• 特约评述 •
高琪, 肖文海
出版日期:
2024-08-30
通讯作者:
肖文海
作者简介:
基金资助:
Qi GAO, Wenhai XIAO
Online:
2024-08-30
Contact:
Wenhai XIAO
摘要:
单萜类化合物是一类由两个异戊二烯单元缩合而成的萜类化合物,被广泛应用于医药、食品、香料、化妆品、农业和能源等行业中。相较于植物提取和化学合成,利用微生物异源合成单萜类化合物提供了一种高效、可持续及生态友好的可替代途径。酵母细胞由于具有短暂的生长周期、内源甲羟戊酸路径和完整的蛋白后修饰体系等优势,成为生物合成单萜类化合物的潜在宿主。随着合成生物学关键技术的发展,研究者们已经成功构建了合成单萜的微生物细胞工厂,但与大规模工业化生产之间还有很大距离。本文介绍了单萜的生物合成途径,除酵母内源甲羟戊酸途径外,人工构建的异源异戊烯醇利用途径与醇依赖型半萜途径也可用于单萜前体香叶基二磷酸的合成,随后围绕提高单萜前体供应、关键酶的改造和调控、区室化工程、缓解单萜的细胞毒性等几个方面阐述了利用酵母细胞合成单萜类化合物的策略和研究进展。最后基于目前单萜类化合物合成仍面临的前体供给不足与单萜及中间代谢物的细胞毒性等挑战,对未来酵母合成单萜类化合物的发展方向进行了展望,包括对单萜产生细胞毒性的具体机制进一步解析、更高效单萜合酶的挖掘与改造、动态调控单萜合成的代谢途径以及更稳定高效合成单萜宿主细胞的探索等,旨在为以后利用酵母合成单萜提供一定的指导。
中图分类号:
高琪, 肖文海. 酵母合成单萜类化合物的研究进展[J]. 合成生物学, DOI: 10.12211/2096-8280.2024-049.
Qi GAO, Wenhai XIAO. Advances in the biosynthesis of monoterpenes by yeast[J]. Synthetic Biology Journal, DOI: 10.12211/2096-8280.2024-049.
单萜 | 底盘 | 策略 | 产量(mg/L) | 参考文献 |
---|---|---|---|---|
香叶醇 | 酿酒酵母 | 1.过表达截短的tHMGR和IDI1 2.利用计算机结构分析和建模来截短CrGES酶的N端转运肽 3.反向融合ERG20ww / t3CrGES与另一拷贝ERG20ww共表达 4.补料分批发酵 | 1680 | [ |
解脂耶氏酵母 | 1.过表达截短的HMG1、IDI和tCrGES 2.过表达3拷贝的tCrGES和单拷贝的ERG10、HMGS、tHMG1、IDI1 | 1000 | [ | |
甘油假丝酵母 | 1.MVA与IUP双途径 2.设计癸烷响应杂交启动子调控基因表达:将PCgALK1的ARR1元件串联至PGAP的核心启动子(PGAP (core-477)) | 1194.6 | [ | |
香茅醇 | 酿酒酵母 | 1.表达CrIS还原酶并敲除ATF1 2.内源Erg20突变为Erg20F96W 3.对融合蛋白、CrIS酶、IDI1使用蛋白支架SF1(SH31PDZ1GBD1) | 8300 | [ |
芳樟醇 | 酿酒酵母 | 1.对芳樟醇合成酶(t67OMcLISM)底物结合口袋的入口处氨基酸位点F447E突变 2.利用细胞质和过氧化物酶体促进芳樟醇合成 3.5L补料分批发酵 | 2600 | [ |
月桂烯 | 酿酒酵母 | 1.使用弱启动子PHXT1替换Erg20的启动子 2.将Erg20F96W与MS/OS进行融合表达 3.优化两相发酵中有机相的添加量 | 8.12 | [ |
罗勒烯 | 酿酒酵母 | 34.56 | ||
柠檬烯 | 酿酒酵母 | 1.动态抑制竞争性旁路 2.优化tLimS拷贝数 3.增加乙酰辅酶A和NADPH供应 | 2630 | [ |
解脂耶氏酵母 | 1.引入额外拷贝的柠檬烯合成基因 2.甘油和柠檬酸作为碳源 | 165.3 | [ | |
薄荷醇 | 酿酒酵母 | 1.薄荷醇从头合成路径的构建 2.过表达MVA路径基因 3.使用弱启动子PHXT1替换Erg20的启动子 4.增加限速酶IPDH与KSI拷贝数 | 6.28 | [ |
蒎烯 | 酿酒酵母 | 1.表达ERG20WW+ tPtPS 2.过表达IDI1 和 MAF1 | 11.7 | [ |
解脂耶氏酵母 | 1.构建非正交生物合成途径 2.利用餐厨废油和木质纤维素水解液作为碳源 | 36.1 | [ | |
甘油假丝酵母 | 1.强化MVA路径并引入NPP合酶 2.过表达Hog1基因与外源磷酸酶 3.对Pt30进行理性设计——点突变(T376R) 4.添加NaCl升高渗透压促使角鲨烯应答 5.优化培养基及5L发酵罐扩大 | 16.4 | [ | |
桧烯 | 酿酒酵母 | 1.在细胞质和线粒体中同时表达t34SabS1 2.过表达线粒体相关基因AIM25 | 154.9 | [ |
表1 酵母合成单萜类化合物的研究现状
Table 1 Current status on yeast synthesis of monoterpenoids
单萜 | 底盘 | 策略 | 产量(mg/L) | 参考文献 |
---|---|---|---|---|
香叶醇 | 酿酒酵母 | 1.过表达截短的tHMGR和IDI1 2.利用计算机结构分析和建模来截短CrGES酶的N端转运肽 3.反向融合ERG20ww / t3CrGES与另一拷贝ERG20ww共表达 4.补料分批发酵 | 1680 | [ |
解脂耶氏酵母 | 1.过表达截短的HMG1、IDI和tCrGES 2.过表达3拷贝的tCrGES和单拷贝的ERG10、HMGS、tHMG1、IDI1 | 1000 | [ | |
甘油假丝酵母 | 1.MVA与IUP双途径 2.设计癸烷响应杂交启动子调控基因表达:将PCgALK1的ARR1元件串联至PGAP的核心启动子(PGAP (core-477)) | 1194.6 | [ | |
香茅醇 | 酿酒酵母 | 1.表达CrIS还原酶并敲除ATF1 2.内源Erg20突变为Erg20F96W 3.对融合蛋白、CrIS酶、IDI1使用蛋白支架SF1(SH31PDZ1GBD1) | 8300 | [ |
芳樟醇 | 酿酒酵母 | 1.对芳樟醇合成酶(t67OMcLISM)底物结合口袋的入口处氨基酸位点F447E突变 2.利用细胞质和过氧化物酶体促进芳樟醇合成 3.5L补料分批发酵 | 2600 | [ |
月桂烯 | 酿酒酵母 | 1.使用弱启动子PHXT1替换Erg20的启动子 2.将Erg20F96W与MS/OS进行融合表达 3.优化两相发酵中有机相的添加量 | 8.12 | [ |
罗勒烯 | 酿酒酵母 | 34.56 | ||
柠檬烯 | 酿酒酵母 | 1.动态抑制竞争性旁路 2.优化tLimS拷贝数 3.增加乙酰辅酶A和NADPH供应 | 2630 | [ |
解脂耶氏酵母 | 1.引入额外拷贝的柠檬烯合成基因 2.甘油和柠檬酸作为碳源 | 165.3 | [ | |
薄荷醇 | 酿酒酵母 | 1.薄荷醇从头合成路径的构建 2.过表达MVA路径基因 3.使用弱启动子PHXT1替换Erg20的启动子 4.增加限速酶IPDH与KSI拷贝数 | 6.28 | [ |
蒎烯 | 酿酒酵母 | 1.表达ERG20WW+ tPtPS 2.过表达IDI1 和 MAF1 | 11.7 | [ |
