• 特约评述 •
张梦瑶1,2,3, 蔡鹏1,2, 周雍进1,2
收稿日期:
2024-07-31
修回日期:
2024-09-18
出版日期:
2024-09-20
通讯作者:
周雍进
作者简介:
基金资助:
Mengyao ZHANG1,2,3, Peng CAI1,2, Yongjin ZHOU1,2
Received:
2024-07-31
Revised:
2024-09-18
Online:
2024-09-20
Contact:
Yongjin ZHOU
摘要:
香精香料是个人护理产品中的重要成分,其中,萜类化合物及其衍生物在天然香料市场中有着重要的地位。近年来,合成生物学的蓬勃发展为解决萜类香料产能瓶颈及开发更多元化的新型香料化合物带来了新机遇。本综述探讨了合成生物学在萜类香料可持续生产中的应用和发展,介绍了数据驱动的合成生物学和生物技术创新如何赋能萜类香料生产,讨论比较了萜类合成的经典合成途径和替代合成途径,并探讨了萜类合酶挖掘与改造进展。在此基础上,着重介绍了单萜类、倍半萜类和降异戊二烯类香料的细胞工厂合成现状,包括元件改造、途径优化和萜类解毒等关键技术策略。最后,对当前专利布局和产业化竞争格局进行了总结分析,并对未来发展的挑战和机遇进行了展望,包括生物合成技术的挑战、新产物的发掘与设计,以及市场监管与安全性问题。
中图分类号:
张梦瑶, 蔡鹏, 周雍进. 合成生物学助力萜类香精香料可持续生产[J]. 合成生物学, DOI: 10.12211/2096-8280.2024-057.
Mengyao ZHANG, Peng CAI, Yongjin ZHOU. Synthetic biology drives the sustainable production of terpenoid fragrances and flavors[J]. Synthetic Biology Journal, DOI: 10.12211/2096-8280.2024-057.
图2 经典的萜类合成途径与常见替代合成途径
Fig. 2 Classical terpene biosynthetic pathways and common alternative synthetic routes. Abbreviations: G3P, D-Glyceraldehyde 3-phosphate; PYR, pyruvate; DXP, 1-Deoxy-D-xylulose 5-phosphate; MEP, 2-C-Methyl-D-erythritol 4-phosphate; CDP-ME, 4-Diphophocytidyl-2-C-methyl-D-erythrito; CDP-MEP, 4-Diphophocytidyl-2-C-methyl-D-erythritol 2phosphate; MEcPP, 2-C-Methyl-D-erythritol 2,4-cyclodiphosphate; HMBPP, 4-Hydroxy-3-methyl-butenyl diphosphate; DMAPP, Dimethylallyl diphosphate; GPP, Geranyl diphosphate; FPP, Farnesyl diphosphate; GGPP, Geranylgeranyl diphosphate; MG-CoA, 3-Methylglutaconyl-CoA; MB-CoA, 3-Methyl-2-butenoyl-CoA; MB, 3-Methyl-2-butenal; DMAP, Dimethylallyl phosphate; M3P, Mevalonate 3-phosphate; M3P5P, Mevalonate 3,5-biphosphate; IP, Isopentenyl phosphate; AcCoA, Acetyl-CoA; AcAcCoA, Acetoacetyl-CoA; HMGCoA, 3-Hydroxy-3-methylglutaryl-CoA; MVA, Mevalonate; M5P, Mevalonate 5-phosphate; MVAPP, Mevalonate diphosphate; IPP, Isopentenyl diphosphate; NPP, Neryl diphosphate; Z,Z-FPP, Z,Z-Farnesyl diphosphate; NNPP, Nerylneryl diphosphate; DXS, DXP synthase; DXR, DXP reductoisomerase; MCT, MEP cytidylyltransferase; CMK, CDP-ME kinase; MDS, ME-CPP synthase; HDS, HMB-PP synthase; HDR, HMB-PP reductase; ERG10, ACCT acetyl-CoA C-acetyl transferase; ERG13, HMGS HMG-CoA synthase; HMGR, HMG-CoA reductase; ERG12, MK MVA kinase; ERG8, PMVK phosphomevalonate kinase; ERG19, MVD diphosphomevalonate decarboxylase; LiuC, enoyl-CoA hydratase; AibAB, glutaconyl-CoA decarboxylase; cbjALD, acyl-CoA reductase; YahK, alcohol dehydrogenase; ThiM, hydroxyethylthiazole kinase; IPK, isopentenyl phosphate kinase; IDI, isopentenyl-diphosphate isomerase; GPPS, geranyl pyrophosphate synthase; FPPS, farnesyl pyrophosphate synthase; GGPPS, geranylgeranyl diphosphate synthase; NPPS, nerol pyrophosphate synthase; zFPPS, Z,Z-Farnesyl diphosphate synthase; NNPPS, nerylneryl diphosphate synthase; M3K, mevalonate 3-kinase; M3P5K, mevalonate 3-phosphate 5-kinase; BMD, mevalonate biphosphate decarboxylase; IPK, isopentenyl phosphate kinase; PMD, mevalonate 5-phosphate decarboxylase.
