合成生物学

• 特约评述 •    

酵母合成单萜类化合物的研究进展

高琪, 肖文海   

  1. 天津大学化工学院,天津 300072
    2.天津大学合成生物学前沿科学中心和系统生物工程教育部重点实验室,天津 300072
  • 出版日期:2024-08-30
  • 通讯作者: 肖文海
  • 作者简介:高琪(2000—),女,硕士研究生。研究方向为酿酒酵母里单萜类化合物的合成。E-mail:gaoqii@tju.edu.cn
    肖文海(1982—),男,教授,博士生导师,主要研究方向:复杂结构药物、高附加值化学品的高效微生物制造;代谢工程、合成生物学、人工细胞工厂设计与构建;发酵过程设计与优化。E-mail:wenhai.xiao@tju.edu.cn
  • 基金资助:
    国家重点研发项目(2021YFC2101000)

Advances in the biosynthesis of monoterpenes by yeast

Qi GAO, Wenhai XIAO   

  1. School of Chemical Engineering and Technology,Tianjin University,Tianjin 300072,China
    2.Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education),Tianjin University,Tianjin 300072,China
  • Online:2024-08-30
  • Contact: Wenhai XIAO

摘要:

单萜类化合物是一类由两个异戊二烯单元缩合而成的萜类化合物,被广泛应用于医药、食品、香料、化妆品、农业和能源等行业中。相较于植物提取和化学合成,利用微生物异源合成单萜类化合物提供了一种高效、可持续及生态友好的可替代途径。酵母细胞由于具有短暂的生长周期、内源甲羟戊酸路径和完整的蛋白后修饰体系等优势,成为生物合成单萜类化合物的潜在宿主。随着合成生物学关键技术的发展,研究者们已经成功构建了合成单萜的微生物细胞工厂,但与大规模工业化生产之间还有很大距离。本文介绍了单萜的生物合成途径,除酵母内源甲羟戊酸途径外,人工构建的异源异戊烯醇利用途径与醇依赖型半萜途径也可用于单萜前体香叶基二磷酸的合成,随后围绕提高单萜前体供应、关键酶的改造和调控、区室化工程、缓解单萜的细胞毒性等几个方面阐述了利用酵母细胞合成单萜类化合物的策略和研究进展。最后基于目前单萜类化合物合成仍面临的前体供给不足与单萜及中间代谢物的细胞毒性等挑战,对未来酵母合成单萜类化合物的发展方向进行了展望,包括对单萜产生细胞毒性的具体机制进一步解析、更高效单萜合酶的挖掘与改造、动态调控单萜合成的代谢途径以及更稳定高效合成单萜宿主细胞的探索等,旨在为以后利用酵母合成单萜提供一定的指导。

关键词: 单萜类化合物, 酵母, 代谢工程, 酶, 区室化工程, 细胞毒性

Abstract:

Monoterpenoids constitute a significant subclass of terpenoids, known for their volatility and strong aromatic properties. These compounds are extensively employed across multiple sectors, including pharmaceuticals, food, flavor, cosmetics, agriculture, and energy, due to their diverse pharmacological and biological activities. Currently, monoterpenoids are primarily sourced from plant extracts or chemical synthesis. However, the limited yield and elevated cost associated with plant extracts, along with the low purity and high energy consumption of chemical synthesis, are insufficient to satisfy the growing demand. The heterologous synthesis of monoterpenoids using microorganisms presents a highly efficient, sustainable, and eco-friendly alternative pathway. Yeasts show promise as hosts for monoterpenoid biosynthesis due to their short growth cycles, inherent mevalonate (MVA) pathway, and robust post-translational modification systems. Currently, the industrial production of the artemisinin precursor artemisinic acid and the sesquiterpene farnesene has been achieved using Saccharomyces cerevisiae. Advances in synthetic biology have enabled the construction of microbial cell factories for monoterpenoid synthesis. However, challenges remain in scaling up production due to limited precursor availability and monoterpene cytotoxicity. This review first introduces the foundational pathways of monoterpenoid biosynthesis in yeast, followed by a discussion of engineering strategies and research advancements in yeast-mediated monoterpenoid synthesis. These strategies include enhancing the supply and utilization of acetyl coenzyme A and geranyl pyrophosphate (GPP), regulating and modifying key enzymes such as GPP synthase and monoterpene synthase, optimizing subcellular organelle localization and compartmentalization of MVA pathway genes and monoterpenoid synthases, and implementing exocytosis and tolerance engineering to mitigate monoterpene cytotoxicity. Future directions and strategies to overcome bottlenecks in microbial synthesis are explored to guide advancements in yeast synthesis of monoterpenoids.

Key words: Monoterpenoids, Yeast, Metabolic engineering, Enzymes, Compartmentalization engineering, Cell toxicity

中图分类号: