mysC3 | |||
mysD | |||
Aphanothece halophytica | Ap3858-DDGS | mycosporine-2-glycine | [ |
Ap3857-O-MT | |||
Ap3855-ATP-grasp | |||
Ap3856-CNligase | |||
N. punctiforme ATCC 29133 | NpR5600-mysA | mycosporine-2-glycine | [ |
NpR5599-mysB | shinorine and porphyra-334 | ||
NpR5598-mysC | |||
NpR5597-mysD |
表1 MAA的生物合成基因簇及主要产物
Table 1 The biosynthetic gene cluster and main products of MAA
菌株 | 基因 | 产物 | 参考文献 |
---|---|---|---|
Nostoc linkia NIES-25 | NIES25_64130-mysA | mycosporine-glycine | [ |
NIES25_64140-mysB | palythine-serine | ||
NIES25_64150-mysC | shinorine and porphyra-334 | ||
NIES25_64160-mysD | |||
NIES25_64110-mysH | |||
Anabaena variabilis ATCC 29413 | Ava_3858-DDGS | shinorine | [ |
Ava_3857-O-MT | |||
Ava_3856-ATP-grasp | |||
Ava_3855-NRPS | |||
Cylindrospermum stagnale PCC7417 | mysA | mycosporine-ornithine | [ |
mysB | mycosporine-lysine | ||
mysC2 | |||
mysC3 | |||
mysD | |||
Scytonema cf.crispum UCFS10 | UCFS10_04336 | mycosporine-glycine | [ |
UCFS10_04337 | shinorine | ||
UCFS10_04338 | |||
UCFS10_04339 | |||
N. flagelliforme CCNUN1 | mysA | mycosporine-2-(4-deoxygadusolyl-ornithine) (M-2DO) | [ |
mysB | |||
mysC2 | |||
mysC3 | |||
mysD | |||
Aphanothece halophytica | Ap3858-DDGS | mycosporine-2-glycine | [ |
Ap3857-O-MT | |||
Ap3855-ATP-grasp | |||
Ap3856-CNligase | |||
N. punctiforme ATCC 29133 | NpR5600-mysA | mycosporine-2-glycine | [ |
NpR5599-mysB | shinorine and porphyra-334 | ||
NpR5598-mysC | |||
NpR5597-mysD |
产物 | 菌株 | 最大吸收波长 | 产量 | 参考文献 |
---|---|---|---|---|
4-Deoxygadusol | E. coli | 268 nm | — | [ |
Mycosporine-glycine | N. punctiforme | 310 nm | — | [ |
Shinorine | Synechocystis sp. | 333 nm | 2.37 mg/L | [ |
E. coli | — | [ | ||
C. glutamicum | 19 mg/L | [ | ||
S. cerevisiae | 1.6 g/L | [ | ||
P. putida | 900 mg/L | [ | ||
Y. lipolytica | 207 mg/L | [ | ||
A. mirum | — | [ | ||
Streptomyces avermitilis | 154 mg/L | [ | ||
M. alcaliphilum | 17.1 mg/L | [ | ||
Mycosporine-2-glycine | S. cerevisiae | 332 nm | — | [ |
E. coli | — | [ | ||
Porphyra-334 | S. cerevisiae | 334 nm | 1.2 g/L | [ |
Y. lipolytica | 42 mg/L | [ | ||
Nannochloropsis salina | 25 mg/g | [ | ||
S. avermitilis | 7.2 mg/L | [ | ||
Mycosporine-ornithine | E. coli | 310 nm | — | [ |
Mycosporine-lysine | E. coli | 310 nm | — | [ |
Palythine | E. coli | 320 nm | — | [ |
表2 MAAs的生物合成
Table 2 Biosynthesis of MAAs
产物 | 菌株 | 最大吸收波长 | 产量 | 参考文献 |
---|---|---|---|---|
4-Deoxygadusol | E. coli | 268 nm | — | [ |
Mycosporine-glycine | N. punctiforme | 310 nm | — | [ |
Shinorine | Synechocystis sp. | 333 nm | 2.37 mg/L | [ |
E. coli | — | [ | ||
C. glutamicum | 19 mg/L | [ | ||
S. cerevisiae | 1.6 g/L | [ | ||
P. putida | 900 mg/L | [ | ||
Y. lipolytica | 207 mg/L | [ | ||
A. mirum | — | [ | ||
Streptomyces avermitilis | 154 mg/L | [ | ||
M. alcaliphilum | 17.1 mg/L | [ | ||
Mycosporine-2-glycine | S. cerevisiae | 332 nm | — | [ |
E. coli | — | [ | ||
Porphyra-334 | S. cerevisiae | 334 nm | 1.2 g/L | [ |
Y. lipolytica | 42 mg/L | [ | ||
Nannochloropsis salina | 25 mg/g | [ | ||
S. avermitilis | 7.2 mg/L | [ | ||
Mycosporine-ornithine | E. coli | 310 nm | — | [ |