结构 | 化合物 | 气味特征 | 底盘菌株 | 培养条件 | 产量(g/L) | 参考文献 |
---|---|---|---|---|---|---|
链状 单萜 | 香叶醇 Geraniol | 温和、甜香、花果香气 | 大肠杆菌 | 摇瓶发酵 | 2.1 | [ |
巴斯德毕赤酵母 | 24孔板发酵 | 1.2 | [ | |||
月桂烯 Myrcene | 甜香脂香气 | 大肠杆菌 | 摇瓶发酵 | 1.2 | [ | |
香茅醇 Citronellol | 甜润玫瑰花香 | 酿酒酵母 | 5 L生物反应器 | 8.3 | [ | |
芳樟醇 Linalool | 铃兰清香 | 菠萝潘托氏菌 | 5 mL试管 | S型5.6 R型3.7 | [ |
表1 经典的萜类香料细胞工厂汇总
Tab. 1 Summary of classic cell factories for terpene fragrances
结构 | 化合物 | 气味特征 | 底盘菌株 | 培养条件 | 产量(g/L) | 参考文献 |
---|---|---|---|---|---|---|
链状 单萜 | 香叶醇 Geraniol | 温和、甜香、花果香气 | 大肠杆菌 | 摇瓶发酵 | 2.1 | [ |
巴斯德毕赤酵母 | 24孔板发酵 | 1.2 | [ | |||
月桂烯 Myrcene | 甜香脂香气 | 大肠杆菌 | 摇瓶发酵 | 1.2 | [ | |
香茅醇 Citronellol | 甜润玫瑰花香 | 酿酒酵母 | 5 L生物反应器 | 8.3 | [ | |
芳樟醇 Linalool | 铃兰清香 | 菠萝潘托氏菌 | 5 mL试管 | S型5.6 R型3.7 | [ |
图7 全球十年内萜类香料生物合成相关文献与专利分布
Fig. 7 Global distribution of literature and patents related to terpene fragrance biosynthesis in the last decade. (the data is from Google Patents and Google Scholar using "terpene fragrances" and "synthetic biology" as the keywords, July 17th, 2024).
1 | Bom S, Jorge J, Ribeiro H M, et al. A step forward on sustainability in the cosmetics industry: A review[J]. Journal of Cleaner Production, 2019, 225: 270-290. |
2 | El-Otmani N, Zeouk I, Hammani O, et al. analysis and quality control of bio-actives and herbal cosmetics: The case of traditional cooperatives from fes-meknes region[J]. Tropical Journal of Natural Product Research, 2024, 8(5). |
3 | Michailidou F. The scent of change: sustainable fragrances through industrial biotechnology[J]. ChemBioChem, 2023, 24(19): e202300309. |
4 | Weston-Green K, Clunas H, Jimenez Naranjo C. A review of the potential use of pinene and linalool as terpene-based medicines for brain health: discovering novel therapeutics in the flavours and fragrances of cannabis[J]. Frontiers in Psychiatry, 2021, 12: 583211. |
5 | Jiang H, Wang X. Biosynthesis of monoterpenoid and sesquiterpenoid as natural flavors and fragrances[J]. Biotechnology Advances, 2023, 65: 108151. |
6 | Zhang C, Li M, Zhao G R, et al. Harnessing yeast peroxisomes and cytosol acetyl-coA for sesquiterpene α-humulene production[J]. Journal of Agricultural and Food Chemistry, 2020, 68(5): 1382-1389. |
7 | Masyita A, Mustika Sari R, Dwi Astuti A, et al. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives[J]. Food Chemistry: X, 2022, 13: 100217. |
8 | Cao X, Yu W, Chen Y, et al. Engineering yeast for high-level production of diterpenoid sclareol[J]. Metabolic Engineering, 2022: S1096717622001379. |
9 | Linkedin, Terpenes Market Research Report: Company Snapshot 2031 [EB/OL]. LinkedIn Pulse, 2024 |
10 | Cao C, Cao X, Yu W, et al. Global Metabolic rewiring of yeast enables overproduction of sesquiterpene (+)-valencene[J]. Journal of Agricultural and Food Chemistry, 2022, 70(23): 7180-7187. |
11 | Voigt C A. Synthetic biology 2020–2030: six commercially-available products that are changing our world[J]. Nature Communications, 2020, 11(1): 6379. |
12 | Khalil A S, Collins J J. Synthetic biology: applications come of age[J]. Nature Reviews Genetics, 2010, 11(5): 367-379. |
13 | Volk M J, Tran V G, Tan S I, et al. Metabolic engineering: methodologies and applications[J]. Chemical Reviews, 2023, 123(9): 5521-5570. |
14 | Cimermancic P, Medema M H, Claesen J, et al. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters[J]. Cell, 2014, 158(2): 412-421. |
15 | Blin K, Shaw S, Augustijn H E, et al. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation[J]. Nucleic Acids Research, 2023, 51(W1): W46-W50. |
16 | Skinnider M A, Johnston C W, Gunabalasingam M, et al. Comprehensive prediction of secondary metabolite structure and biological activity from microbial genome sequences[J]. Nature Communications, 2020, 11(1): 6058. |
17 | Wang X, Chen N, Cruz-Morales P, et al. Elucidation of genes enhancing natural product biosynthesis through co-evolution analysis[J]. Nature Metabolism, 2024. |
18 | Arkin A P, Cottingham R W, Henry C S, et al. KBase: The united states department of energy systems biology knowledgebase[J]. Nature Biotechnology, 2018, 36(7): 566-569. |