解脂耶氏酵母 | 1.构建非正交生物合成途径 2.利用餐厨废油和木质纤维素水解液作为碳源 | 36.1 | [ | |
甘油假丝酵母 | 1.强化MVA路径并引入NPP合酶 2.过表达Hog1基因与外源磷酸酶 3.对Pt30进行理性设计——点突变(T376R) 4.添加NaCl升高渗透压促使角鲨烯应答 5.优化培养基及5L发酵罐扩大 | 16.4 | [ | |
桧烯 | 酿酒酵母 | 1.在细胞质和线粒体中同时表达t34SabS1 2.过表达线粒体相关基因AIM25 | 154.9 | [ |
1 | 高扬乐, 谢梦斯, 李力. 利用不同底盘细胞开展生物合成萜类化合物的研究进展[J]. 药物生物技术, 2022, 29(01): 95-101. |
GAO Y L, XIE M S, LI L.Research Progress in Biosynthesis of Terpenoids using Different Chassis Cells[J]. Chinese Journal Of Pharmaceutical Biotechnology, 2022, 29(01): 95-101. | |
2 | KABIR A, CACCIAGRANO F, TARTAGLIA A, et al. Analysis of Monoterpenes and Monoterpenoids[J]. Recent Advances in Natural Products Analysis, 2020: 274-286. |
3 | ORTH A M, POPLACEAN I, FASTOWSKI O,et al. Assessment of dietary exposure to flavouring substances via consumption of flavoured teas. Part II: transfer rates of linalool and linalyl esters into Earl Grey tea infusions[J]. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 2014, 31(2): 207-217. |
4 | KARABORKLU S, AYVAZ A. A comprehensive review of effective essential oil components in stored-product pest management[J]. Journal of Plant Diseases and Protection, 2023, 130(3): 449-481. |
5 | DASSANAYAKE M K, CHONG C H, KHOO T J, et al. Synergistic field crop pest management properties of plant-derived essential oils in combination with synthetic pesticides and bioactive molecules: a review[J]. Foods, 2021, 10(9): 2016. |
6 | MARRS T C, MAYNARD R L. Neurotranmission systems as targets for toxicants: a review[J]. Cell Biol Toxicol, 2013, 29(6): 381-396. |
7 | KIM S H, BAE H C, PARK E J, et al. Geraniol inhibits prostate cancer growth by targeting cell cycle and apoptosis pathways[J]. Biochemical And Biophysical Research Communications, 2011, 407(1): 129-34. |
8 | WITTIG C, SCHEUER C, PARAKENINGS J, et al. Geraniol Suppresses Angiogenesis by Downregulating Vascular Endothelial Growth Factor (VEGF)/VEGFR-2 Signaling[J]. PLoS One, 2015, 10(7): e0131946. |
9 | GUPTA P, PHULARA S C. Metabolic engineering for isoprenoid-based biofuel production[J]. Journal of Applied Microbiology, 2015, 119(3): 605-619. |
10 | CIRIMINNA R, LOMELI-RODRIGUEZ M, DEMMA CARA P, et al. Limonene: a versatile chemical of the bioeconomy[J]. Chemical Communications, 2014, 50(97): 15288–15296. |
11 | AJIKUMAR P K, XIAO W H, TYO K E, et al. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli[J]. Science, 2010, 330(6000): 70-74. |
12 | CHANDRAN S S, KEALEY J T, REEVES C D. Microbial production of isoprenoids[J]. Process Biochemistry, 2011, 46(9): 1703-1710. |
13 | KIM J, SALVADOR M, SAUNDERS E, et al. Properties of alternative microbial hosts used in synthetic biology: towards the design of a modular chassis[J]. Essays Biochem, 2016, 60(4): 303-313. |
14 | IGNEA, C, RAADAM, M H, MOTAWIA, M S, et al. Orthogonal monoterpenoid biosynthesis in yeast constructed on an isomeric substrate[J]. Nature Communications, 2019, 10 (1): 3799. |
15 | CAO X, LV Y B, CHEN J, et al. Metabolic engineering of oleaginous yeast Yarrowia lipolytica for limonene overproduction[J]. Biotechnology for Biofuels and Bioproducts, 2016, 9: 214. |
