• 特约评述 •
章益蜻1,2, 刘高雯1
收稿日期:
2024-11-11
修回日期:
2025-02-20
出版日期:
2025-02-20
通讯作者:
刘高雯
作者简介:
基金资助:
Yiqing ZHANG1,2, Gaowen LIU1
Received:
2024-11-11
Revised:
2025-02-20
Online:
2025-02-20
Contact:
Gaowen LIU
摘要:
合成生物学作为一门通过设计、构建和改造生物系统来实现其特定功能的学科,被广泛应用于生物制造、环境保护和药物合成等领域。基因功能的系统性探索和工程菌株文库的构建是推动合成生物学发展的重要手段。本研究重点介绍了不同酵母文库在合成生物学中的构建方法及其应用前景。随着基因组测序和高通量技术的快速进展,酿酒酵母和裂殖酵母等微生物文库在系统性研究中发挥了关键作用。基因缺失文库、过表达文库、转座子插入文库等多种类型的酵母文库为基因组合优化和代谢路径设计提供了重要工具,促进了代谢工程和合成生物学的创新应用。这些文库在工业生产中支持高产菌株的构建,如用于生物燃料和化学品的高效生产;在环境领域,通过基因改造筛选,生成具备污染物降解能力的菌株,为生态修复提供解决方案;在药物合成方面,文库帮助构建高效合成药用化合物的菌株,推动生物制药的发展。然而,当前文库构建和应用仍面临诸如构建成本、基因组编辑的精确度及筛选效率等技术瓶颈。未来,自动化、数字化和新型筛选技术的进步有望突破这些瓶颈,推动酵母文库的快速构建和高效筛选,从而加速合成生物学在可持续发展和生态工程中的应用。
中图分类号:
章益蜻, 刘高雯. 合成生物学视角下的基因功能探索与酵母工程菌株文库构建[J]. 合成生物学, DOI: 10.12211/2096-8280.2024-079.
Yiqing ZHANG, Gaowen LIU. Gene function exploration and engineering strain library construction from a synthetic biology perspective[J]. Synthetic Biology Journal, DOI: 10.12211/2096-8280.2024-079.
图1 经典文库构建方法示意图(本图由biorender绘制)(a)基因缺失文库中,目的基因ORF(橘色片段)被替换成卡那霉素抗性筛选标签KanMX(黄色片段),两侧伴有“分子条形码”barcode(蓝色片段)。Chr.DNA:染色体DNA。(b)Bar-seq原理示意图。在特定条件处理下,目标菌株(红色)的生长量相对低(淡粉色),表现为测序时相应barcode的读数量相对低(红色线条比其他颜色少)。(c)基因过表达文库中,目的基因ORF(橘色片段)除了在基因组上正常表达之外,还额外在质粒上由通用型启动子(淡绿色片段)驱动表达。(d)ORF-Tag文库中,在删除终止密码子的目的基因ORF(橘色片段)C端插入荧光蛋白GFP(深绿色片段)和筛选标签KanMX(黄色片段)。Chr.DNA:染色体DNA。
Fig. 1 Schematics of classical library construction method(created by biorender)
图2 SGA与PEM方法原理图(本图由biorender绘制)(a)双突变体筛选策略。两种交配型的细胞分别在各自的突变位点携带不同抗性标签KanMX(绿色空心圆点)和NatMX(粉色空心圆点)用于筛选双突变体子代(黑线框细胞)。YFG (your favourite gene) :目的基因。(b)反二倍体筛选策略。含有野生型CAN1基因的单倍体细胞(蓝色细胞,a型)或二倍体细胞(紫色细胞)会摄入有毒的刀豆氨酸(canavanine),从而被杀死,而can1Δ突变体无法将刀豆氨酸运转入体内,因此能够存活(黑线框细胞)。(c)单倍体筛选策略。在某一细胞型的母本菌株中,构建另一细胞型特异性启动子与营养缺陷筛选标签的表达盒,用于选择任一性别的单倍体子代细胞。例如在a型细胞(蓝色)中,携带只能在α型细胞中表达的STE3pr-LEU2基因线路(红色实心圆点),只有细胞交配使STE3pr-LEU2基因线路存在于α型细胞中时,该细胞存活(含有红色实心圆点的红线框细胞)。(d)反二倍体与单倍体筛选共实现。通过将一个显性致死的抗性基因cyhS(棕色实心方块)“镶嵌”在裂殖酵母交配位点mat1(在蓝色的h-细胞中为蓝色方块表示的matP)附近,使得某一单倍体表型与抗性基因的表达偶联(matP-cyhS )。
Fig.2 Schematics of SGA and PEM methods(created by biorender)
图3 条件等位基因文库示意图(本图由biorender绘制)(a)温度敏感型(Temperature Sensitive,TS)等位基因中,目的基因ORF(橘色片段)被替换成相应的温敏突变基因TS mutant(深橘色片段)并携带一个抗性筛选标签KanMX(黄色片段)。Chr.DNA:染色体DNA。(b)启动子替换策略中,携带抗性筛选标签KanMX(黄色片段)的诱导性启动子TetO(绿色片段)被插入目的基因ORF(橘色片段)的起始密码子上游。Chr.DNA:染色体DNA。(c)通过mRNA扰动降低蛋白丰度的DAmP策略中,目的基因ORF(橘色片段)的3’UTR区被插入一个抗性标签KanR(黄色片段)。Chr.DNA:染色体DNA。
Fig.3 Schematics of conditional allele libraries(created by biorender)
1 | PRZYBYLA L, GILBERT L A. A new era in functional genomics screens[J]. Nat Rev Genet, 2022, 23: 89-103. |
2 | GALANIE S, THODEY K, TRENCHARD I J, et al. Complete biosynthesis of opioids in yeast[J]. Science, 2015, 349: 1095-1100. |
3 | RUNGUPHAN W, KEASLING J D. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals[J]. Metab Eng, 2014, 21: 103-113. |