19 | Seaver S M D, Liu F, Zhang Q, et al. The ModelSEED Biochemistry Database for the integration of metabolic annotations and the reconstruction, comparison and analysis of metabolic models for plants, fungi and microbes[J]. Nucleic Acids Research, 2021, 49(D1): D575-D588. |
20 | Agren R, Liu L, Shoaie S, et al. The RAVEN toolbox and its use for generating a genome-scale metabolic model for penicillium chrysogenum[J]. PLoS Computational Biology, 2013, 9(3): e1002980. |
21 | Burgard A P, Pharkya P, Maranas C D. Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization[J]. Biotechnology and Bioengineering, 2003, 84(6): 647-657. |
22 | Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021, 596(7873): 583-589. |
23 | Abramson J, Adler J, Dunger J, et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3[J]. Nature, 2024, 630(8016): 493-500. |
24 | Greening C, Cabotaje P R, Valentin Alvarado L E, et al. Minimal and hybrid hydrogenases are active from archaea[J]. Cell, 2024, 187(13): 3357-3372.e19. |
25 | Trivedi V, Ramesh A, Wheeldon I. Analyzing CRISPR screens in non-conventional microbes[J]. Journal of Industrial Microbiology and Biotechnology, 2023: kuad006. |
26 | Liu X, Cui Z, Su T, et al. Identification of genome integration sites for developing a CRISPR‐based gene expression toolkit in Yarrowia lipolytica [J]. Microbial Biotechnology, 2022, 15(8): 2223-2234. |
27 | Holkenbrink C, Dam M I, Kildegaard K R, et al. EasyCloneYALI: CRISPR/Cas9-Based synthetic toolbox for engineering of the yeast Yarrowia lipolytica [J]. Biotechnology Journal, 2018, 13(9): 1700543. |
28 | Cui Z, Jiang X, Zheng H, et al. Homology‐independent genome integration enables rapid library construction for enzyme expression and pathway optimization in Yarrowia lipolytica [J]. Biotechnology and Bioengineering, 2019, 116(2): 354-363. |
29 | Liu Q, Shi X, Song L, et al. CRISPR–Cas9-mediated genomic multiloci integration in Pichia pastoris [J]. Microbial Cell Factories, 2019, 18(1): 144. |
30 | Cai P, Duan X, Wu X, et al. Recombination machinery engineering facilitates metabolic engineering of the industrial yeast Pichia pastoris [J]. Nucleic Acids Research, 2021, 49(13): 7791-7805. |
31 | Gao J, Jiang L, Lian J. Development of synthetic biology tools to engineer Pichia pastoris as a chassis for the production of natural products[J]. Synthetic and Systems Biotechnology, 2021, 6(2): 110-119. |
32 | Gao J, Gao N, Zhai X, et al. Recombination machinery engineering for precise genome editing in methylotrophic yeast Ogataea polymorpha [J]. iScience, 2021, 24(3): 102168. |
33 | Yu W, Gao J, Zhai X, et al. Screening neutral sites for metabolic engineering of methylotrophic yeast Ogataea polymorpha [J]. Synthetic and Systems Biotechnology, 2021, 6(2): 63-68. |
34 | Fatma Z, Tan S I, Boob A G, et al. A landing pad system for multicopy gene integration in Issatchenkia orientalis [J]. Metabolic Engineering, 2023, 78: 200-208. |
35 | Kim S K, Han G H, Seong W, et al. CRISPR interference-guided balancing of a biosynthetic mevalonate pathway increases terpenoid production[J]. Metabolic Engineering, 2016, 38: 228-240. |
36 | Lian J, HamediRad M, Hu S, et al. Combinatorial metabolic engineering using an orthogonal tri-functional CRISPR system[J]. Nature Communications, 2017, 8(1): 1688. |
37 | De Munter S, Van Parys A, Bral L, et al. Rapid and effective generation of nanobody based CARs using PCR and Gibson Assembly[J]. International Journal of Molecular Sciences, 2020, 21(3): 883. |
38 | Sorida M, Bonasio R. An efficient cloning method to expand vector and restriction site compatibility of Golden Gate Assembly[J]. Cell Reports Methods, 2023, 3(8): 100564. |
39 | Ma Y, Su S, Fu Z, et al. Convenient synthesis and delivery of a megabase-scale designer accessory chromosome empower biosynthetic capacity[J]. Cell Research, 2024, 34(4): 309-322. |
40 | Carbonell P, Radivojevic T, García Martín H. Opportunities at the intersection of synthetic biology, machine learning, and automation[J]. ACS Synthetic Biology, 2019, 8(7): 1474-1477. |
41 | Ignea C, Raadam M H, Motawia M S, et al. Orthogonal monoterpenoid biosynthesis in yeast constructed on an isomeric substrate[J]. Nature Communications, 2019, 10(1): 3799. |