16 | SARRIA S, WONG B, GARCIA MARTIN H, et al. Microbial synthesis of pinene[J]. Acs Synthetic Biology, 2014, 3(7): 466-475. |
17 | CHATZIVASILEIOU A O, WARD V, EDGAR S M, et al. Two-step pathway for isoprenoid synthesis[J]. Proceedings of The National Academy of Sciences of The United States of America, 2019, 116 (2): 506 –511. |
18 | LUND S, HALL R, WILLIAMS G J. An artificial pathway for isoprenoid biosynthesis decoupled from native hemiterpene metabolism[J]. ACS Synthetic Biology, 2019, 8 (2): 232–238. |
19 | MUHAMMAD A, FENG X, RASOOL A, et al. Production of plant natural products through engineered Yarrowia lipolytica[J]. Biotechnology Advances, 2020, 43: 107555. |
20 | LIU G S, LI T, ZHOU W, et al. The yeast peroxisome: A dynamic storage depot and subcellular factory for squalene overproduction[J]. Metabolic Engineering, 2020, 57: 151-161. |
21 | ZHU Z T, DU M M, GAO B, et al. Metabolic compartmentalization in yeast mitochondria: Burden and solution for squalene overproduction[J]. Metabolic Engineering, 2021, 68: 232-245. |
22 | PADDON C J, WESTFALL P J, PITERA D J, et al. High-level semi-synthetic production of the potent antimalarial artemisinin [J]. Nature, 2013, 496(7446): 528-532. |
23 | MEADOWS A L, HAWKINS K M, TSEGAYE Y, et al. Rewriting yeast central carbon metabolism for industrial isoprenoid production [J]. Nature, 2016, 537(7622): 694-697. |
24 | LI Z J, WANG Y Z, WANG L R, et al. Advanced strategies for the synthesis of terpenoids in Yarrowia lipolytica[J]. Journal of Agricultural and Food Chemistry, 2021, 69(8): 2367-2381. |
25 | LARROUDE M, CELINSKA E, BACK A, et al. A synthetic biology approach to transform Yarrowia lipolytica into a competitive Biotechnologyogical producer of beta-carotene[J]. Biotechnology and Bioengineering, 2018, 115(2): 464-472. |
26 | AGRAWAL A, YANG Z, BLENNER M. Engineering Yarrowia lipolytica for the biosynthesis of geraniol[J]. Metabolic Engineering Communications, 2023, 17: e00228. |
27 | WEI L J, ZHONG Y T, NIE M Y, et al. Biosynthesis of α-Pinene by Genetically Engineered Yarrowia lipolytica from Low-Cost Renewable Feedstocks[J]. Journal of Agricultural and Food Chemistry, 2020, 69(1): 275-285. |
28 | ZHUGE J, FANG H Y, WANG Z X, et al. Glycerol production by a novel osmotolerant yeast Candida glycerinogenes[J]. Applied Microbiology And Biotechnology, 2001, 55: 686-692. |
29 | QIAO Y, LI C, LU X, et al. Identification of key residues forefficient glucose transport bythehexose transporter CgHxt4 inhigh sugar fermentation yeast Candida glycerinogenes[J]. Applied Microbiology And Biotechnology, 2021, 105(19): 7295-7307. |
30 | MA T, CAI H, ZONG H, et al. Effects of trehalose and ergosterol on pinene stress of Candida glycerinogenes[J]. Biotechnology And Applied Biochemistry, 2023, 70(1): 403-414. |
31 | 马腾飞. Candida glycerinogenes蒎烯耐受性及其生物合成研究[D]. 江南大学, 2023. |
MA T F. Cell tolernce and biosynthesis of pinene in Candida glycerinogenes[D]. Jiangnan University,2023. | |
32 | ZHAO C, WANG X H, LU X Y, et al. Tuning Geraniol Biosynthesis via a Novel Decane-Responsive Promoter in Candida glycerinogenes[J]. ACS Synthetic Biology, 2022, 11(5): 1835-1844. |
33 | ZHANG L, CHEN X, CHEN Z, et al. Development of an efficient genetic manipulation strategy for sequential gene disruption and expression of different heterologous GFP genes in Candida tropicalis[J]. Applied Microbiology and Biotechnology, 2016, 100(22): 9567-9580. |
34 | 陈远童. 十二碳二元酸工业生产试验研究[J]. 微生物学通报, 1998, 25(4): 244. |
CHEN Y T. Experimental study on industrial production of dodecanedioic acid[D]. Microbiology China, 1998, 25(4): 244. | |
35 | ALBUQUERQUE T L, SILVA I J DA, DE MACEDO G R, et al. Biotechnologyogical production of xylitol from lignocellulosic wastes: A review [J]. Process Biochemistry, 2014, 49(11): 1779-1789. |
36 | 郭晋蓉. 代谢工程改造热带假丝酵母生产柠檬烯及其衍生物紫苏酸[D]. 江南大学, 2023. |
GUO J R. Production of limonene and its derivative perillic acid in Candida tropicalis via metabolic engineering[D]. Jiangnan University, 2022. | |
37 | FISCHER MJ, MEYER S, CLAUDEL P, et al. Metabolic engineering of monoterpene synthesis in yeast[J]. Biotechnology and Bioengineering, 2011, 108: 1883-1892. |
38 | STRIJBIS K, DISTEL B. Intracellular acetyl unit transport in fungal carbon metabolism[J]. Eukaryotic Cell, 2010, 9(12): 1809-15. |
39 | ZHANG Q, ZENG W Z, XU S,et al. Metabolism and strategies for enhanced supply of acetyl-CoA in Saccharomyces cerevisiae[J]. Bioresource Technology, 2021, 342: 125978. |
40 | CARDENAS J, SILVA N A DA. Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis[J]. Metabolic Engineering, 2016, 36: 80-89. |
41 | CHEN Y, DAVIET L, SCHALK M, et al. Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism[J]. Metabolic Engineering, 2013, 15: 48–54. |
42 | ZHANG X, LIU X, MENG Y, et al. Combinatorial engineering of Saccharomyces cerevisiae for improving limonene production[J]. Biochemical Engineering Journal, 2021, 176: 108155. |
43 | LIAN J, SI T, NAIR N U, et al. Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains[J]. Metabolic Engineering, 2014, 24: 139-149. |
44 | CHEN Y, SIEWERS V, NIELSEN J. Profiling of cytosolic and peroxisomal acetyl-CoA metabolism in Saccharomyces cerevisiae[J]. PLoS One, 2012, 7(8): e42475. |
45 | ZHANG X K, NIE M, CHEN J, et al. Multicopy integrants of crt genes and co-expression of AMP deaminase improve lycopene production in Yarrowia lipolytica[J]. Journal of Biotechnology, 2019, 289: 46-54. |
46 | JIANG D, YANG M, CHEN K, et al. Exploiting synthetic biology platforms for enhanced biosynthesis of natural products in Yarrowia lipolytica[J]. Bioresource Technology, 2024, 399: 130614. |
47 | BURG J S, ESPENSHADE P J. Regulation of HMG-CoA reductase in mammals and yeast[J]. Progress in Lipid Research, 2011, 50(4): 403-410. |
48 | IGNEA C, PONTINI M, MAFFEI M E, et al. Engineering monoterpene production in yeast using a synthetic dominant negative geranyl diphosphate synthase[J]. ACS Synthetic Biology, 2014, 3(5): 298-306. |
49 | IGNEA C, CVETKOVIC I, LOUPASSAKI S, et al. Improving yeast strains using recyclable integration cassettes, for the production of plant terpenoids[J]. Microbial Cell Factories, 2011, 10:4. |
50 | LIU J, ZHANG W, DU G, et al. Overproduction of geraniol by enhanced precursor supply in Saccharomyces cerevisiae[J]. Journal of Biotechnology, 2013, 168 (4): 446–451. |