4 | SHENG J, FENG X. Metabolic engineering of yeast to produce fatty acid-derived biofuels: Bottlenecks and solutions[J]. Front Microbiol, 2015, 6: 554. |
5 | SAMAL S K, PREETAM S. Synthetic biology: Refining human health[M]//SUAR M, MISRA N, DASH C. Singapore: Springer Nature Singapore, 2022: 57-70. |
6 | TSAI C S, KWAK S, TURNER T L, et al. Yeast synthetic biology toolbox and applications for biofuel production[J]. FEMS Yeast Res, 2015, 15: 1-15. |
7 | GOFFEAU A, BARRELL B G, BUSSEY H, et al. Life with 6000 genes[J]. Science, 1996, 274: 546, 563-547. |
8 | ARITA Y, KIM G, LI Z, et al. A genome-scale yeast library with inducible expression of individual genes[J]. Mol Syst Biol, 2021, 17: e10207. |
9 | WOOD V, GWILLIAM R, RAJANDREAM M A, et al. The genome sequence of Schizosaccharomyces pombe [J]. Nature, 2002, 415: 871-880. |
10 | GREWAL S I, JIA S. Heterochromatin revisited[J]. Nat Rev Genet, 2007, 8: 35-46. |
11 | ROGUEV A, RYAN C J, HARTSUIKER E, et al. High-throughput quantitative genetic interaction mapping in the fission yeast Schizosaccharomyces pombe [J]. Cold Spring Harb Protoc, 2018, 2018. |
12 | ZHANG W, GENG A. Improved ethanol production by a xylose-fermenting recombinant yeast strain constructed through a modified genome shuffling method[J]. Biotechnol Biofuels, 2012, 5: 46. |
13 | BOTSTEIN D, FINK G R. Yeast: An experimental organism for 21st century biology[J]. Genetics, 2011, 189: 695-704. |
14 | RODRIGUEZ A, STRUCKO T, STAHLHUT S G, et al. Metabolic engineering of yeast for fermentative production of flavonoids[J]. Bioresour Technol, 2017, 245: 1645-1654. |
15 | MYBURGH M W, FAVARO L, VAN ZYL W H, et al. Engineered yeast for the efficient hydrolysis of polylactic acid[J]. Bioresour Technol, 2023, 378: 129008. |
16 | CHEN J S, BECKLEY J R, MCDONALD N A, et al. Identification of new players in cell division, DNA damage response, and morphogenesis through construction of Schizosaccharomyces pombe deletion strains[J]. G3 (Bethesda), 2014, 5: 361-370. |
17 | TURCO G, CHANG C, WANG R Y, et al. Global analysis of the yeast knockout phenome[J]. Sci Adv, 2023, 9: eadg5702. |
18 | KIM D U, HAYLES J, KIM D, et al. Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe [J]. Nat Biotechnol, 2010, 28: 617-623. |
19 | SCHERENS B, GOFFEAU A. The uses of genome-wide yeast mutant collections[J]. Genome Biol, 2004, 5: 229. |
20 | GIAEVER G, NISLOW C. The yeast deletion collection: A decade of functional genomics[J]. Genetics, 2014, 197: 451-465. |
21 | SOPKO R, HUANG D, PRESTON N, et al. Mapping pathways and phenotypes by systematic gene overexpression[J]. Mol Cell, 2006, 21: 319-330. |
22 | MATSUYAMA A, ARAI R, YASHIRODA Y, et al. Orfeome cloning and global analysis of protein localization in the fission yeast Schizosaccharomyces pombe [J]. Nat Biotechnol, 2006, 24: 841-847. |