42 | Lipko A, Pączkowski C, Perez-Fons L, et al. Divergent contribution of the MVA and MEP pathways to the formation of polyprenols and dolichols in Arabidopsis[J]. Biochemical Journal, 2023, 480(8): 495-520. |
43 | Pan X, Du W, Zhang X, et al. Discovery, structure, and mechanism of a class II sesquiterpene cyclase[J]. Journal of the American Chemical Society, 2022: jacs.2c09412. |
44 | Zhou F, Pichersky E. More is better: the diversity of terpene metabolism in plants[J]. Current Opinion in Plant Biology, 2020, 55: 1-10. |
45 | Zeng L, Dehesh K. The eukaryotic MEP-pathway genes are evolutionarily conserved and originated from Chlaymidia and cyanobacteria [J]. BMC Genomics, 2021, 22(1): 137. |
46 | Allamand A, Piechowiak T, Lièvremont D, et al. The multifaceted MEP pathway: towards new therapeutic perspectives[J]. Molecules, 2023, 28(3): 1403. |
47 | Banerjee A, Wu Y, Banerjee R, et al. Feedback inhibition of deoxy-d-xylulose-5-phosphate synthase regulates the methylerythritol 4-phosphate pathway[J]. Journal of Biological Chemistry, 2013, 288(23): 16926-16936. |
48 | Diao J, Song X, Zhang L, et al. Tailoring cyanobacteria as a new platform for highly efficient synthesis of astaxanthin[J]. Metabolic Engineering, 2020, 61: 275-287. |
49 | Volke D C, Rohwer J, Fischer R, et al. Investigation of the methylerythritol 4-phosphate pathway for microbial terpenoid production through metabolic control analysis[J]. Microbial Cell Factories, 2019, 18(1): 192. |
50 | Du F L, Yu H L, Xu J H, et al. Enhanced limonene production by optimizing the expression of limonene biosynthesis and MEP pathway genes in E. coli[J]. Bioresources and Bioprocessing, 2014, 1(1): 10. |
51 | Ma Y, McClure D D, Somerville M V, et al. Metabolic engineering of the MEP pathway in Bacillus subtilis for increased biosynthesis of menaquinone-7[J]. ACS Synthetic Biology, 2019, 8(7): 1620-1630. |
52 | Bröker J N, Müller B, Van Deenen N, et al. Upregulating the mevalonate pathway and repressing sterol synthesis in Saccharomyces cerevisiae enhances the production of triterpenes[J]. Applied Microbiology and Biotechnology, 2018, 102(16): 6923-6934. |
53 | Liu F, Liu S C, Qi Y K, et al. Enhancing trans -nerolidol productivity in Yarrowia lipolytica by improving precursor supply and optimizing nerolidol synthase activity[J]. Journal of Agricultural and Food Chemistry, 2022, 70(48): 15157-15165. |
54 | Mukherjee M, Blair R H, Wang Z Q. Machine-learning guided elucidation of contribution of individual steps in the mevalonate pathway and construction of a yeast platform strain for terpenoid production[J]. Metabolic Engineering, 2022, 74: 139-149. |
55 | Rinaldi M A. Alternative metabolic pathways and strategies to high-titre terpenoid production in Escherichia coli [J]. Natural Product Reports, 2022: 29. |
56 | Chen H, Liu C, Li M, et al. Directed evolution of mevalonate kinase in Escherichia coli by random mutagenesis for improved lycopene[J]. RSC Advances, 2018, 8(27): 15021-15028. |
57 | Cao C, Zhang H, Cao X, et al. Construction and optimization of nonclassical isoprenoid biosynthetic pathways in yeast peroxisomes for (+)-valencene production[J]. Journal of Agricultural and Food Chemistry, 2023, 71(29): 11124-11130. |
58 | Clomburg J M, Qian S, Tan Z, et al. The isoprenoid alcohol pathway, a synthetic route for isoprenoid biosynthesis[J]. Proceedings of the National Academy of Sciences, 2019, 116(26): 12810-12815. |
59 | Ma Y, Zu Y, Huang S, et al. Engineering a universal and efficient platform for terpenoid synthesis in yeast[J]. Proceedings of the National Academy of Sciences, 2023, 120(1): e2207680120. |
60 | Liu S, Zhang M, Ren Y, et al. Engineering Rhodosporidium toruloides for limonene production[J]. Biotechnology for Biofuels, 2021, 14(1): 243. |
61 | Schilmiller A L, Schauvinhold I, Larson M, et al. Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate[J]. Proceedings of the National Academy of Sciences, 2009, 106(26): 10865-10870. |
62 | 程晓雷, 刘天罡, 陶慧. 萜类化合物的非常规生物合成研究进展[J]. 合成生物学, 2024, DOI: 10.12211/2096-8280.2024-006 . |
CHENG Xiaolei, LIU Tiangang, TAO Hui. Recent research progress in non-canonical biosynthesis of terpenoids[J]. Synthetic Biology Journal, DOI: | |
63 | 12211/2096-8280.2024-006. |
64 | Luo P, Huang J H, Lv J M, et al. Biosynthesis of fungal terpenoids[J]. Natural Product Reports, 2024, 41(5): 748-783. |
65 | Li Z, Zhang L, Xu K, et al. Molecular insights into the catalytic promiscuity of a bacterial diterpene synthase[J]. Nature Communications, 2023, 14(1): 4001. |
66 | Abe T, Shiratori H, Kashiwazaki K, et al. Structural-model-based genome mining can efficiently discover novel non-canonical terpene synthases hidden in genomes of diverse species[J]. Chemical Science, 2024, 15(27): 10402-10407. |
67 | Deng X, Ye Z, Duan J, et al. Complete pathway elucidation and heterologous reconstitution of (+)‐nootkatone biosynthesis from Alpinia oxyphylla [J]. New Phytologist, 2023: nph.19375. |
68 | Chen R, Jia Q, Mu X, et al. Systematic mining of fungal chimeric terpene synthases using an efficient precursor-providing yeast chassis[J]. Proceedings of the National Academy of Sciences, 2021, 118(29): e2023247118. |
69 | Yang Y, Zhang S, Ma K, et al. Discovery and characterization of a new family of diterpene cyclases in bacteria and fungi[J]. Angewandte Chemie, 2017, 129(17): 4827-4830. |
70 | Daletos G, Stephanopoulos G. Protein engineering strategies for microbial production of isoprenoids[J]. Metabolic Engineering Communications, 2020, 11: e00129. |
71 | Ye Z, Huang Y, Shi B, et al. Coupling cell growth and biochemical pathway induction in Saccharomyces cerevisiae for production of (+)-valencene and its chemical conversion to (+)-nootkatone[J]. Metabolic Engineering, 2022, 72: 107-115. |
72 | 祁延萍, 朱晋, 张凯, 等. 定向进化在蛋白质工程中的应用研究进展[J]. 合成生物学, 2022, 3(6): 1081-1108. |
QI Yanping, ZHU Jin, ZHANG Kai, et al. Recent development of directed evolution in protein engineering[J]. Synthetic Biology Journal, 2022, 3(6): 1081-1108. | |
73 | Lauchli R, Rabe K S, Kalbarczyk K Z, et al. High‐throughput screening for terpene‐synthase‐cyclization activity and directed evolution of a terpene synthase[J]. Angewandte Chemie International Edition, 2013, 52(21): 5571-5574. |
74 | Wang X, Chen J, Zhang J, et al. Engineering Escherichia coli for production of geraniol by systematic synthetic biology approaches and laboratory-evolved fusion tags[J]. Metabolic Engineering, 2021, 66: 60-67. |
75 | Ye C, Li M, Gao J, et al. Metabolic engineering of Pichia pastoris for overproduction of cis-trans nepetalactol[J]. Metabolic Engineering, 2024, 84: 83-94. |
76 | Wang X, Wang J, Zhang X, et al. Efficient myrcene production using linalool dehydratase isomerase and rational biochemical process in Escherichia coli [J]. Journal of Biotechnology, 2023, 371-372: 33-40. |
77 | Jiang G, Yao M, Wang Y, et al. A "push-pull-restrain" strategy to improve citronellol production in Saccharomyces cerevisiae [J]. Metabolic Engineering, 2021, 66: 51-59. |
78 | Hoshino Y, Moriya M, Matsudaira A, et al. Stereospecific linalool production utilizing two-phase cultivation system in Pantoea ananatis [J]. Journal of Biotechnology, 2020, 324: 21-27. |
79 | Rolf J, Julsing M, Rosenthal K, et al. A gram-scale limonene production process with engineered Escherichia coli [J]. Molecules, 2020, 25(8), 1881. |
80 | Zhang C, Li M, Zhao G R, et al. Alpha-terpineol production from an engineered Saccharomyces cerevisiae cell factory[J]. Microbial Cell Factories, 2019, 18(1): 160. |
81 | Yoshida E, Kojima M, Suzuki M, et al. Increased carvone production in Escherichia coli by balancing limonene conversion enzyme expression via targeted quantification concatamer proteome analysis[J]. Scientific Reports, 2021, 11(1): 22126. |
82 | Zhang Haiyan, Cai Peng, Guo Juan, et. al. Engineering cellular dephosphorylation boosts (+)-borneol production in yeast. Acta Pharmaceutica Sinica B. Unpublished. |
83 | Niu F X, He X, Wu Y Q, et al. Enhancing production of pinene in Escherichia coli by using a combination of tolerance, evolution, and modular co-culture engineering[J]. Frontiers in Microbiology, 2018, 9: 1623. |
84 | Jia H, Chen T, Qu J, et al. Collaborative subcellular compartmentalization to improve GPP utilization and boost sabinene accumulation in Saccharomyces cerevisiae [J]. Biochemical Engineering Journal, 2020, 164: 107768. |