51 | MUKHERJEE M, BLAIR R H, WANG Z Q. Machine-learning guided elucidation of contribution of individual steps in the mevalonate pathway and construction of a yeast platform strain for terpenoid production[J]. Metabolic Engineering. 2022, 74: 139-149. |
52 | ZHOU P P, DU Y, XU, et al. Improved linalool production in Saccharomyces cerevisiae by combining directed evolution of linalool synthase and overexpression of the complete mevalonate pathway[J]. Biochemical Engineering Journal, 2020, 161(15): 107655. |
53 | CHEN Y, WANG Y, LIU M, et al. Primary and Secondary Metabolic Effects of a Key Gene Deletion (ΔYPL062W) in Metabolically Engineered Terpenoid-Producing Saccharomyces cerevisiae[J]. Applied And Environmental Microbiologyl, 2019, 85(7): e01990-18. |
54 | MA Y, ZU Y, HUANG S, et al. Engineering a universal and efficient platform for terpenoid synthesis in yeast[J]. Proceedings of The National Academy of Sciences of The United States of America, 2023, 120(1): e2207680120. |
55 | 张帆, 王颖, 李春, 等. 单萜类化合物的微生物合成[J]. 生物工程学报, 2022, 38(2): 427-442. |
ZHANG F, WANG Y, LI C, et al. Microbial synthesis of monoterpenoids: a review[J]. Chinese Journal of Biotechnology, 2022, 38(2): 427-442. | |
56 | ZHAO J, BAO X, LI C, et al. Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae[J]. Applied Microbiology And Biotechnology, 2016, 100(10): 4561-4571. |
57 | ZHANG Y, WANG J, CAO X, et al. High-level production of linalool by engineered Saccharomyces cerevisiae harboring dual mevalonate pathways in mitochondria and cytoplasm[J]. Enzyme and Microbial Technology, 2020, 134: 109462. |
58 | JIANG G Z, YAO M D, WANG Y, et al. Manipulation of GES and ERG20 for geraniol overproduction in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2017, 41: 57-66. |
59 | BOHLMANN J, MEYER-GAUEN G, CROTEAU R. Plant terpenoid synthases: molecular biology and phylogenetic analysis[J]. Proceedings of The National Academy of Sciences of The United States of America, 1998, 95(8): 4126-4133. |
60 | DENBY C M, LI R A, VU V T, et al. Industrial brewing yeast engineered for the production of primary flavor determinants in hopped beer[J]. Nature Communications, 2018, 9(1): 965. |
61 | WANG X, PEREIRA J H, TSUTAKAWA S, et al. Efficient production of oxidized terpenoids via engineering fusion proteins of terpene synthase and cytochrome P450[J]. Metabolic Engineering, 2021, 64: 41–51. |
62 | WANG Y, TONG R, YU J Z. Chemical synthesis of multifunctional air pollutants: terpene-derived nitrooxy organosulfates[J]. Environmental Science and Technology, 2021, 55(13): 8573–8582. |
63 | DENG Y, SUN M, XU S, et al. Enhanced(S)-linalool production by fusion expression of farnesyl diphosphate synthase and linalool synthase in Saccharomyces cerevisiae[J]. Journal of Applied Microbiologyl, 2016, 121(1): 187-195. |
64 | JIANG G, YAO M, WANG Y, et al. A "push-pull-restrain" strategy to improve citronellol production in Saccharomyces cerevisiae[J]. Metabolic Engineering, 66: 51-59. |
65 | ZHOU P P, DU Y, FANG X, et al. Combinatorial Modulation of Linalool Synthase and Farnesyl Diphosphate Synthase for Linalool Overproduction in Saccharomyces cerevisiae[J]. Journal of Agricultural and Food Chemistry, 2021, 69(3):1003-1010. |
