• 特约评述 •
王倩1,2, 果士婷2, 辛波1, 钟成1, 王钰2
收稿日期:
2024-08-28
修回日期:
2024-10-31
出版日期:
2024-10-04
通讯作者:
钟成,王钰
作者简介:
基金资助:
Qian WANG1,2, Shiting Guo2, Bo XIN1, Cheng ZHONG1, Yu WANG2
Received:
2024-08-28
Revised:
2024-10-31
Online:
2024-10-04
Contact:
Cheng ZHONG, Yu WANG
摘要:
L-精氨酸是一种碱性氨基酸,是护肤产品中常用的中和剂、保湿剂和抗氧化剂,此外,L-精氨酸还广泛应用于饲料、医药、食品等领域。以工程化的谷氨酸棒杆菌和大肠杆菌等微生物为催化剂,以可再生的淀粉糖为原料,通过微生物发酵的方法生产L-精氨酸是目前该产品最主要的生产方法。为创制高效的工程微生物菌种,早期研究者通常采用诱变筛选的方法,但由于突变的不确定性和非定向性,育种效率较低。随着合成生物技术的发展,人工设计L-精氨酸的合成途径和调控机制,并通过基因编辑理性创制工程微生物菌种成为研究的主流。本文综述了不同微生物中发现的L-精氨酸合成途径及调控机制,以谷氨酸棒杆菌和大肠杆菌为主,介绍了设计创制L-精氨酸高产菌种的合成生物学代谢改造策略,以及基于生物传感器的高通量筛选在L-精氨酸高产菌种筛选中的应用。最后,本文展望了进一步提高L-精氨酸生物合成水平的潜在策略,以及一碳原料等新型非粮碳资源在未来L-精氨酸生产中的应用前景。
中图分类号:
王倩, 果士婷, 辛波, 钟成, 王钰. L-精氨酸的微生物合成研究进展[J]. 合成生物学, DOI: 10.12211/2096-8280.2024-068.
Qian WANG, Shiting Guo, Bo XIN, Cheng ZHONG, Yu WANG. Recent advances in biosynthesis of L-arginine using engineered microorganisms[J]. Synthetic Biology Journal, DOI: 10.12211/2096-8280.2024-068.
图1 微生物中L-精氨酸生物合成途径(ArgA:乙酰谷氨酸合成酶;ArgB:乙酰谷氨酸激酶;ArgC:乙酰谷氨酰磷酸还原酶;ArgD:乙酰鸟氨酸转氨酶;ArgE:乙酰鸟氨酸脱乙酰基酶;ArgF:鸟氨酸氨甲酰转移酶;ArgG:精氨酸琥珀酸合成酶;ArgH:精氨酸琥珀酸裂解酶;ArgF`:乙酰鸟氨酸氨甲酰转移酶;ArgJ:鸟氨酸乙酰转移酶)
Fig. 1 The biosynthetic pathways of ʟ-arginine in microorganisms(ArgA: acetylglutamate synthase; ArgB: acetylglutamate kinase; ArgC: acetyl-glutamyl-phosphate reductase; ArgD: acetylornithine aminotransferase;ArgE: acetylornithine deacetylase; ArgF: ornithine carbamoyltransferase; ArgG: argininosuccinate synthase; ArgH: argininosuccinate lyase; ArgF`: acetylornithine carbamoyltransferase;ArgJ: ornithine acetyltransferase)
菌种 | 代谢改造策略 | 原料 | 产量 (g/L) | 转化率 (g/g) | 生产强度(g/L/h) | 发酵 方式 | 参考文献 |
---|---|---|---|---|---|---|---|
谷氨酸棒杆菌 | 增强辅因子NADPH的供应:过表达pntAB和ppnk;解除阻遏蛋白对L-精氨酸操纵子的转录抑制:敲除argR和farR;阻断副产物合成途径:敲除ldh(编码乳酸脱氢酶) | 葡萄糖 | 67.01 | 0.35 | 0.89 | 补料分批发酵 | [ |