85 | Lu Z, Peng B, Ebert B E, et al. Auxin-mediated protein depletion for metabolic engineering in terpene-producing yeast[J]. Nature Communications, 2021, 12(1): 1051. |
86 | Meadows A L, Hawkins K M, Tsegaye Y, et al. Rewriting yeast central carbon metabolism for industrial isoprenoid production[J]. Nature, 2016, 537(7622): 694-697. |
87 | Wang C, Park J, Choi E, et al. Farnesol production in Escherichia coli through the construction of a farnesol biosynthesis pathway – application of PgpB and YbjG phosphatases[J]. Biotechnology Journal, 2016, 11(10): 1291-1297. |
88 | Zhang W, Guo J, Wang Z, et al. Improved production of germacrene A, a direct precursor of ß-elemene, in engineered Saccharomyces cerevisiae by expressing a cyanobacterial germacrene A synthase[J]. Microbial Cell Factories, 2021, 20(1): 7. |
89 | Zhang L, Yang H, Xia Y, et al. Engineering the oleaginous yeast Candida tropicalis for α-humulene overproduction[J]. Biotechnology for Biofuels and Bioproducts, 2022, 15(1): 59. |
90 | Liu J, Chen C, Wan X, et al. Identification of the sesquiterpene synthase AcTPS1 and high production of (–)-germacrene D in metabolically engineered Saccharomyces cerevisiae[J]. Microbial Cell Factories, 2022, 21(1): 89. |
91 | Guo J, Zhou W, Li Y, et al. Combination of protein engineering and metabolic engineering to enhance (+)‐nootkatone production in Saccharomyces cerevisiae [J]. Food Bioengineering, 2022, 1(2): 192-202. |
92 | Zha W, An T, Li T, et al. Reconstruction of the biosynthetic pathway of Santalols under control of the gal regulatory system in yeast[J]. ACS Synthetic Biology, 2020, 9(2): 449-456. |
93 | Zuo Y, Xiao F, Gao J, et al. Establishing Komagataella phaffii as a cell factory for efficient production of sesquiterpenoid α-Santalene[J]. Journal of Agricultural and Food Chemistry, 2022, 70(26): 8024-8031. |
94 | Cao Y, Zhang R, Liu W, et al. Manipulation of the precursor supply for high-level production of longifolene by metabolically engineered Escherichia coli [J]. Scientific Reports, 2019, 9(1): 95. |
95 | Liu M, Lin Y C, Guo J J, et al. High-level production of sesquiterpene patchoulol in Saccharomyces cerevisiae [J]. ACS Synthetic Biology, 2021, 10(1): 158-172. |
96 | Zhang C, Chen X, Lindley N D, et al. A "plug‐n‐play" modular metabolic system for the production of apocarotenoids[J]. Biotechnology and Bioengineering, 2018, 115(1): 174-183. |
97 | Lu Y, Yang Q, Lin Z, et al. A modular pathway engineering strategy for the high-level production of β-ionone in Yarrowia lipolytica [J]. Microbial Cell Factories, 2020, 19(1): 49. |
98 | Magnard J L, Roccia A, Caissard J C, et al. Biosynthesis of monoterpene scent compounds in roses[J]. Science, 2015, 349(6243): 81-83. |
99 | Zhu K, Kong J, Zhao B, et al. Metabolic engineering of microbes for monoterpenoid production[J]. Biotechnology Advances, 2021, 53: 107837. |
100 | Jiang G Z, Yao M D, Wang Y, et al. Manipulation of GES and ERG20 for geraniol overproduction in Saccharomyces cerevisiae [J]. Metabolic Engineering, 2017, 41: 57-66. |
101 | Cao X, Lv Y B, Chen J, et al. Metabolic engineering of oleaginous yeast Yarrowia lipolytica for limonene overproduction[J]. Biotechnology for Biofuels, 2016, 9(1): 214. |
102 | Jongedijk E, Cankar K, Ranzijn J, et al. Capturing of the monoterpene olefin limonene produced in Saccharomyces cerevisiae: Limonene from yeast headspace[J]. Yeast, 2014: n/a-n/a. |
103 | Zhao Y, Liang F, Xie Y, et al. Oxetane ring formation in taxol biosynthesis is catalyzed by a bifunctional cytochrome P450 enzyme[J]. Journal of the American Chemical Society, 2024, 146(1): 801-810. |
104 | Yuan W, Lv S, Chen L, et al. Production of sesterterpene ophiobolin by a bifunctional terpene synthase in Escherichia coli [J]. Applied Microbiology and Biotechnology, 2019, 103(21-22): 8785-8797. |
105 | Tang N C, Su J C, Shmidov Y, et al. Synthetic intrinsically disordered protein fusion tags that enhance protein solubility[J]. Nature Communications, 2024, 15(1): 3727. |
106 | Cheah L C, Liu L, Stark T, et al. Metabolic flux enhancement from the translational fusion of terpene synthases is linked to terpene synthase accumulation[J]. Metabolic Engineering, 2023, 77: 143-151. |