23 | TONG A H, EVANGELISTA M, PARSONS A B, et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants[J]. Science, 2001, 294: 2364-2368. |
24 | ROGUEV A, WIREN M, WEISSMAN J S, et al. High-throughput genetic interaction mapping in the fission yeast Schizosaccharomyces pombe [J]. Nat Methods, 2007, 4: 861-866. |
25 | GIAEVER G, CHU A M, NI L, et al. Functional profiling of the Saccharomyces cerevisiae genome[J]. Nature, 2002, 418: 387-391. |
26 | HWANG Y C, LIN C C, CHANG J Y, et al. Predicting essential genes based on network and sequence analysis[J]. Mol Biosyst, 2009, 5: 1672-1678. |
27 | JEONG H, MASON S P, BARABáSI A L, et al. Lethality and centrality in protein networks[J]. Nature, 2001, 411: 41-42. |
28 | LI Z, VIZEACOUMAR F J, BAHR S, et al. Systematic exploration of essential yeast gene function with temperature-sensitive mutants[J]. Nat Biotechnol, 2011, 29: 361-367. |
29 | SHORTLE D, NOVICK P, BOTSTEIN D. Construction and genetic characterization of temperature-sensitive mutant alleles of the yeast actin gene[J]. Proc Natl Acad Sci U S A, 1984, 81: 4889-4893. |
30 | BEN-AROYA S, COOMBES C, KWOK T, et al. Toward a comprehensive temperature-sensitive mutant repository of the essential genes of Saccharomyces cerevisiae [J]. Mol Cell, 2008, 30: 248-258. |
31 | POULTNEY C S, BUTTERFOSS G L, GUTWEIN M R, et al. Rational design of temperature-sensitive alleles using computational structure prediction[J]. PLoS One, 2011, 6: e23947. |
32 | CHAKSHUSMATHI G, MONDAL K, LAKSHMI G S, et al. Design of temperature-sensitive mutants solely from amino acid sequence[J]. Proc Natl Acad Sci U S A, 2004, 101: 7925-7930. |
33 | TAN G, CHEN M, FOOTE C, et al. Temperature-sensitive mutations made easy: Generating conditional mutations by using temperature-sensitive inteins that function within different temperature ranges[J]. Genetics, 2009, 183: 13-22. |
34 | WIDLUND P O, DAVIS T N. A high-efficiency method to replace essential genes with mutant alleles in yeast[J]. Yeast, 2005, 22: 769-774. |
35 | KOFOED M, MILBURY K L, CHIANG J H, et al. An updated collection of sequence barcoded temperature-sensitive alleles of yeast essential genes[J]. G3 (Bethesda), 2015, 5: 1879-1887. |
36 | MNAIMNEH S, DAVIERWALA A P, HAYNES J, et al. Exploration of essential gene functions via titratable promoter alleles[J]. Cell, 2004, 118: 31-44. |
37 | BRESLOW D K, CAMERON D M, COLLINS S R, et al. A comprehensive strategy enabling high-resolution functional analysis of the yeast genome[J]. Nat Methods, 2008, 5: 711-718. |
38 | SCHULDINER M, COLLINS S R, THOMPSON N J, et al. Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile[J]. Cell, 2005, 123: 507-519. |