谷氨酸棒杆菌 | 诱变育种;增强辅因子NADPH的供应:下调pgi的表达,过表达tkt、tal、zwf、opcA、pgl;强化L-精氨酸合成途径:过表达argGH、carAB;解除阻遏蛋白对L-精氨酸操纵子的转录抑制:敲除argR和farR;增强前体物质L-谷氨酸的供应:敲除ncgl1221 | 葡萄糖;蔗糖 | 92.50 | 0.40 | 1.28 | 补料分批发酵 | [ |
钝齿棒杆菌 | 解除终产物对L-精氨酸合成关键酶的反馈抑制:定点突变ArgBE19Y/I74V/F91H/K234T | 葡萄糖 | 61.20 | 0.43 | 0.64 | 补料分批发酵 | [ |
大肠 杆菌 | 解除阻遏蛋白对L-精氨酸操纵子的转录抑制:敲除argR;解除终产物对L-精氨酸合成关键酶的反馈抑制:外源表达argJ;强化L-精氨酸合成途径:外源表达argCJBDF | 葡萄糖 | 70.10 | 0.33 | 1.17 | 补料分批发酵 | [ |
钝齿棒杆菌 | 增强前体物质L-谷氨酸的供应:过表达iolT1、ptsG、ppgk、pyc、gltA、gdh,下调odhA的表达;强化L-精氨酸合成途径:过表达argCJBDF、argGH;阻断副产物合成途径:敲除proB,下调lysC的表达;增强辅因子NADPH的供应:下调pgi的表达 | 葡萄糖 | 87.30 | 0.43 | 1.21 | 补料分批发酵 | [ |
钝齿棒杆菌 | 增强辅因子ATP的供应:过表达pyk、pgk,敲除frd12、nox、amn | 葡萄糖 | 57.30 | 0.33 | 0.58 | 补料分批发酵 | [ |
钝齿棒杆菌 | 阻断副产物合成途径:敲除proB;解除终产物对L-精氨酸合成关键酶的反馈抑制:定点突变ArgBE19R,H26E,D311,D312R | 葡萄糖 | 16.50 | 0.39 | 0.15 | 摇瓶 发酵 | [ |
钝齿棒杆菌 | 增强前体物质L-谷氨酸的供应:敲除putP、pta、ncg12310、ncgl1221;增强L-精氨酸转运:过表达lysE | 葡萄糖 | 24.85 | 0.57 | 0.23 | 摇瓶 发酵 | [ |
钝齿棒杆菌 | 增强氮源供应:过表达glnA、aspA、gdh | 葡萄糖 | 53.20 | 0.32 | 0.55 | 补料分批发酵 | [ |
钝齿棒杆菌 | 增强氮源供应:敲除amtR,过表达amtB2 | 葡萄糖 | 60.90 | 0.36 | 0.63 | 补料分批发酵 | [ |
大肠 杆菌 | 阻断L-精氨酸降解途径:敲除adiA、speC、speF;解除阻遏蛋白对L-精氨酸操纵子的转录抑制:敲除argR;解除终产物对L-精氨酸合成关键酶的反馈抑制:过表达ArgAH15Y;增强L-精氨酸转运:过表达argO | 葡萄糖 | 11.64 | 1.18 | 0.24 | 补料分批发酵 | [ |
钝齿棒杆菌 | 增强L-精氨酸转运:过表达lysE | 葡萄糖 | 35.91 | — | 0.37 | 摇瓶 发酵 | [ |
钝齿棒杆菌 | 解除终产物对L-精氨酸合成关键酶的反馈抑制:过表达glnK | 49.98 | 0.34 | 0.52 | 补料分批发酵 | [ | |
大肠 杆菌 | 解除终产物对L-精氨酸合成关键酶的反馈抑制:敲除argA;阻断副产物合成途径:敲除pflB(编码丙酮酸-甲酸裂解酶)、ldhA(编码乳酸脱氢酶)、poxB(编码丙酮酸氧化酶)、adhE(编码乙醇脱氢酶)、aceE(编码丙酮酸脱氢酶)、speF;阻断L-精氨酸降解途径:敲除speB、astA;解除阻遏蛋白对L-精氨酸操纵子的转录抑制:敲除argR;强化L-精氨酸合成途径:过表达argCBI、argD、argG、argH、carAB | 葡萄糖; 乙酰谷氨酸 | 4.00 | — | — | 摇瓶 发酵 | [ |
表1 代谢改造微生物合成L-精氨酸
Tab. 1 The production of L-arginine by metabolic engineering of microorganisms.
菌种 | 代谢改造策略 | 原料 | 产量 (g/L) | 转化率 (g/g) | 生产强度(g/L/h) | 发酵 方式 | 参考文献 |
---|---|---|---|---|---|---|---|
谷氨酸棒杆菌 | 增强辅因子NADPH的供应:过表达pntAB和ppnk;解除阻遏蛋白对L-精氨酸操纵子的转录抑制:敲除argR和farR;阻断副产物合成途径:敲除ldh(编码乳酸脱氢酶) | 葡萄糖 | 67.01 | 0.35 | 0.89 | 补料分批发酵 | [ |
谷氨酸棒杆菌 | 诱变育种;增强辅因子NADPH的供应:下调pgi的表达,过表达tkt、tal、zwf、opcA、pgl;强化L-精氨酸合成途径:过表达argGH、carAB;解除阻遏蛋白对L-精氨酸操纵子的转录抑制:敲除argR和farR;增强前体物质L-谷氨酸的供应:敲除ncgl1221 | 葡萄糖;蔗糖 | 92.50 | 0.40 | 1.28 | 补料分批发酵 | [ |
钝齿棒杆菌 | 解除终产物对L-精氨酸合成关键酶的反馈抑制:定点突变ArgBE19Y/I74V/F91H/K234T | 葡萄糖 | 61.20 | 0.43 | 0.64 | 补料分批发酵 | [ |
大肠 杆菌 | 解除阻遏蛋白对L-精氨酸操纵子的转录抑制:敲除argR;解除终产物对L-精氨酸合成关键酶的反馈抑制:外源表达argJ;强化L-精氨酸合成途径:外源表达argCJBDF | 葡萄糖 | 70.10 | 0.33 | 1.17 | 补料分批发酵 | [ |
钝齿棒杆菌 | 增强前体物质L-谷氨酸的供应:过表达iolT1、ptsG、ppgk、pyc、gltA、gdh,下调odhA的表达;强化L-精氨酸合成途径:过表达argCJBDF、argGH;阻断副产物合成途径:敲除proB,下调lysC的表达;增强辅因子NADPH的供应:下调pgi的表达 | 葡萄糖 | 87.30 | 0.43 | 1.21 | 补料分批发酵 | [ |
钝齿棒杆菌 | 增强辅因子ATP的供应:过表达pyk、pgk,敲除frd12、nox、amn | 葡萄糖 | 57.30 | 0.33 | 0.58 | 补料分批发酵 | [ |
钝齿棒杆菌 | 阻断副产物合成途径:敲除proB;解除终产物对L-精氨酸合成关键酶的反馈抑制:定点突变ArgBE19R,H26E,D311,D312R | 葡萄糖 | 16.50 | 0.39 | 0.15 | 摇瓶 发酵 | [ |
钝齿棒杆菌 | 增强前体物质L-谷氨酸的供应:敲除putP、pta、ncg12310、ncgl1221;增强L-精氨酸转运:过表达lysE | 葡萄糖 | 24.85 | 0.57 | 0.23 | 摇瓶 发酵 | [ |
钝齿棒杆菌 | 增强氮源供应:过表达glnA、aspA、gdh | 葡萄糖 | 53.20 | 0.32 | 0.55 | 补料分批发酵 | [ |
钝齿棒杆菌 | 增强氮源供应:敲除amtR,过表达amtB2 | 葡萄糖 | 60.90 | 0.36 | 0.63 | 补料分批发酵 | [ |
大肠 杆菌 | 阻断L-精氨酸降解途径:敲除adiA、speC、speF;解除阻遏蛋白对L-精氨酸操纵子的转录抑制:敲除argR;解除终产物对L-精氨酸合成关键酶的反馈抑制:过表达ArgAH15Y;增强L-精氨酸转运:过表达argO | 葡萄糖 | 11.64 | 1.18 | 0.24 | 补料分批发酵 | [ |
钝齿棒杆菌 | 增强L-精氨酸转运:过表达lysE | 葡萄糖 | 35.91 | — | 0.37 | 摇瓶 发酵 | [ |
钝齿棒杆菌 | 解除终产物对L-精氨酸合成关键酶的反馈抑制:过表达glnK | 49.98 | 0.34 | 0.52 | 补料分批发酵 | [ | |
大肠 杆菌 | 解除终产物对L-精氨酸合成关键酶的反馈抑制:敲除argA;阻断副产物合成途径:敲除pflB(编码丙酮酸-甲酸裂解酶)、ldhA(编码乳酸脱氢酶)、poxB(编码丙酮酸氧化酶)、adhE(编码乙醇脱氢酶)、aceE(编码丙酮酸脱氢酶)、speF;阻断L-精氨酸降解途径:敲除speB、astA;解除阻遏蛋白对L-精氨酸操纵子的转录抑制:敲除argR;强化L-精氨酸合成途径:过表达argCBI、argD、argG、argH、carAB | 葡萄糖; 乙酰谷氨酸 | 4.00 | — | — | 摇瓶 发酵 | [ |
1 | 范玉洁. 精氨酸水平对离乳期梅花鹿生长性能、瘤胃发酵和菌群结构的影响[D]. 北京: 中国农业科学院, 2021. |
FANG Y J. Effects of arginine level on growth performance, rumen fermentation and flora structure of sika deer during weaning period[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. | |
2 | 宁诚. 三种外源性氨基酸对乳化香肠色泽影响的研究[D]. 安徽: 合肥工业大学, 2019. |
NING C. Study on the effect of three exogenous amino acids onthe color of emulsion sausage[D]. Anhui: Hefei University of Technology, 2019. | |
3 | 张豪. 基于辅因子及全局转录因子代谢工程改造钝齿棒杆菌对产L-精氨酸影响[D].江西:江西师范大学, 2023. |
ZHANG H. Effects of cofactor and global transcription factor metabolic engineering modified Corynebacterium crenatum on L-arginine production[D]. Jiangxi: Jiangxi Normal University, 2023 | |
4 | 李宜静. 孕妇血和脐血L-精氨酸水平与婴儿体格发育关系的前瞻性研究[D]. 广东: 南方医科大学, 2019. |
LI Y J. Maternal and cord blood L-arginine level in relation to the body size in infants in the first year of life:a prospective study[D]. Guangdong: Southern Medical University, 2019. | |
5 | 温伟红, 崔龙生. 一种精氨酸在化妆品中的研究应用[J]. 广东化工, 2019, 46(03): 51-52. |
WEN W H, CUI L S. The application research of the arginine in cosmetics[J]. Guangdong Chemical Industry, 2019, 46(03): 51-52. | |
6 | WU M, XIAO H, SHAO F, et al. Arginine accelerates intestinal health through cytokines and intestinal microbiota[J]. International Immunopharmacology, 2020, 81: 106029. |
7 | 刘晓华, 曹郁生, 陈燕, 等. 精氨酸-共轭亚油酸抗氧化活性研究[J]. 食品与发酵工业, 2008, 36(08): 69-71. |
LIU X H, CAO Y S, CHEN Y, et al. Antioxidant activity of arginine-conjugated linoleic acid complex[J]. FOOD AND FERMENT ATION INDUSTRIES, 2008, 36(08): 69-71. | |
8 | 王霞 陶文沂, 孙志浩,等. L-精氨酸发酵研究进展[J]. 工业微生物, 2000, 30(04): 50-54. |
WANG X, TAO W Y, SUN Z H, et al. Research progress on L-arginine fermentation[J]. Industrial Mircrobiology, 2000, 30(04): 50-54. | |
9 | 尹刚明, 李冰, 蔡妙颜, 等. 从头发中提取L-精氨酸的研究[J]. 现代食品科技, 2008, (09): 921-923+906. |
YI G M, LI B, CAI M Y, et al. Extraction of L-arginine from human hair[J]. Modern Food Science and Technology, 2008, (09): 921-923+906. | |
10 | UTAGAWA T. Production of arginine by fermentation[J]. The Journal of nutrition, 2004, 134(10 ): 2854S-2895S. |
11 | 龙梦飞, 徐美娟, 张显, 等. 合成生物学与代谢工程在谷氨酸棒杆菌产氨基酸中的应用[J]. 中国科学:生命科学, 2019, 49(05): 541-552. |
LONG M F, XU M J, ZHANG X, et al. Synthetic biology and metabolic engineering for amino acid production in Corynebacterium glutamicum [J]. SCIENTIA SINICA Vitae, 2019, 49(05): 541-522. | |
12 | CHENG G, XU J, XIA X, et al. Breeding L-arginine-producing strains by a novel mutagenesis method: atmospheric and room temperature plasma (ARTP)[J]. Preparative biochemistry & biotechnology, 2016, 46(5): 509-516. |
13 | 雷庆子, 王博, 堵国成, 等. 诱变育种提高嗜盐四联球菌精氨酸和瓜氨酸利用能力[J]. 食品与发酵工业, 2018, 44(06): 30-36. |
LEI Q Z, WANG B, DU G C, et al. Enhancement of arginine and citrulline utilization ability of tetragenococcus halophilus by mutation breeding[J]. Food and Fermentation Industries, 2018, 44(6): 30-36. | |
14 | LU C D. Pathways and regulation of bacterial arginine metabolism and perspectives for obtaining arginine overproducing strains[J]. Applied microbiology and biotechnology, 2006, 70(3), 261-272. |
15 | JIANG Y, SHENG Q, WU X Y, et al. L-arginine production in Corynebacterium glutamicum: manipulation and optimization of the metabolic process[J]. Critical Reviews in Biotechnology, 2021, 41(2): 172-185. |
16 | JORGE J M, NGUYEN A Q, PéREZ-GARCíA F, et al. Improved fermentative production of gamma-aminobutyric acid via the putrescine route: systems metabolic engineering for production from glucose, amino sugars, and xylose[J]. Biotechnology and bioengineering, 2017, 114(4): 862-873. |
17 | MEISWINKEL T M, RITTMANN D, LINDNER S N, et al. Crude glycerol-based production of amino acids and putrescine by Corynebacterium glutamicum [J]. Bioresource technology, 2013, 145: 254-258. |
18 | ZHANG B, YU M, ZHOU Y, et al. Improvement of L-ornithine production by attenuation of argF in engineered Corynebacterium glutamicum S9114[J]. AMB Express, 2018, 8(1): 26. |
19 | BECKER J, WITTMANN C. A field of dreams: Lignin valorization into chemicals, materials, fuels, and health-care products[J]. Biotechnology advances, 2019, 37(6): 107360. |
20 | JEANDET P, SOBARZO-SáNCHEZ E, CLéMENT C, et al. Engineering stilbene metabolic pathways in microbial cells[J]. Biotechnology advances, 2018, 36(8): 2264-2283. |
21 | KIM H T, KHANG T U, BARITUGO K A, et al. Metabolic engineering of Corynebacterium glutamicum for the production of glutaric acid, a C5 dicarboxylic acid platform chemical[J]. Metabolic engineering, 2019, 51: 99-109. |
22 | DUPERRAY F, JEZEQUEL D, GHAZI A, et al. Excretion of glutamate from Corynebacterium glutamicum triggered by amine surfactants[J]. Acta Biochimica et Biophysica Sinica, 1992, 1103(2): 250-258 |
23 | SCHNEIDER J, NIERMANN K, WENDISCH V F. Production of the amino acids L-glutamate, L-lysine, L-ornithine and L-arginine from arabinose by recombinant Corynebacterium glutamicum [J]. Journal of biotechnology, 2011, 154(2-3): 191-198. |
24 | HAI-DE W, SHUAI L, BING-BING W, et al. Metabolic engineering of Escherichia coli for efficient production of L-arginine[J]. Advances in applied microbiology, 2023, 122: 127-150. |
25 | SGOBBA E, STUMPF A K, VORTMANN M, et al. Synthetic Escherichia coli-Corynebacterium glutamicum consortia for L-lysine production from starch and sucrose[J]. Bioresource technology, 2018, 260: 302-310. |
26 | 孙聪, 陈鑫, 上官春雨, 等. 钝齿棒杆菌黄素血红蛋白Hmp在L-精氨酸合成中的作用[J]. 应用与环境生物学报, 2022, 28(03): 561-568. |
SUN C, CHEN X, SHANGGUAN C Y, et al. Role of Corynebacterium crenatum flavohemoglobin Hmp in the synthesis of L-arginine[J]. Chinese Journal of Applied and Environmental Biology, 2022, 28(03): 561-568. | |
27 | 宋卓琳. 改造钝齿棒杆菌糖代谢途径提高L-精氨酸的产量[D].江西:江西师范大学,2023. |
SONG Z L. Modifying the glycometabolic pathway of Corynabacterium crenatum to increase L-arginine production[D]. Jiangxi: Jiangxi Normal University,2023. | |
28 | BECKER J, WITTMANN C. Bio-based production of chemicals, materials and fuels Corynebacterium glutamicum as versatile cell factory[J]. Current opinion in biotechnology, 2012, 23(4): 631-640. |
29 | SHIN J H, LEE S Y. Metabolic engineering of microorganisms for the production of L-arginine and its derivatives[J]. Microbial cell factories, 2014, 13: 166 |
30 | LI Y, CONG H, LIU B, et al. Metabolic engineering of Corynebacterium glutamicum for methionine production by removing feedback inhibition and increasing NADPH level[J]. Antonie Van Leeuwenhoek, 2016, 109(9): 1185-1197. |
31 | MORIZONO H, CABRERA-LUQUE J, SHI D, et al. Acetylornithine transcarbamylase: a novel enzyme in arginine biosynthesis[J]. Journal of bacteriology, 2006, 188(8): 2974-2982. |
32 | Cunin R., Glansdorff N., Piérard, A, et al. Biosynthesis and metabolism of arginine in bacteria[J]. Microbiological reviews, 1986, 50(3), 314-352. |
33 | PIETTE J, CUNIN R, VAN VLIET F, et al. Homologous control sites and DNA transcription starts in the related argF and argI genes of Escherichia coli K12[J]. The EMBO journal, 1982, 1(7): 853-857 |
34 | SAKANYAN V, PETROSYAN P, LECOCQ M, et al. Genes and enzymes of the acetyl cycle of arginine biosynthesis in Corynebacterium glutamicum: enzyme evolution in the early steps of the arginine pathway[J]. Microbiology (Reading, England), 1996, 142 ( Pt 1): 99-108. |
35 | HUANG Y, ZHANG H, TIAN H, et al. Mutational analysis to identify the residues essential for the inhibition of N-acetylglutamate kinase of Corynebacterium glutamicum [J]. Applied microbiology and biotechnolog, 2015, 99(18): 7527-7537. |
36 | RAMóN-MAIQUES S, FERNáNDEZ-MURGA M L, GIL-ORTIZ F, et al. Structural bases of feed-back control of arginine biosynthesis, revealed by the structures of two hexameric N-acetylglutamate kinases, from Thermotoga maritima and Pseudomonas aeruginosa [J]. Journal of molecular biology, 2006, 356(3): 695-713. |
37 | SHENG Q, WU X Y, XU X, et al. Production of L-glutamate family amino acids in Corynebacterium glutamicum: physiological mechanism, genetic modulation, and prospects[J]. Synthetic and Systems Biotechnology, 2021, 6(4): 302-325. |
38 | ZHAN M, KAN B, DONG J, et al. Metabolic engineering of Corynebacterium glutamicum for improved L-arginine synthesis by enhancing NADPH supply[J]. Journal of Industrial Microbiology and Biotechnology, 2019, 46(1): 45-54. |
39 | PARK S H, KIM H U, KIM T Y, et al. Metabolic engineering of Corynebacterium glutamicum for L-arginine production[J]. Nature communications, 2014, 5(1): 4618. |
40 | ZHANG J, XU M, GE X, et al. Reengineering of the feedback-inhibition enzyme N-acetyl-L-glutamate kinase to enhance L-arginine production in Corynebacterium crenatum [J]. Journal of Industrial Microbiology and Biotechnology, 2017, 44(2): 271-283. |
41 | WANG H-D, XU J-Z, ZHANG W-G. Metabolic engineering of Escherichia coli for efficient production of L-arginine[J]. Applied Microbiology and Biotechnology, 2022, 106(17): 5603-5613. |
42 | MAN Z, XU M, RAO Z, et al. Systems pathway engineering of Corynebacterium crenatum for improved L-arginine production[J]. Scientific Reports, 2016, 6: 28629. |
43 | MAN Z, RAO Z, XU M, et al. Improvement of the intracellular environment for enhancing L-arginine production of Corynebacterium glutamicum by inactivation of H2O2-forming flavin reductases and optimization of ATP supply[J]. Metabolic Engineering, 2016, 38: 310-321. |
44 | ZHANG B, WAN F, QIU Y L, et al. Increased L-arginine production by site-directed mutagenesis of N-acetyl- L-glutamate Kinase and proB gene deletion in Corynebacterium crenatum [J]. Biomedical and environmental sciences : BES, 2015, 28(12): 864-874. |