107 | Guo Q, Shi T Q, Peng Q Q, et al. Harnessing Yarrowia lipolytica peroxisomes as a subcellular factory for α-humulene overproduction[J]. Journal of Agricultural and Food Chemistry, 2021, 69(46): 13831-13837. |
108 | Miller B R, Kung Y. Structural features and domain movements controlling substrate binding and cofactor specificity in class II HMG-CoA reductase[J]. Biochemistry, 2018, 57(5): 654-662. |
109 | Kwak S, Kim S R, Xu H, et al. Enhanced isoprenoid production from xylose by engineered Saccharomyces cerevisiae [J]. Biotechnology and Bioengineering, 2017, 114(11): 2581-2591. |
110 | Kim T Y, Park H, Kim S K, et al. Production of (-)-α-bisabolol in metabolically engineered Saccharomyces cerevisiae [J]. Journal of Biotechnology, 2021, 340: 13-21. |
111 | Yuzbasheva E Y, Agrimi G, Yuzbashev T V, et al. The mitochondrial citrate carrier in Yarrowia lipolytica: Its identification, characterization and functional significance for the production of citric acid[J]. Metabolic Engineering, 2019, 54: 264-274. |
112 | Rodriguez S, Denby C M, Van Vu T, et al. ATP citrate lyase mediated cytosolic acetyl-CoA biosynthesis increases mevalonate production in Saccharomyces cerevisiae [J]. Microbial Cell Factories, 2016, 15(1): 48. |
113 | Hellgren J, Godina A, Nielsen J, et al. Promiscuous phosphoketolase and metabolic rewiring enables novel non-oxidative glycolysis in yeast for high-yield production of acetyl-CoA derived products[J]. Metabolic Engineering, 2020, 62: 150-160. |
114 | Ye M, Gao J, Li J, et al. Promoter engineering enables precise metabolic regulation towards efficient β-elemene production in Ogataea polymorpha [J]. Synthetic and Systems Biotechnology, 2024, 9(2): 234-241. |
115 | Chen Y, Daviet L, Schalk M, et al. Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism[J]. Metabolic Engineering, 2013, 15: 48-54. |
116 | Li Q, Fan F, Gao X, et al. Balanced activation of IspG and IspH to eliminate MEP intermediate accumulation and improve isoprenoids production in Escherichia coli [J]. Metabolic Engineering, 2017, 44: 13-21. |
117 | Wang F, Lv X, Xie W, et al. Combining Gal4p-mediated expression enhancement and directed evolution of isoprene synthase to improve isoprene production in Saccharomyces cerevisiae [J]. Metabolic Engineering, 2017, 39: 257-266. |
118 | Wu T, Li S, Zhang B, et al. Engineering Saccharomyces cerevisiae for the production of the valuable monoterpene ester geranyl acetate[J]. Microbial Cell Factories, 2018, 17(1): 85. |
119 | Zhao J, Li C, Zhang Y, et al. Dynamic control of ERG20 expression combined with minimized endogenous downstream metabolism contributes to the improvement of geraniol production in Saccharomyces cerevisiae [J]. Microbial Cell Factories, 2017, 16(1): 17. |
120 | Dusséaux S, Wajn W T, Liu Y, et al. Transforming yeast peroxisomes into microfactories for the efficient production of high-value isoprenoids[J]. Proceedings of the National Academy of Sciences, 2020, 117(50): 31789-31799. |
121 | Son S H, Kim J E, Park G, et al. Metabolite trafficking enables membrane-impermeable-terpene secretion by yeast[J]. Nature Communications, 2022, 13(1): 2605. |
122 | Qin L, Ma D, Lin G, et al. Low temperature promotes the production and efflux of terpenoids in yeast[J]. Bioresource Technology, 2024, 395: 130376. |
123 | Cheng T, Zhang K, Guo J, et al. Highly efficient biosynthesis of β-caryophyllene with a new sesquiterpene synthase from tobacco[J]. Biotechnology for Biofuels and Bioproducts, 2022, 15(1): 39. |
124 | Scandiffio R, Geddo F, Cottone E, et al. Protective effects of (E)-β-Caryophyllene (BCP) in Chronic Inflammation [J]. Nutrients, 2020, 12(11): 3273. |
125 | Tang Q, Xu F, Wei X, et al. Investigation of β-caryophyllene as terpene penetration enhancer: Role of stratum corneum retention[J]. European Journal of Pharmaceutical Sciences, 2023, 183: 106401. |
126 | Lim H S, Kim S K, Woo S G, et al. (-)-α-Bisabolol production in engineered Escherichia coli expressing a novel (-)-α-Bisabolol synthase from the globe artichoke Cynara cardunculus var. Scolymus [J]. Journal of Agricultural and Food Chemistry, 2021, 69(30): 8492-8503. |