39 | LIU G, YONG M Y, YURIEVA M, et al. Gene essentiality is a quantitative property linked to cellular evolvability[J]. Cell, 2015, 163: 1388-1399. |
40 | GUO Y, PARK J M, CUI B, et al. Integration profiling of gene function with dense maps of transposon integration[J]. Genetics, 2013, 195: 599-609. |
41 | EVERTTS A G, PLYMIRE C, CRAIG N L, et al. The Hermes transposon of Musca domestica is an efficient tool for the mutagenesis of Schizosaccharomyces pombe [J]. Genetics, 2007, 177: 2519-2523. |
42 | PARK J M, EVERTTS A G, LEVIN H L. The Hermes transposon of Musca domestica and its use as a mutagen of Schizosaccharomyces pombe [J]. Methods, 2009, 49: 243-247. |
43 | GANGADHARAN S, MULARONI L, FAIN-THORNTON J, et al. DNA transposon Hermes inserts into DNA in nucleosome-free regions in vivo [J]. Proc Natl Acad Sci U S A, 2010, 107: 21966-21972. |
44 | CAIN A K, BARQUIST L, GOODMAN A L, et al. A decade of advances in transposon-insertion sequencing[J]. Nat Rev Genet, 2020, 21: 526-540. |
45 | MICHEL A H, HATAKEYAMA R, KIMMIG P, et al. Functional mapping of yeast genomes by saturated transposition[J]. Elife, 2017, 6: e23570. |
46 | BILLMYRE R B, EICKBUSH M T, CRAIG C J, et al. Genome-wide quantification of contributions to sexual fitness identifies genes required for spore viability and health in fission yeast[J]. PLoS Genet, 2022, 18: e1010462. |
47 | ADAMES N R, GALLEGOS J E, PECCOUD J. Yeast genetic interaction screens in the age of CRISPR/Cas[J]. Curr Genet, 2019, 65: 307-327. |
48 | LI L, LIU X, WEI K, et al. Synthetic biology approaches for chromosomal integration of genes and pathways in industrial microbial systems[J]. Biotechnol Adv, 2019, 37: 730-745. |
49 | GASIUNAS G, BARRANGOU R, HORVATH P, et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria[J]. Proc Natl Acad Sci U S A, 2012, 109: E2579-2586. |
50 | QI L S, LARSON M H, GILBERT L A, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression[J]. Cell, 2021, 184: 844. |
51 | LIAN J, HAMEDIRAD M, HU S, et al. Combinatorial metabolic engineering using an orthogonal tri-functional CRISPR system[J]. Nat Commun, 2017, 8: 1688. |
52 | GUO X, CHAVEZ A, TUNG A, et al. High-throughput creation and functional profiling of DNA sequence variant libraries using CRISPR-Cas9 in yeast[J]. Nat Biotechnol, 2018, 36: 540-546. |
53 | SI T, CHAO R, MIN Y, et al. Automated multiplex genome-scale engineering in yeast[J]. Nat Commun, 2017, 8: 15187. |
54 | SAKAI A, SHIMIZU Y, HISHINUMA F. Integration of heterologous genes into the chromosome of Saccharomyces cerevisiae using a delta sequence of yeast retrotransposon Ty[J]. Appl Microbiol Biotechnol, 1990, 33: 302-306. |
55 | DICARLO J E, CONLEY A J, PENTTILA M, et al. Yeast oligo-mediated genome engineering (YOGE)[J]. ACS Synth Biol, 2013, 2: 741-749. |