45 | HUANG M, ZHAO Y, LI R, et al. Improvement of L-arginine production by in silico genome-scale metabolic network model guided genetic engineering[J]. 3 Biotech, 2020, 10(3): 126. |
46 | GUO J, MAN Z, RAO Z, et al. Improvement of the ammonia assimilation for enhancing L-arginine production of Corynebacterium crenatum [J]. Journal of industrial microbiology & biotechnology, 2017, 44(3): 443-451. . |
47 | XU M, LI J, SHU Q, et al. Enhancement of L-arginine production by increasing ammonium uptake in an AmtR-deficient Corynebacterium crenatum mutant[J]. Journal of industrial microbiology & biotechnology, 2019, 46(8): 1155-1166. |
48 | GINESY M, BELOTSERKOVSKY J, ENMAN J, et al. Metabolic engineering of Escherichia coli for enhanced arginine biosynthesis[J]. Microbial cell factories, 2015, 14: 29. |
49 | XU M, RAO Z, YANG J, et al. The effect of a LysE exporter overexpression on L-arginine production in Corynebacterium crenatum [J]. Current microbiology, 2013, 67(3), 271-278. |
50 | XU M, TANG M, CHEN J, et al. PII Signal Transduction protein GlnK alleviates feedback inhibition of N-acetyl-L-glutamate Kinase by L-Arginine in Corynebacterium glutamicum [J]. Applied and Environmental Microbiology, 2020, 86(8): e00039-20. |
51 | NIE M, WANG J, ZHANG K. A novel strategy for L-arginine production in engineered Escherichia coli [J]. Microbial Cell Factories, 2023, 22(1): 138. |
52 | YIM S H, JUNG S, LEE S K, et al. Purification and characterization of an arginine regulatory protein, ArgR, in Corynebacterium glutamicum [J]. Journal of industrial microbiology & biotechnology, 2011, 38(12): 1911-1920. |
53 | XU M, RAO Z, DOU W, et al. The role of ARGR repressor regulation on L-arginine production in Corynebacterium crenatum [J]. Applied biochemistry and biotechnology, 2013, 170(3): 587-597. |
54 | HäNSSLER E, MüLLER T, JESSBERGER N, et al. FarR, a putative regulator of amino acid metabolism in Corynebacterium glutamicum [J]. Applied microbiology and biotechnology, 2007, 76(3): 625-632. |
55 | LEE S Y, PARK J M, LEE J H, et al. Interaction of transcriptional repressor ArgR with transcriptional regulator FarR at the argB promoter region in Corynebacterium glutamicum [J]. Applied and environmental microbiology, 2011, 77(3): 711-718. |
56 | CHEN X L, ZHANG B, TANG L, et al. Expression and characterization of ArgR, an arginine regulatory protein in Corynebacterium crenatum [J]. Biomedical and environmental sciences : BES, 2014, 27(6): 436-443. |
57 | CHEN S H, MERICAN A F, SHERRATT D J. DNA binding of Escherichia coli arginine repressor mutants altered in oligomeric state[J]. Molecular microbiology, 1997, 24(6): 1143-1156. |
58 | IKEDA M, MITSUHASHI S, TANAKA K, et al. Reengineering of a Corynebacterium glutamicum L-arginine and L-citrulline producer[J]. Applied and environmental microbiology, 2009, 75(6), 1635-1641. |
59 | XU J-Z, YANG H-K, ZHANG W-G. NADPH metabolism: a survey of its theoretical characteristics and manipulation strategies in amino acid biosynthesis[J]. Critical Reviews in Biotechnology, 2018, 38(7): 1061-1076. |
60 | CHEMLER J A, FOWLER Z L, MCHUGH K P, et al. Improving NADPH availability for natural product biosynthesis in Escherichia coli by metabolic engineering[J]. Metabolic engineering, 2010, 12(2): 96-104. |
61 | BECKER J, ZELDER O, HäFNER S, et al. From zero to hero-design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production[J]. Metabolic engineering, 2011, 13(2): 159-168. |
62 | TAKENO S, MURATA R, KOBAYASHI R, et al. Engineering of Corynebacterium glutamicum with an NADPH-generating glycolytic pathway for L-lysine production[J]. Applied and environmental microbiology, 2010, 76(21): 7154-7160. |