66 | AYER A, SANWALD J, PILLAY B A. Distinct redox regulation in sub-cellular compartments in response to various stress conditions in Saccharomyces cerevisiae[J]. PLoS One, 2013, 8(6): e65240. |
67 | WEINERT B T, IESMANTAVICIUS V, MOUSTAFA T, et al. Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae[J]. Moecularl Systems Biology, 2014, 10 (1): 716. |
68 | KIM J E, JANG I S, SON S H, et al. Tailoring the Saccharomyces cerevisiae endoplasmic reticulum for functional assembly of terpene synthesis pathway[J]. Metabolic Engineering, 2019, 56: 50–59. |
69 | GAO S, TONG Y, ZHU L, et al. Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous β-carotene production[J]. Metabolic Engineering, 2017, 41: 192–201. |
70 | MA T, SHI B, YE Z, et al. Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene[J]. Metabolic Engineering, 2019, 52: 134–142. |
71 | KONG X, WU Y, YU W, et al. Efficient Synthesis of Limonene in Saccharomyces cerevisiae Using Combinatorial Metabolic Engineering Strategies[J]. Journal of Agricultural and Food Chemistry, 2023, 71(20): 7752-7764. |
72 | JIA H J, CHEN T H, QU J Z, et al. Collaborative subcellular compartmentalization to improve GPP utilization and boost sabinene accumulation in Saccharomyces cerevisiae[J]. Biochemical Engineering Journal, 2020, 164: 107768. |
73 | DUSSÉAUX S, WAJN W T, LIU Y, et al. Transforming yeast peroxisomes into microfactories for the efficient production of high-value isoprenoids[J]. Proceedings of The National Academy of Sciences of The United States of America, 2020, 117(50): 31789-31799. |
74 | GERKE J, FRAUENDORF H, SCHNEIDER D, et al. Production of the fragrance geraniol in peroxisomes of a product-tolerant baker's yeast[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 582052. |
75 | PARVEEN M, HASAN M K, TAKAHASHI J, et al. Response of Saccharomyces cerevisiae to a monoterpene: evaluation of antifungal potential by DNA microarray analysis[J]. Journal of Antimicrobial Chemotherapy, 2004, 54(1): 46-55. |
76 | BRENNAN T C, KROMER J O, NIELSEN L K. Physiological and transcriptional responses of Saccharomyces cerevisiae to d-limonene show changes to the cell wall but not to the plasma membrane[J]. Applied And Environmental Microbiology, 2013, 79(12): 3590-3600. |
77 | BAKKALI F, AVERBECK S, AVERBECK D, et al. Cytotoxicity and gene induction by some essential oils in the yeast Saccharomyces cerevisiae[J]. Mutation Research-fundamental And Molecular Mechanisms of Mutagenesis, 2005, 585(1-2): 1-13. |
78 | URIBE S, RAMIREZ J, PENA A. Effects of beita-pinene on yeast membrane functions[J]. Journal of Bacteriology, 1985, 161(3): 1195-1200. |
79 | 田宁, 咸漠, 胡仰栋, 等. 产香叶醇重组大肠杆菌发酵培养基的优化[J]. 林产化学与工业, 2015, 35(4): 131-137. |
TIAN N, XIAN M, HU Y D, et al. Optimization of fermentation medium of geraniol-producing recombinant Escherichia coli[J]. Chemistry and Industry of Forest Products, 2015, 35(4): 131-137. | |
80 | LIU W, XU X, ZHANG R, et al. Engineering Escherichia coli for high-yield geraniol production with biotransformation of geranyl acetate to geraniol under fed-batch culture[J]. Biotechnology For Biofuels, 2016, 9: 58. |