Mycosporine-lysine | E. coli | 310 nm | — | [ |
Palythine | E. coli | 320 nm | — | [ |
1 | HÄDER D P, HELBLING E W, WILLIAMSON C E, et al. Effects of UV radiation on aquatic ecosystems and interactions with climate change[J]. Photochemical & Photobiological Sciences, 2011, 10(2): 242-260. |
2 | GAO Q J, GARCIA-PICHEL F. Microbial ultraviolet sunscreens[J]. Nature Reviews Microbiology, 2011, 9(11): 791-802. |
3 | WADA N, SAKAMOTO T, MATSUGO S. Mycosporine-like amino acids and their derivatives as natural antioxidants[J]. Antioxidants, 2015, 4(3): 603-646. |
4 | WANG K, DENG Y S, HE Y Y, et al. Protective effect of mycosporine-like amino acids isolated from an Antarctic diatom on UVB-induced skin damage[J]. International Journal of Molecular Sciences, 2023, 24(20): 15055. |
5 | SINGH A, ČÍŽKOVÁ M, BIŠOVÁ K, et al. Exploring mycosporine-like amino acids (MAAs) as safe and natural protective agents against UV-induced skin damage[J]. Antioxidants, 2021, 10(5): 683. |
6 | NAZIFI E, WADA N, YAMABA M, et al. Glycosylated porphyra-334 and palythine-threonine from the terrestrial Cyanobacterium Nostoc commune[J]. Marine Drugs, 2013, 11(9): 3124-3154. |
7 | BHATIA S, GARG A, SHARMA K, et al. Mycosporine and mycosporine-like amino acids: a paramount tool against ultra violet irradiation[J]. Pharmacognosy Reviews, 2011, 5(10): 138-146. |
8 | PALLELA R, NA-YOUNG Y, KIM S K. Anti-photoaging and photoprotective compounds derived from marine organisms[J]. Marine Drugs, 2010, 8(4): 1189-1202. |
9 | HYLANDER S. Mycosporine-like amino acids (MAAs) in zooplankton[J]. Marine Drugs, 2020, 18(2): 72. |
10 | GARCÍA P E, DIÉGUEZ M C, FERRARO M A, et al. Mycosporine-like amino acids in freshwater copepods: potential sources and some factors that affect their bioaccumulation[J]. Photochemistry and Photobiology, 2010, 86(2): 353-359. |
11 | KASANAH N, ULFAH M, IMANIA O, et al. Rhodophyta as potential sources of photoprotectants, antiphotoaging compounds, and hydrogels for cosmeceutical application[J]. Molecules, 2022, 27(22): 7788. |
12 | ROSIC N N. Mycosporine-like amino acids: making the foundation for organic personalised sunscreens[J]. Marine Drugs, 2019, 17(11): 638. |
13 | GRÖNIGER A, SINHA R P, KLISCH M, et al. Photoprotective compounds in cyanobacteria, phytoplankton and macroalgae: a database[J]. Journal of Photochemistry and Photobiology B: Biology, 2000, 58(2-3): 115-122. |
14 | ARSıN S, DELBAJE E, JOKELA J, et al. A plastic biosynthetic pathway for the production of structurally distinct microbial sunscreens[J]. ACS Chemical Biology, 2023, 18(9): 1959-1967. |
15 | 王伟, 孙晶晶, 郝建华. 类菌孢素氨基酸生物合成研究进展[J]. 生命的化学, 2023, 43(4): 473-478. |
WANG W, SUN J J, HAO J H. Research progress of the biosynthesis of mycosporine-like amino acids[J]. Chemistry of Life, 2023, 43(4): 473-478. | |
16 | MIYAMOTO K T, KOMATSU M, IKEDA H. Discovery of gene cluster for mycosporine-like amino acid biosynthesis from actinomycetales microorganisms and production of a novel mycosporine-like amino acid by heterologous expression[J]. Applied and Environmental Microbiology, 2014, 80(16): 5028-5036. |
17 | DE LA COBA F, AGUILERA J, FIGUEROA F L, et al. Antioxidant activity of mycosporine-like amino acids isolated from three red macroalgae and one marine lichen[J]. Journal of Applied Phycology, 2009, 21(2): 161-169. |
18 | CHOI Y H, YANG D J, KULKARNI A, et al. Mycosporine-like amino acids promote wound healing through focal adhesion kinase (FAK) and mitogen-activated protein kinases (MAP kinases) signaling pathway in keratinocytes[J]. Marine Drugs, 2015, 13(12): 7055-7066. |
19 | KIM S Y, CHO W K, KIM H I, et al. Transcriptome profiling of human follicle dermal papilla cells in response to porphyra-334 treatment by RNA-seq[J]. Evidence-Based Complementary and Alternative Medicine, 2021, 2021(1): 6637513. |
20 | YING R, ZHANG Z H, SONG W S, et al. Protective effect of MAAs extracted from Porphyra tenera against UV irradiation-induced photoaging in mouse skin[J]. Journal of Photochemistry and Photobiology B: Biology, 2019, 192: 26-33. |
21 | RYU J, PARK S J, KIM I H, et al. Protective effect of porphyra-334 on UVA-induced photoaging in human skin fibroblasts[J]. International Journal of Molecular Medicine, 2014, 34(3): 796-803. |
22 | 范高宁. 类菌胞素氨基酸的性质及其在化妆品领域中应用的研究进展[J]. 日用化学工业(中英文), 2022, 52(12): 1366-1372. |
FAN G N. Research progress in cosmetics applications and properties of mycosporine-like amino acids[J]. China Surfactant Detergent & Cosmetics, 2022, 52(12): 1366-1372. | |
23 | OREN A, GUNDE-CIMERMAN N. Mycosporines and mycosporine-like amino acids: UV protectants or multipurpose secondary metabolites?[J]. FEMS Microbiology Letters, 2007, 269(1): 1-10. |
24 | RASTOGI R P, SINHA R P, MOH S H, et al. Ultraviolet radiation and cyanobacteria[J]. Journal of Photochemistry and Photobiology B: Biology, 2014, 141: 154-169. |
25 | SINHA R P, SINGH S P, HÄDER D P. Database on mycosporines and mycosporine-like amino acids (MAAs) in fungi, cyanobacteria, macroalgae, phytoplankton and animals[J]. Journal of Photochemistry and Photobiology B: Biology, 2007, 89(1): 29-35. |
26 | SHICK J M, DUNLAP W C. Mycosporine-like amino acids and related gadusols: biosynthesis, acumulation, and UV-protective functions in aquatic organisms[J]. Annual Review of Physiology, 2002, 64: 223-262. |
27 | SINGH S P, KUMARI S, RASTOGI R P, et al. Mycosporine-like amino acids (MAAs): chemical structure, biosynthesis and significance as UV-absorbing/screening compounds[J]. Indian Journal of Experimental Biology, 2008, 46(1): 7-17. |
28 | PORTWICH A, GARCIA-PICHEL F. Ultraviolet and osmotic stresses induce and regulate the synthesis of mycosporines in the Cyanobacterium chlorogloeopsis PCC 6912[J]. Archives of Microbiology, 1999, 172(4): 187-192. |
29 | STOCHAJ W R, DUNLAP W C, SHICK J M. Two new UV-absorbing mycosporine-like amino acids from the sea anemone Anthopleura elegantissima and the effects of zooxanthellae and spectral irradiance on chemical composition and content[J]. Marine Biology, 1994, 118(1): 149-156. |
30 | KATOCH M, MAZMOUZ R, CHAU R, et al. Heterologous production of cyanobacterial mycosporine-like amino acids mycosporine-ornithine and mycosporine-lysine in Escherichia coli [J]. Applied and Environmental Microbiology, 2016, 82(20): 6167-6173. |
31 | ORFANOUDAKI M, HARTMANN A, KARSTEN U, et al. Chemical profiling of mycosporine-like amino acids in twenty-three red algal species[J]. Journal of Phycology, 2019, 55(2): 393-403. |
32 | WADITEE-SIRISATTHA R, KAGEYAMA H, FUKAYA M, et al. Nitrate and amino acid availability affects glycine betaine and mycosporine-2-glycine in response to changes of salinity in a halotolerant cyanobacterium Aphanothece halophytica [J]. FEMS Microbiology Letters, 2015, 362(23): fnv198. |
33 | CONDE F R, CHURIO M S, PREVITALI C M. Experimental study of the excited-state properties and photostability of the mycosporine-like amino acid palythine in aqueous solution[J]. Photochemical & Photobiological Sciences, 2007, 6(6): 669-674. |
34 | RASTOGI R P, MADAMWAR D, INCHAROENSAKDI A. Sun-screening bioactive compounds mycosporine-like amino acids in naturally occurring cyanobacterial biofilms: role in photoprotection[J]. Journal of Applied Microbiology, 2015, 119(3): 753-762. |
35 | SHANG J L, CHEN M, HOU S W, et al. Genomic and transcriptomic insights into the survival of the subaerial cyanobacterium Nostoc flagelliforme in arid and exposed habitats[J]. Environmental Microbiology, 2019, 21(2): 845-863. |
36 | INOUE-SAKAMOTO K, NAZIFI E, TSUJI C, et al. Characterization of mycosporine-like amino acids in the cyanobacterium Nostoc verrucosum [J]. The Journal of General and Applied Microbiology, 2018, 64(5): 203-211. |
37 | PENG J H, GUO F Y, LIU S S, et al. Recent advances and future prospects of mycosporine-like amino acids[J]. Molecules, 2023, 28(14): 5588. |
38 | 王凯. 发菜类菌胞素氨基酸的合成途径研究[D]. 武汉: 华中师范大学, 2018. |
WANG K. The biosynthetic route of mycosporine amino acids in Nostoc flagelliformes [D]. Wuhan: Central China Normal University, 2018. | |
39 | SPENCE D E, DUNLAP D W C, MALCOLM SHICK P J, et al. Redundant pathways of sunscreen biosynthesis in a cyanobacterium[J]. ChemBioChem, 2012, 13(4): 531-533. |
40 | KEDAR L, KASHMAN Y, OREN A. Mycosporine-2-glycine is the major mycosporine-like amino acid in a unicellular cyanobacterium (Euhalothece sp.) isolated from a gypsum crust in a hypersaline saltern pond[J]. FEMS Microbiology Letters, 2002, 208(2): 233-237. |
41 | TAKANO S, UEMURA D, HIRATA Y. Isolation and structure of two new amino acids, palythinol and palythene, from the zoanthid Palythoa tubercolosa [J]. Tetrahedron Letters, 1978, 19(49): 4909-4912. |
42 | SUN Y Y, HAN X, HU Z J, et al. Extraction, isolation and characterization of mycosporine-like amino acids from four species of red macroalgae[J]. Marine Drugs, 2021, 19(11): 615. |
43 | ZHANG Z C, WANG K, HAO F H, et al. New types of ATP-grasp ligase are associated with the novel pathway for complicated mycosporine-like amino acid production in desiccation-tolerant cyanobacteria[J]. Environmental Microbiology, 2021, 23(11): 6420-6432. |
44 | FUENTES-TRISTAN S, PARRA-SALDIVAR R, IQBAL H M N, et al. Bioinspired biomolecules: mycosporine-like amino acids and scytonemin from Lyngbya sp. with UV-protection potentialities[J]. Journal of Photochemistry and Photobiology B: Biology, 2019, 201: 111684. |