63 | YUAN L, QIN Y L, ZOU Z C, et al. Enhancing intracellular NADPH bioavailability through improving pentose phosphate pathway flux and its application in biocatalysis asymmetric reduction reaction[J]. Journal of bioscience and bioengineering, 2022, 134(6): 528-533. |
64 | LINDNER S N, NIEDERHOLTMEYER H, SCHMITZ K, et al. Polyphosphate/ATP-dependent NAD kinase of Corynebacterium glutamicum: biochemical properties and impact of ppnK overexpression on lysine production[J]. Applied microbiology and biotechnology, 2010, 87(2): 583-593. |
65 | SHAFEY H M EL, GHANEM S, MERKAMM M, et al. Corynebacterium glutamicum superoxide dismutase is a manganese-strict non-cambialistic enzyme in vitro[J]. Microbiological research, 2008, 163(1): 80-86. |
66 | ELLIS R J. Macromolecular crowding: an important but neglected aspect of the intracellular environment[J]. Current opinion in structural biology, 2001, 11(1): 114-119. |
67 | ZHOU J, LIU L, SHI Z, et al. ATP in current biotechnology: regulation, applications and perspectives[J]. Biotechnology advances, 2009, 27(1): 94-101. |
68 | HARA K Y, KONDO A. ATP regulation in bioproduction[J]. Microbial cell factories, 2015, 14: 198. |
69 | LIU L M, LI Y, DU G C, et al. Increasing glycolytic flux in Torulopsis glabrata by redirecting ATP production from oxidative phosphorylation to substrate-level phosphorylation[J]. Journal of applied microbiology, 2006, 100(5): 1043-1053. |
70 | MAJUMDAR R, BARCHI B, TURLAPATI S A, et al. Glutamate, ornithine, arginine, proline, and polyamine metabolic interactions: the pathway is regulated at the post-transcriptional level[J]. Frontiers in plant science, 2016, 7: 78. |
71 | LONG M, XU M, MA Z, et al. Significantly enhancing production of trans-4-hydroxy- L-proline by integrated system engineering in Escherichia coli [J]. Science advances, 2020, 6(21): eaba2383. |
72 | LEE S Y, CHO J Y, LEE H J, et al. Enhancement of ornithine production in proline-supplemented Corynebacterium glutamicum by ornithine cyclodeaminase[J]. Journal of microbiology and biotechnology, 2010, 20(1): 127-131. |
73 | WENDISCH V F, JORGE J M P, PéREZ-GARCíA F, et al. Updates on industrial production of amino acids using Corynebacterium glutamicum [J]. World Journal of Microbiology and Biotechnology, 2016, 32(6):105. |
74 | WANG Q, JIANG A, TANG J, et al. Enhanced production of L-arginine by improving carbamoyl phosphate supply in metabolically engineered Corynebacterium crenatum [J]. Applied microbiology and biotechnology, 2021, 105(8): 3265-3276. |
75 | CHARLIER D, BERVOETS I. Regulation of arginine biosynthesis, catabolism and transport in Escherichia coli [J]. Amino Acids, 2019, 51(8): 1103-1027. |
76 | APPLEBAUM D M, DUNLAP J C, MORRIS D R. Comparison of the biosynthetic and biodegradative ornithine decarboxylases of Escherichia coli [J]. Biochemistry, 1977, 16(8): 1580-1584. |
77 | SHIRAI H, MIZUGUCHI K. Prediction of the structure and function of AstA and AstB, the first two enzymes of the arginine succinyltransferase pathway of arginine catabolism[J]. FEBS Letters, 2003, 555(3): 505-510. |
78 | SANDER T, WANG C Y, GLATTER T, et al. CRISPRi-based downregulation of transcriptional feedback improves growth and metabolism of arginine overproducing E. coli [J]. ACS synthetic biology, 2019, 8(9): 1983-1990. |
79 | NAKAMURA J, HIRANO S, ITO H, et al. Mutations of the Corynebacterium glutamicum ncgl1221 gene, encoding a mechanosensitive channel homolog, induce L-glutamic acid production[J]. Applied and environmental microbiology, 2007, 73(14): 4491-4498. |
80 | BOUVIER J, STRAGIER P, MORALES V, et al. Lysine represses transcription of the Escherichia coli dapB gene by preventing its activation by the ArgP activator[J]. Journal of bacteriology, 2008, 190(15): 5224–5229. |