81 | DUNLOP M J, DOSSANI Z Y, SZMIDT H L, et al. Engineering microbial biofuel tolerance and export using efflux pumps[J]. Molecular Systems Biology, 2011, 7(1): 487. |
82 | WANG Y, LIM L, DIGUISTINI S, et al. A specialized ABC efflux transporter GcABC-G1 confers monoterpene resistance to Grosmannia clavigera, a bark beetle-associated fungal pathogen of pine trees[J]. New Phytologist, 2013, 197(3): 886-898. |
83 | DEMISSIE Z A, TARNOWYCZ M, ADAL A M, et al. A lavender ABC transporter confers resistance to monoterpene toxicity in yeast[J]. Planta, 2019, 249(1): 139-144. |
84 | CHANG Y L, HUANG L M, KUO X Z, et al. PbABCG1 and PbABCG2 transporters are required for the emission of floral monoterpenes in Phalaenopsis bellina[J]. Plant Journal, 2023, 114(2):279-292. |
85 | RAFIEI V, RUFFINO A, PERSSON HODÉN K, et al. A Verticillium longisporum pleiotropic drug transporter determines tolerance to the plant host β-pinene monoterpene[J]. Molecular Plant Pathology, 2022, 23(2): 291-303. |
86 | 陈天华. 高产桧烯酿酒酵母的构建与优化[D]. 天津大学, 2019. |
CHEN T H. Construction and optimization of Saccharomyces cerevisiae for sabinene overproduction. Tianjin University, 2019. | |
87 | HU Z, LI H, WENG Y, et al. Improve the production of D-limonene by regulating the mevalonate pathway of Saccharomyces cerevisiae during alcoholic beverage fermentation[J]. Journal of Industrial Microbiology & Biotechnology, 2020, 47(12): 1083-1097. |
88 | BRENNAN T C, WILLIAMS T C, SCHULZ B L, et al. Evolutionary Engineering Improves Tolerance for Replacement Jet Fuels in Saccharomyces cerevisiae[J]. Applied And Environmental Microbiology, 2015, 81(10): 3316-3325. |
89 | LI J, ZHU K, MIAO L, et al. Simultaneous Improvement of Limonene Production and Tolerance in Yarrowia lipolytica through Tolerance Engineering and Evolutionary Engineering[J]. Acs Synthetic Biologyl, 2021, 10(4): 884-896. |
90 | 李言, 笪心怡, 张雨晨, 等. 酵母芳樟醇耐受性的工程改造[J]. 微生物学通报, 2022, 49(8): 3062-3078. |
LI Y, DA X Y, ZHANG Y C, et al. Engineering of Saccharomyces cerevisiae for improved tolerance to linalool[J]. Microbiology China, 2022, 49(8): 3062-3078. | |
91 | ZHAO J, LI C, ZHANG Y, et al. Dynamic control of ERG20 expression combined with minimized endogenous downstream metabolism contributes to the improvement of geraniol production in Saccharomyces cerevisiae[J]. Microbial Cell Factories, 2017, 16(1): 17. |
92 | AMIRI P, SHAHPIRI A, ASADOLLAHI M A, et al. Metabolic engineering of Saccharomyces cerevisiae for linalool production[J]. Biotechnology Letters, 2016, 38(3): 503-508. |
93 | LIU H, MARSAFARI M, DENG L, et al. Understanding lipogenesis by dynamically profiling transcriptional activity of lipogenic promoters in Yarrowia lipolytica[J]. Applied Microbiology And Biotechnology, 2019, 103(7): 3167-3179. |
94 | LI R, WANG K, WANG D, et al. Production of plant volatile terpenoids (rose oil) by yeast cell factories[J]. Green Chemistry, 2021, 23(14): 5088-5096. |
95 | ZHAO C, WANG X H, LU X Y, et al. Metabolic Engineering of Candida glycerinogenes for Sustainable Production of Geraniol[J]. Acs Synthetic Biology, 2023, 12(6): 1836-1844. |