45 | OYAMADA C, KANENIWA M, EBITANI K, et al. Mycosporine-like amino acids extracted from scallop (Patinopecten yessoensis) ovaries: UV protection and growth stimulation activities on human cells[J]. Marine Biotechnology, 2008, 10(2): 141-150. |
46 | ÁLVAREZ-GÓMEZ F, KORBEE N, CASAS-ARROJO V, et al. UV photoprotection, cytotoxicity and immunology capacity of red algae extracts[J]. Molecules, 2019, 24(2): 341. |
47 | SUH S S, OH S K, LEE S G, et al. Porphyra-334, a mycosporine-like amino acid, attenuates UV-induced apoptosis in HaCaT cells[J]. Acta Pharmaceutica, 2017, 67(2): 257-264. |
48 | WADITEE-SIRISATTHA R, KAGEYAMA H. Protective effects of mycosporine-like amino acid-containing emulsions on UV-treated mouse ear tissue from the viewpoints of antioxidation and antiglycation[J]. Journal of Photochemistry and Photobiology B: Biology, 2021, 223: 112296. |
49 | ATHUKORALA Y, TRANG S, KWOK C, et al. Antiproliferative and antioxidant activities and mycosporine-like amino acid profiles of wild-harvested and cultivated edible Canadian marine red macroalgae[J]. Molecules, 2016, 21(1): E119. |
50 | KIM S R, YOU D H, HAN T J, et al. Modulation of viability and apoptosis of UVB-exposed human keratinocyte HaCaT cells by aqueous methanol extract of laver (Porphyra yezoensis)[J]. Journal of Photochemistry and Photobiology B: Biology, 2014, 141: 301-307. |
51 | BERTHON J Y, NACHAT-KAPPES R, BEY M, et al. Marine algae as attractive source to skin care[J]. Free Radical Research, 2017, 51(6): 555-567. |
52 | CHOI S Y, LEE S Y, KIM H G, et al. Shinorine and porphyra-334 isolated from laver (Porphyra dentata) inhibit adipogenesis in 3T3-L1 cells[J]. Food Science and Biotechnology, 2022, 31(5): 617-625. |
53 | ADAMS N L, SHICK J M. Mycosporine-like amino acids provide protection against ultraviolet radiation in eggs of the green sea urchin Strongylocentrotus droebachiensis [J]. Photochemistry and Photobiology, 1996, 64(1): 149-158. |
54 | ADAMS N L, SHICK J M. Mycosporine-like amino acids prevent UVB-induced abnormalities during early development of the green sea urchin Strongylocentrotus droebachiensis [J]. Marine Biology, 2001, 138(2): 267-280. |
55 | CARROLL A K, SHICK J M. Dietary accumulation of UV-absorbing mycosporine-like amino acids (MAAs) by the green sea urchin (Strongylocentrotus droebachiensis)[J]. Marine Biology, 1996, 124(4): 561-569. |
56 | CHEN M Y, RUBIN G M, JIANG G D, et al. Biosynthesis and heterologous production of mycosporine-like amino acid palythines[J]. The Journal of Organic Chemistry, 2021, 86(16): 11160-11168. |
57 | BALSKUS E P, WALSH C T. The genetic and molecular basis for sunscreen biosynthesis in cyanobacteria[J]. Science, 2010, 329(5999): 1653-1656. |
58 | D’AGOSTINO P M, JAVALKOTE V S, MAZMOUZ R, et al. Comparative profiling and discovery of novel glycosylated mycosporine-like amino acids in two strains of the cyanobacterium Scytonema cf. crispum [J]. Applied and Environmental Microbiology, 2016, 82(19): 5951-5959. |