127 | Eddin L B, Jha N K, Goyal S N, et al. Health benefits, pharmacological effects, molecular mechanisms, and therapeutic potential of α-Bisabolol[J]. Nutrients, 2022, 14(7): 1370. |
128 | Jiang Y, Xia L, Gao S, et al. Engineering Saccharomyces cerevisiae for enhanced (–)-α-bisabolol production[J]. Synthetic and Systems Biotechnology, 2023, 8(2): 187-195. |
129 | Liu S C, Liu Z, Wei L J, et al. Pathway engineering and medium optimization for α-farnesene biosynthesis in oleaginous yeast Yarrowia lipolytica [J]. Journal of Biotechnology, 2020, 319: 74-81. |
130 | Li S, Luo S, Yin X, et al. Screening of ent-copalyl diphosphate synthase and metabolic engineering to achieve de novo biosynthesis of ent-copalol in Saccharomyces cerevisiae [J]. Synthetic and Systems Biotechnology, 2024, 9(4): 784-792. |
131 | Zhang X, Chen S, Lin Y, et al. Metabolic engineering of Pichia pastoris for high-level production of lycopene[J]. ACS Synthetic Biology, 2023: acssynbio.3c00294. |
132 | Ye M, Gao J, Zhou Y J. Global metabolic rewiring of the nonconventional yeast Ogataea polymorpha for biosynthesis of the sesquiterpenoid β-elemene[J]. Metabolic Engineering, 2023, 76: 225-231. |
133 | Luo G, Lin Y, Chen S, et al. Overproduction of patchoulol in metabolically engineered Komagataella phaffii [J]. Journal of Agricultural and Food Chemistry, 2023, 71(4): 2049-2058. |
134 | Wei Y, Meng N, Wang Y, et al. Transcription factor VvWRKY70 inhibits both norisoprenoid and flavonol biosynthesis in grape[J]. Plant Physiology, 2023, 193(3): 2055-2070. |
135 | Mosaferi S, Jelley R E, Fedrizzi B, et al. Synthesis of d6-deuterated analogues of aroma molecules-β-damascenone, β-damascone and safranal[J]. Results in Chemistry, 2022, 4: 100264. |
136 | Tomasino E, Bolman S. The potential effect of β-Ionone and β-Damascenone on sensory perception of pinot noir wine aroma[J]. Molecules, 2021, 26(5): 1288. |
137 | Chudasama D. Importance of intellectual property rights[J]. Journal of Intellectual Property Rights Law, 4(2): 2582-9742. |
138 | 陈大明, 周光明, 刘晓, 等. 从全球专利分析看合成生物学技术发展趋势[J]. 合成生物学, 2020, 1(3): 372-384. |
CHEN Daming, ZHOU Guangming, LIU Xiao, et al. Analysis of global patents for the trend of synthetic biology inventions. Synthetic Biology Journal[J], 2020, 1(3): 372-384 doi:10.12211/2096-8280.2020-035 | |
139 | Wang S, Sun X, Han Y, et al. Sustainable biosynthesis of squalene from waste cooking oil by the yeast Yarrowia lipolytica [J]. Metabolic Engineering Communications, 2024, 18: e00240. |
140 | Pang Y, Zhao Y, Li S, et al. Engineering the oleaginous yeast Yarrowia lipolytica to produce limonene from waste cooking oil[J]. Biotechnology for Biofuels, 2019, 12(1): 241. |
141 | Zhao Y, Zhu K, Li J, et al. High‐efficiency production of bisabolene from waste cooking oil by metabolically engineered Yarrowia lipolytica [J]. Microbial Biotechnology, 2021, 14(6): 2497-2513. |
[1] | 陈子苓, 向阳飞. 类器官技术与合成生物学协同研究进展[J]. 合成生物学, 2024, 5(4): 795-812. |
[2] | 蔡冰玉, 谭象天, 李伟. 合成生物学在干细胞工程化改造中的研究进展[J]. 合成生物学, 2024, 5(4): 782-794. |
[3] | 谢皇, 郑义蕾, 苏依婷, 阮静怡, 李永泉. 放线菌聚酮类化合物生物合成体系重构研究进展[J]. 合成生物学, 2024, 5(3): 612-630. |
[4] | 查文龙, 卜兰, 訾佳辰. 中药药效成分群的合成生物学研究进展[J]. 合成生物学, 2024, 5(3): 631-657. |
[5] | 惠真, 唐啸宇. CRISPR/Cas9编辑系统在微生物天然产物研究中的应用[J]. 合成生物学, 2024, 5(3): 658-671. |
[6] | 刘晓楠, 李静, 祝晓熙, 徐子硕, 齐健, 江会锋. 紫杉醇生物合成机制研究进展[J]. 合成生物学, 2024, 5(3): 527-547. |
[7] | 叶精勤, 黄文华, 潘超, 朱力, 王恒樑. 合成生物学在多糖结合疫苗研发中的应用[J]. 合成生物学, 2024, 5(2): 338-352. |
[8] | 马雪璟, 郭畅, 华兆琳, 侯百东. 合成生物技术助力纳米颗粒疫苗理性设计时代的到来[J]. 合成生物学, 2024, 5(2): 353-368. |
[9] | 涂辉阳, 韩为东, 张斌. 肿瘤新抗原疫苗的设计与优化策略[J]. 合成生物学, 2024, 5(2): 254-266. |
[10] | 方超, 黄卫人. 合成生物学在肿瘤疫苗设计中的应用进展[J]. 合成生物学, 2024, 5(2): 239-253. |
[11] | 王步森, 徐婧含, 高智强, 侯利华. 病毒载体疫苗研究进展[J]. 合成生物学, 2024, 5(2): 281-293. |
[12] | 章金勇, 顾江, 关山, 李海波, 曾浩, 邹全明. 合成生物学助力细菌疫苗研发[J]. 合成生物学, 2024, 5(2): 321-337. |
[13] | 袁为锋, 赵永亮, 吴芷萱, 徐可. 合成生物学在新冠病毒广谱疫苗研发中的应用[J]. 合成生物学, 2024, 5(2): 369-384. |
[14] | 袁燕燕, 陈慧芳, 杨思慧, 王洪辉, 聂舟. 人工调控受体聚集的化学合成生物学策略及应用[J]. 合成生物学, 2024, 5(1): 53-76. |
[15] | 赵静宇, 张健, 祁庆生, 王倩. 基于细菌双组分系统的生物传感器的研究进展[J]. 合成生物学, 2024, 5(1): 38-52. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||