96 | KOIVURANTA K, CASTILLO S, JOUHTEN P, et al. Enhanced Triacylglycerol Production With Genetically Modified Trichosporon oleaginosus[J]. Frontiers in Microbiology, 2018, 9: 1337. |
97 | CHENG B Q, WEI L J, LV Y B, et al. Elevating Limonene Production in Oleaginous Yeast Yarrowia lipolytica via Genetic Engineering of Limonene Biosynthesis Pathway and Optimization of Medium Composition[J]. Biotechnology and Bioprocess Engineering, 2019, 24 (3): 500-506. |
98 | ZHANG Y, CAO X, WANG J, et al. Enhancement of linalool production in Saccharomyces cerevisiae by utilizing isopentenol utilization pathway[J]. Microbial Cell Factories, 2022, 21(1): 212. |
99 | PARK J H, BASSALO M C, LIN G M, et al. Design of Four Small-Molecule-Inducible Systems in the Yeast Chromosome, Applied to Optimize Terpene Biosynthesis[J]. Acs Synthetic Biology, 2023, 12(4): 1119-1132. |
100 | ZHOU P, ZHOU X, YUAN D, et al. Combining Protein and Organelle Engineering for Linalool Overproduction in Saccharomyces cerevisiae[J]. Journal of Agricultural and Food Chemistry, 2023, 71(26): 10133-10143. |
101 | ZENG W, JIANG Y, SHAN X, et al. Engineering Saccharomyces cerevisiae for synthesis of β-myrcene and (E)-β-ocimene[J]. 3 Biotech, 2023, 13(12): 384. |
102 | Cheng B Q, Wei L J, Lv Y B, et al. Elevating Limonene Production in Oleaginous Yeast Yarrowia lipolytica via Genetic Engineering of Limonene Biosynthesis Pathway and Optimization of Medium Composition[J]. Biotechnology and Bioprocess Engineering, 2019, 24(3):500-506. |
103 | LV X, ZHOU X, MA J, et al. Engineered Saccharomyces cerevisiae for the De Novo Biosynthesis of (-)-Menthol[J]. Journal of Fungi, . 2022, 8(9): 982. |
104 | 陈天华, 张若思, 姜国珍, 等. 产蒎烯人工酵母细胞的构建[J]. 化工学报, 2019, 70(1): 179-188 |
CHEN T H, ZHANG R S, JIANG G Z, et al. Metabolic engineering of Saccharomyces cerevisiae for pinene production[J]. CIESC Journal, 2019, 70(1): 179-188. |
[1] | 汤志军, 胡友财, 刘文. 酶促4+2和2+2环加成反应:区域与立体选择性的理解与应用[J]. 合成生物学, 2024, 5(3): 401-407. |
[2] | 张俊, 金诗雪, 云倩, 瞿旭东. 聚酮化合物非天然延伸单元的生物合成与结构改造应用[J]. 合成生物学, 2024, 5(3): 561-570. |
[3] | 陈锡玮, 张华然, 邹懿. 真菌源非核糖体肽类药物生物合成及代谢工程[J]. 合成生物学, 2024, 5(3): 571-592. |
[4] | 谢皇, 郑义蕾, 苏依婷, 阮静怡, 李永泉. 放线菌聚酮类化合物生物合成体系重构研究进展[J]. 合成生物学, 2024, 5(3): 612-630. |
[5] | 雷茹, 陶慧, 刘天罡. 基因组深度挖掘驱动微生物萜类化合物高效发现[J]. 合成生物学, 2024, 5(3): 507-526. |
[6] | 张瑞, 金文铮, 陈依军. 细菌聚酮合酶间的杂合方式及聚酮化合物生物合成逻辑[J]. 合成生物学, 2024, 5(3): 548-560. |
[7] | 惠真, 唐啸宇. CRISPR/Cas9编辑系统在微生物天然产物研究中的应用[J]. 合成生物学, 2024, 5(3): 658-671. |
[8] | 刘晓楠, 李静, 祝晓熙, 徐子硕, 齐健, 江会锋. 紫杉醇生物合成机制研究进展[J]. 合成生物学, 2024, 5(3): 527-547. |
[9] | 叶精勤, 黄文华, 潘超, 朱力, 王恒樑. 合成生物学在多糖结合疫苗研发中的应用[J]. 合成生物学, 2024, 5(2): 338-352. |
[10] | 王翠珍, 陈窕, 王健博. 酶催化杂Diels-Alder反应[J]. 合成生物学, 2024, 5(1): 107-125. |
[11] | 赵静宇, 张健, 祁庆生, 王倩. 基于细菌双组分系统的生物传感器的研究进展[J]. 合成生物学, 2024, 5(1): 38-52. |
[12] | 刘伟松, 张坤城, 崔会娟, 朱之光, 张以恒, 张玲玲. 电能辅助二氧化碳生物转化[J]. 合成生物学, 2023, 4(6): 1191-1222. |
[13] | 孙绘梨, 崔金玉, 栾国栋, 吕雪峰. 面向高效光驱固碳产醇的蓝细菌合成生物技术研究进展[J]. 合成生物学, 2023, 4(6): 1161-1177. |
[14] | 晏雄鹰, 王振, 娄吉芸, 张皓瑜, 黄星宇, 王霞, 杨世辉. 生物燃料高效生产微生物细胞工厂构建研究进展[J]. 合成生物学, 2023, 4(6): 1082-1121. |
[15] | 叶伟, 李芮, 姜卫红, 顾阳. 二氧化碳微生物转化与体外酶催化体系研究进展[J]. 合成生物学, 2023, 4(6): 1223-1245. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||