59 | WADITEE-SIRISATTHA R, KAGEYAMA H, SOPUN W, et al. Identification and upregulation of biosynthetic genes required for accumulation of mycosporine-2-glycine under salt stress conditions in the halotolerant cyanobacterium Aphanothece halophytica [J]. Applied and Environmental Microbiology, 2014, 80(5): 1763-1769. |
60 | GAO Q J, GARCIA-PICHEL F. An ATP-grasp ligase involved in the last biosynthetic step of the iminomycosporine shinorine in Nostoc punctiforme ATCC 29133[J]. Journal of Bacteriology, 2011, 193(21): 5923-5928. |
61 | HU C L, VÖLLER G, SÜßMUTH R, et al. Functional assessment of mycosporine-like amino acids in Microcystis aeruginosa strain PCC 7806[J]. Environmental Microbiology, 2015, 17(5): 1548-1559. |
62 | ZWERGER M, SCHWAIGER S, GANZERA M. Efficient isolation of mycosporine-like amino acids from marine red algae by fast centrifugal partition chromatography[J]. Marine Drugs, 2022, 20(2): 106. |
63 | SHANG J L, ZHANG Z C, YIN X Y, et al. UV-B induced biosynthesis of a novel sunscreen compound in solar radiation and desiccation tolerant cyanobacteria[J]. Environmental Microbiology, 2018, 20(1): 200-213. |
64 | BERNILLON J, BOUILLANT M L, PITTET J L, et al. Mycosporine glutamine and related mycosporines in the fungus Pyronema omphalodes [J]. Phytochemistry, 1984, 23(5): 1083-1087. |
65 | YUAN Y V, WESTCOTT N D, HU C, et al. Mycosporine-like amino acid composition of the edible red alga, Palmaria palmata (dulse) harvested from the west and east coasts of Grand Manan Island, New Brunswick[J]. Food Chemistry, 2009, 112(2): 321-328. |
66 | POPE M A, SPENCE D E, SERALVO V, et al. O-methyltransferase is shared between the pentose phosphate and shikimate pathways and is essential for mycosporine-like amino acid biosynthesis in Anabaena variabilis ATCC 29413[J]. ChemBioChem, 2015, 16(2): 320-327. |
67 | 李寅. 合成生物制造[J]. 生物工程学报, 2022, 38(04): 1267-1294. |
LI Y. Biomanufacturing driven by engineered organisms[J]. Chinese Journal of Biotechnology, 2022, 38(04): 1267-1294. | |
68 | YANG G, COZAD M A, HOLLAND D A, et al. Photosynthetic production of sunscreen shinorine using an engineered cyanobacterium[J]. ACS Synthetic Biology, 2018, 7(2): 664-671. |
69 | WEI L, WANG H, XU N, et al. Metabolic engineering of Corynebacterium glutamicum for L-cysteine production[J]. Applied Microbiology and Biotechnology, 2019, 103(3): 1325-1338. |
70 | KIM S J, PARK B G, JIN H B, et al. Efficient production of natural sunscreens shinorine, porphyra-334, and mycosporine-2-glycine in Saccharomyces cerevisiae [J]. Metabolic Engineering, 2023, 78: 137-147. |
71 | YUNUS I S, HUDSON G A, CHEN Y, et al. Systematic engineering for production of anti-aging sunscreen compound in Pseudomonas putida [J]. Metabolic Engineering, 2024, 84: 69-82. |
72 | JIN H, KIM S, LEE D, et al. Efficient production of mycosporine-like amino acids, natural sunscreens, in Yarrowia lipolytica [J]. Biotechnology for Biofuels and Bioproducts, 2023, 16(1): 162. |
73 | NGUYEN A DUC, HOANG TRUNG CHAU T, LEE E Y. Methanotrophic microbial cell factory platform for simultaneous conversion of methane and xylose to value-added chemicals[J]. Chemical Engineering Journal, 2021, 420: 127632. |
74 | IN J S, LIM J M, JUNG S, et al. Production of porphyra-334 in transgenic lines of Nannochloropsis salina by the expression of mycosporine-like amino acid biosynthetic genes of P. yezoensis [J]. Journal of Applied Phycology, 2021, 33(3): 1663-1672. |
75 | TSUGE Y, KAWAGUCHI H, YAMAMOTO S, et al. Metabolic engineering of Corynebacterium glutamicum for production of sunscreen shinorine[J]. Bioscience, Biotechnology, and Biochemistry, 2018, 82(7): 1252-1259. |
76 | PARK S H, LEE K, JANG J W, et al. Metabolic engineering of Saccharomyces cerevisiae for production of shinorine, a sunscreen material, from xylose[J]. ACS Synthetic Biology, 2019, 8(2): 346-357. |
77 | JIN C Y, KIM S J, MOON S J, et al. Efficient production of shinorine, a natural sunscreen material, from glucose and xylose by deleting HXK2 encoding hexokinase in Saccharomyces cerevisiae [J]. FEMS Yeast Research, 2021, 21(7): foab053. |
78 | KIM S R, CHA M S, KIM T O, et al. Sustainable production of shinorine from lignocellulosic biomass by metabolically engineered Saccharomyces cerevisiae [J]. Journal of Agricultural and Food Chemistry, 2022, 70(50): 15848-15858. |
79 | HENGARDI M T, LIANG C, MADIVANNAN K, et al. Reversing the directionality of reactions between non-oxidative pentose phosphate pathway and glycolytic pathway boosts mycosporine-like amino acid production in Saccharomyces cerevisiae [J]. Microbial Cell Factories, 2024, 23(1): 121. |
80 | SINGH S P, KLISCH M, SINHA R P, et al. Genome mining of mycosporine-like amino acid (MAA) synthesizing and non-synthesizing cyanobacteria: a bioinformatics study[J]. Genomics, 2010, 95(2): 120-128. |
81 | XU R R, ZHANG W, XI X T, et al. Engineering sulfonate group donor regeneration systems to boost biosynthesis of sulfated compounds[J]. Nature Communications, 2023, 14(1): 7297. |
[1] | 张梦瑶, 蔡鹏, 周雍进. 合成生物学助力萜类香精香料可持续生产[J]. 合成生物学, 2025, 6(2): 334-356. |
[2] | 张璐鸥, 徐丽, 胡晓旭, 杨滢. 合成生物学助力化妆品走进生物制造新时代[J]. 合成生物学, 2025, 6(2): 479-491. |
[3] | 鲁锦畅, 武耀康, 吕雪芹, 刘龙, 陈坚, 刘延峰. 神经酰胺类鞘脂的绿色生物制造[J]. 合成生物学, 2025, 6(2): 422-444. |
[4] | 伊进行, 唐宇琳, 李春雨, 吴鹤云, 马倩, 谢希贤. 氨基酸衍生物在化妆品中的应用及其生物合成研究进展[J]. 合成生物学, 2025, 6(2): 254-289. |
[5] | 韦灵珍, 王佳, 孙新晓, 袁其朋, 申晓林. 黄酮类化合物生物合成及其在化妆品中应用的研究[J]. 合成生物学, 2025, 6(2): 373-390. |
[6] | 肖森, 胡立涛, 石智诚, 王发银, 余思婷, 堵国成, 陈坚, 康振. 可控分子量透明质酸的生物合成研究进展[J]. 合成生物学, 2025, 6(2): 445-460. |
[7] | 王倩, 果士婷, 辛波, 钟成, 王钰. L-精氨酸的微生物合成研究进展[J]. 合成生物学, 2025, 6(2): 290-305. |
[8] | 左一萌, 张姣姣, 连佳长. 酿酒酵母使能技术在化妆品原料合成中的应用[J]. 合成生物学, 2025, 6(2): 233-253. |
[9] | 汤传根, 王璟, 张烁, 张昊宁, 康振. 功能肽合成和挖掘策略研究进展[J]. 合成生物学, 2025, 6(2): 461-478. |
[10] | 郭婷婷, 韩湘凝, 黄熙婷, 张婷婷, 孔健. 乳酸菌的合成生物学工具及在合成益肤因子中的应用[J]. 合成生物学, 2025, 6(2): 320-333. |
[11] | 黄姝涵, 马赫, 罗云孜. 生物合成红景天苷的研究进展[J]. 合成生物学, 2025, 6(2): 391-407. |
[12] | 应汉杰, 柳东, 王振宇, 沈涛, 庄伟, 朱晨杰. 工业生物制造与“碳中和”目标探讨[J]. 合成生物学, 2025, 6(1): 1-7. |
[13] | 高歌, 边旗, 王宝俊. 合成基因线路的工程化设计研究进展与展望[J]. 合成生物学, 2025, 6(1): 45-64. |
[14] | 李冀渊, 吴国盛. 合成生物学视域下有机体的两种隐喻[J]. 合成生物学, 2025, 6(1): 190-202. |
[15] | 焦洪涛, 齐蒙, 邵滨, 蒋劲松. DNA数据存储技术的法律治理议题[J]. 合成生物学, 2025, 6(1): 177-189. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||