56 | BARBIERI E M, MUIR P, AKHUETIE-ONI B O, et al. Precise editing at DNA replication forks enables multiplex genome engineering in eukaryotes[J]. Cell, 2017, 171: 1453-1467 e1413. |
57 | JAKOCIUNAS T, RAJKUMAR A S, ZHANG J, et al. CasEMBLR: Cas9-facilitated multiloci genomic integration of in vivo assembled DNA parts in Saccharomyces cerevisiae [J]. ACS Synth Biol, 2015, 4: 1226-1234. |
58 | LIU R, LIANG L, CHOUDHURY A, et al. Multiplex navigation of global regulatory networks (MINR) in yeast for improved ethanol tolerance and production[J]. Metab Eng, 2019, 51: 50-58. |
59 | KUZMIN E, VANDERSLUIS B, NGUYEN BA A N, et al. Exploring whole-genome duplicate gene retention with complex genetic interaction analysis[J]. Science, 2020, 368: eaaz5667. |
60 | PENG J. Gene redundancy and gene compensation: An updated view[J]. J Genet Genomics, 2019, 46: 329-333. |
61 | MERZ S, WESTERMANN B. Genome-wide deletion mutant analysis reveals genes required for respiratory growth, mitochondrial genome maintenance and mitochondrial protein synthesis in Saccharomyces cerevisiae [J]. Genome Biol, 2009, 10: R95. |
62 | LOUCA S, POLZ M F, MAZEL F, et al. Function and functional redundancy in microbial systems[J]. Nat Ecol Evol, 2018, 2: 936-943. |
63 | BIDLINGMAIER S, LIU B. Construction of yeast surface-displayed cDNA libraries[J]. Methods Mol Biol, 2011, 729: 199-210. |
64 | LIU Z, TYO K E, MARTINEZ J L, et al. Different expression systems for production of recombinant proteins in Saccharomyces cerevisiae [J]. Biotechnol Bioeng, 2012, 109: 1259-1268. |
65 | SMITH V, BOTSTEIN D, BROWN P O. Genetic footprinting: A genomic strategy for determining a gene's function given its sequence[J]. Proc Natl Acad Sci U S A, 1995, 92: 6479-6483. |
66 | SMITH V, CHOU K N, LASHKARI D, et al. Functional analysis of the genes of yeast chromosome V by genetic footprinting[J]. Science, 1996, 274: 2069-2074. |
67 | HAN T X, XU X Y, ZHANG M J, et al. Global fitness profiling of fission yeast deletion strains by barcode sequencing[J]. Genome Biol, 2010, 11: R60. |
68 | STEINMETZ L M, SCHARFE C, DEUTSCHBAUER A M, et al. Systematic screen for human disease genes in yeast[J]. Nat Genet, 2002, 31: 400-404. |
69 | WARRINGER J, ERICSON E, FERNANDEZ L, et al. High-resolution yeast phenomics resolves different physiological features in the saline response[J]. Proc Natl Acad Sci U S A, 2003, 100: 15724-15729. |
70 | BIRRELL G W, BROWN J A, WU H I, et al. Transcriptional response of Saccharomyces cerevisiae to DNA-damaging agents does not identify the genes that protect against these agents[J]. Proc Natl Acad Sci U S A, 2002, 99: 8778-8783. |
71 | CHANG M, BELLAOUI M, BOONE C, et al. A genome-wide screen for methyl methanesulfonate-sensitive mutants reveals genes required for s phase progression in the presence of DNA damage[J]. Proc Natl Acad Sci U S A, 2002, 99: 16934-16939. |
72 | PARSONS A B, BROST R L, DING H, et al. Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways[J]. Nat Biotechnol, 2004, 22: 62-69. |
73 | PARSONS A B, LOPEZ A, GIVONI I E, et al. Exploring the mode-of-action of bioactive compounds by chemical-genetic profiling in yeast[J]. Cell, 2006, 126: 611-625. |
74 | ENYENIHI A H, SAUNDERS W S. Large-scale functional genomic analysis of sporulation and meiosis in Saccharomyces cerevisiae [J]. Genetics, 2003, 163: 47-54. |
75 | MATECIC M, SMITH D L, PAN X, et al. A microarray-based genetic screen for yeast chronological aging factors[J]. PLoS Genet, 2010, 6: e1000921. |
76 | ROMILA C A, TOWNSEND S, MALECKI M, et al. Barcode sequencing and a high-throughput assay for chronological lifespan uncover ageing-associated genes in fission yeast[J]. Microb Cell, 2021, 8: 146-160. |
77 | FERRARI S, BERETTA S, JACOB A, et al. Bar-seq clonal tracking of gene-edited cells[J]. Nat Protoc, 2021, 16: 2991-3025. |
78 | RALLIS C, LóPEZ-MAURY L, GEORGESCU T, et al. Systematic screen for mutants resistant to TORC1 inhibition in fission yeast reveals genes involved in cellular ageing and growth[J]. Biol Open, 2014, 3: 161-171. |
79 | KENNEDY P J, VASHISHT A A, HOE K L, et al. A genome-wide screen of genes involved in cadmium tolerance in Schizosaccharomyces pombe [J]. Toxicol Sci, 2008, 106: 124-139. |
80 | RODRíGUEZ-LóPEZ M, BORDIN N, LEES J, et al. Broad functional profiling of fission yeast proteins using phenomics and machine learning[J]. Elife, 2023, 12. |
81 | NI L, SNYDER M. A genomic study of the bipolar bud site selection pattern in Saccharomyces cerevisiae [J]. Mol Biol Cell, 2001, 12: 2147-2170. |
82 | KELLY F D, NURSE P. Spatial control of Cdc42 activation determines cell width in fission yeast[J]. Mol Biol Cell, 2011, 22: 3801-3811. |
83 | NAVARRO F J, NURSE P. A systematic screen reveals new elements acting at the G2/M cell cycle control[J]. Genome Biol, 2012, 13: R36. |
84 | BLYTH J, MAKRANTONI V, BARTON R E, et al. Genes important for Schizosaccharomyces pombe meiosis identified through a functional genomics screen[J]. Genetics, 2018, 208: 589-603. |
85 | DESHPANDE G P, HAYLES J, HOE K L, et al. Screening a genome-wide S. pombe deletion library identifies novel genes and pathways involved in genome stability maintenance[J]. DNA Repair (Amst), 2009, 8: 672-679. |
86 | PAN X, LEI B, ZHOU N, et al. Identification of novel genes involved in DNA damage response by screening a genome-wide Schizosaccharomyces pombe deletion library[J]. BMC Genomics, 2012, 13: 662. |
87 | COSTANZO M, VANDERSLUIS B, KOCH E N, et al. A global genetic interaction network maps a wiring diagram of cellular function[J]. Science, 2016, 353. |
88 | ROSS-MACDONALD P, COELHO P S, ROEMER T, et al. Large-scale analysis of the yeast genome by transposon tagging and gene disruption[J]. Nature, 1999, 402: 413-418. |
89 | WHITE W H, JOHNSON D I. Characterization of synthetic-lethal mutants reveals a role for the Saccharomyces cerevisiae guanine-nucleotide exchange factor Cdc24p in vacuole function and Na+ tolerance[J]. Genetics, 1997, 147: 43-55. |
90 | HUH W K, FALVO J V, GERKE L C, et al. Global analysis of protein localization in budding yeast[J]. Nature, 2003, 425: 686-691. |
91 | RAZDAIBIEDINA A, BRECHALOV A, FRIESEN H, et al. PIFIA: Self-supervised approach for protein functional annotation from single-cell imaging data[J]. Mol Syst Biol, 2024, 20: 521-548. |
92 | CHONG Y T, KOH J L, FRIESEN H, et al. Yeast proteome dynamics from single cell imaging and automated analysis[J]. Cell, 2015, 161: 1413-1424. |
93 | HAYASHI A, DING D Q, TSUTSUMI C, et al. Localization of gene products using a chromosomally tagged GFP-fusion library in the fission yeast Schizosaccharomyces pombe [J]. Genes Cells, 2009, 14: 217-225. |
94 | JIA B, WU Y, LI B Z, et al. Precise control of scramble in synthetic haploid and diploid yeast[J]. Nat Commun, 2018, 9: 1933. |
95 | SI T, LUO Y, BAO Z, et al. RNAi-assisted genome evolution in Saccharomyces cerevisiae for complex phenotype engineering[J]. ACS Synth Biol, 2015, 4: 283-291. |
96 | ZENG W, GUO L, XU S, et al. High-throughput screening technology in industrial biotechnology[J]. Trends Biotechnol, 2020, 38: 888-906. |
97 | RUGBJERG P, SOMMER M O A. Overcoming genetic heterogeneity in industrial fermentations[J]. Nat Biotechnol, 2019, 37: 869-876. |
98 | WEHRS M, TANJORE D, ENG T, et al. Engineering robust production microbes for large-scale cultivation[J]. Trends Microbiol, 2019, 27: 524-537. |
99 | JAKOCIUNAS T, BONDE I, HERRGARD M, et al. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae [J]. Metab Eng, 2015, 28: 213-222. |
100 | LI Y, MOLYNEAUX N, ZHANG H, et al. A multiplexed, three-dimensional pooling and next-generation sequencing strategy for creating barcoded mutant arrays: Construction of a Schizosaccharomyces pombe transposon insertion library[J]. Nucleic Acids Res, 2022, 50: e102. |
101 | COOPE R J N, MATIC N, PANDOH P K, et al. Automated library construction and analysis for high-throughput nanopore sequencing of SARS-COV-2[J]. J Appl Lab Med, 2022, 7: 1025-1036. |
102 | SANTACRUZ D, ENANE F O, FUNDEL-CLEMENS K, et al. Automation of high-throughput mRNA-seq library preparation: A robust, hands-free and time efficient methodology[J]. SLAS Discov, 2022, 27: 140-147. |
103 | VAN DEVENTER J A, WITTRUP K D. Yeast surface display for antibody isolation: Library construction, library screening, and affinity maturation[J]. Methods Mol Biol, 2014, 1131: 151-181. |
104 | YOFE I, WEILL U, MEURER M, et al. One library to make them all: Streamlining the creation of yeast libraries via a SWAp-Tag strategy[J]. Nat Methods, 2016, 13: 371-378. |
105 | COSTANZO M, HOU J, MESSIER V, et al. Environmental robustness of the global yeast genetic interaction network[J]. Science, 2021, 372. |
106 | KUZMIN E, VANDERSLUIS B, WANG W, et al. Systematic analysis of complex genetic interactions[J]. Science, 2018, 360. |
107 | PENNISI E. Building the ultimate yeast genome[J]. Science, 2014, 343: 1426-1429. |
108 | ZHAO Y, COELHO C, HUGHES A L, et al. Debugging and consolidating multiple synthetic chromosomes reveals combinatorial genetic interactions[J]. Cell, 2023, 186: 5220-5236 e5216. |
109 | SCHINDLER D, WALKER R S K, JIANG S, et al. Design, construction, and functional characterization of a tRNA neochromosome in yeast[J]. Cell, 2023, 186: 5237-5253 e5222. |
110 | ZHANG W, LAZAR-STEFANITA L, YAMASHITA H, et al. Manipulating the 3D organization of the largest synthetic yeast chromosome[J]. Mol Cell, 2023, 83: 4424-4437 e4425. |
111 | DAI J, BOEKE J D, LUO Z, et al. Sc3.0: Revamping and minimizing the yeast genome[J]. Genome Biol, 2020, 21: 205. |
112 | SHAO Y, LU N, WU Z, et al. Creating a functional single-chromosome yeast[J]. Nature, 2018, 560: 331-335. |
113 | WANG P, LIN Y, ZOU C, et al. Construction and screening of a glycosylphosphatidylinositol protein deletion library in Pichia pastoris [J]. BMC Microbiol, 2020, 20: 262. |
[1] | 石婷, 宋展, 宋世怡, 张以恒. 体外生物转化(ivBT):生物制造的新前沿[J]. 合成生物学, 2024, 5(6): 1437-1460. |
[2] | 柴猛, 王风清, 魏东芝. 综合利用木质纤维素生物转化合成有机酸[J]. 合成生物学, 2024, 5(6): 1242-1263. |
[3] | 邵明威, 孙思勉, 杨时茂, 陈国强. 基于极端微生物的生物制造[J]. 合成生物学, 2024, 5(6): 1419-1436. |
[4] | 付雨, 钟芳锐. 化学原理驱动的光生物不对称催化研究进展[J]. 合成生物学, 2024, 5(5): 1021-1049. |
[5] | 陈雨, 张康, 邱以婧, 程彩云, 殷晶晶, 宋天顺, 谢婧婧. 微生物电合成技术转化二氧化碳研究进展[J]. 合成生物学, 2024, 5(5): 1142-1168. |
[6] | 郑皓天, 李朝风, 刘良叙, 王嘉伟, 李恒润, 倪俊. 负碳人工光合群落的设计、优化与应用[J]. 合成生物学, 2024, 5(5): 1189-1210. |
[7] | 夏孔晨, 徐维华, 吴起. 光酶催化混乱性反应的研究进展[J]. 合成生物学, 2024, 5(5): 997-1020. |
[8] | 陈子苓, 向阳飞. 类器官技术与合成生物学协同研究进展[J]. 合成生物学, 2024, 5(4): 795-812. |
[9] | 蔡冰玉, 谭象天, 李伟. 合成生物学在干细胞工程化改造中的研究进展[J]. 合成生物学, 2024, 5(4): 782-794. |
[10] | 汤志军, 胡友财, 刘文. 酶促4+2和2+2环加成反应:区域与立体选择性的理解与应用[J]. 合成生物学, 2024, 5(3): 401-407. |
[11] | 虞旭昶, 吴辉, 李雷. 文库构建与基因簇靶向筛选驱动的微生物天然产物高效发现[J]. 合成生物学, 2024, 5(3): 492-506. |
[12] | 谢皇, 郑义蕾, 苏依婷, 阮静怡, 李永泉. 放线菌聚酮类化合物生物合成体系重构研究进展[J]. 合成生物学, 2024, 5(3): 612-630. |
[13] | 查文龙, 卜兰, 訾佳辰. 中药药效成分群的合成生物学研究进展[J]. 合成生物学, 2024, 5(3): 631-657. |
[14] | 惠真, 唐啸宇. CRISPR/Cas9编辑系统在微生物天然产物研究中的应用[J]. 合成生物学, 2024, 5(3): 658-671. |
[15] | 刘晓楠, 李静, 祝晓熙, 徐子硕, 齐健, 江会锋. 紫杉醇生物合成机制研究进展[J]. 合成生物学, 2024, 5(3): 527-547. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||