81 | CELIS R T. Repression and activation of arginine transport genes in Escherichia coli K12 by the ArgP protein[J]. Journal of molecular biology, 199, 294(5): 1087-1095. |
82 | MARBANIANG C N, GOWRISHANKAR J. Transcriptional cross-regulation between gram-negative and gram-positive bacteria, demonstrated using ArgP-argO of Escherichia coli and LysG-LysE of Corynebacterium glutamicum [J]. Journal of bacteriology, 2012, 194(20): 5657-5666. |
83 | NANDINENI M R, GOWRISHANKAR J. Evidence for an arginine exporter encoded by yggA (argO) that is regulated by the LysR-type transcriptional regulator ArgP in Escherichia coli [J]. Journal of bacteriology, 2004, 186(11): 3539-3546. |
84 | PATHANIA A, SARDESAI A A. Distinct paths for basic amino acid export in Escherichia coli: YbjE (LysO) mediates export of L-Lysine[J]. Journal of bacteriology, 2015, 197(12): 2036-2047. |
85 | PATHANIA A, GUPTA A K, DUBEY S, et al. The topology of the L-arginine exporter ArgO conforms to an nin-cout configuration in Escherichia coli: requirement for the cytoplasmic N-terminal domain, functional helical interactions, and an aspartate pair for ArgO function[J]. Journal of bacteriology, 2016, 198(23): 3186-3199. |
86 | JIANG S, WANG D, WANG R, et al. Reconstructing a recycling and nonauxotroph biosynthetic pathway in Escherichia coli toward highly efficient production of L-citrulline[J]. Metabolic engineering, 2021, 68: 220-231. |
87 | CHEN M, CHEN X, WAN F, et al. Effect of Tween 40 and DtsR1 on L-arginine overproduction in Corynebacterium crenatum [J]. Microbial cell factories, 2015, 14: 119. |
88 | NARESH V, LEE N. A review on biosensors and recent development of nanostructured materials-enabled biosensors[J]. Sensors (Basel, Switzerland), 2021, 21(4):1109. |
89 | LIN J L, WAGNER J M, ALPER H S. Enabling tools for high-throughput detection of metabolites: Metabolic engineering and directed evolution applications[J]. Biotechnology advances, 2017, 35(8): 950-970 |
90 | PU W, CHEN J Z, WANG Y, et al. Advances of development and application amino acid biosensors[J]. Chinese journal of biotechnology, 2023, 39(6): 2485–2501. |
91 | XU M, LIU P, CHEN J, et al. Development of a novel biosensor-driven mutation and selection system via in situ growth of Corynebacterium crenatum for the production of L-arginine[J]. Frontiers in bioengineering and biotechnology, 2020, 8: 175. |
92 | TUO J, NAWAB S, MA X, et al. Recent advances in screening amino acid overproducers[J]. Engineering Microbiology, 2023, 3(1): 2667-3703. |
93 | BELLMANN A, VRLJIĆ M, PáTEK M, et al. Expression control and specificity of the basic amino acid exporter LysE of Corynebacterium glutamicum [J]. Microbiology (Reading England), 2001, 147(Pt 7): 1765-1774. |
94 | BINDER S, SCHENDZIELORZ G, STäBLER N, et al. A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level[J]. Genome biology, 2012, 13(5): R40. |
95 | SCHENDZIELORZ G, DIPPONG M, GRüNBERGER A, et al. Taking control over control: use of product sensing in single cells to remove flux control at key enzymes in biosynthesis pathways[J]. ACS synthetic biology, 2014, 3(1): 21-29. |
96 | STELLA R G, BAUMANN P, LORKE S, et al. Biosensor-based isolation of amino acid-producing Vibrio natriegens strains[J]. Metabolic engineering communications, 2021, 13: e00187. |
97 | JIANG S, WANG R, WANG D, et al. Metabolic reprogramming and biosensor-assisted mutagenesis screening for high-level production of L-arginine in Escherichia coli [J]. Metabolic Engineering, 2023, 76: 146-157. |
98 | ZHENG B, MA X, WANG N, et al. Utilization of rare codon-rich markers for screening amino acid overproducers[J]. Nature communications, 2018, 9(1): 3616. |
99 | ZHOU W J, FU G, QI X N, et al. Upgrading microbial strains for fermentation industry[J]. Chinese journal of biotechnology, 2022, 38(11): 4200-4218. |
100 | LIU J, OU Y, XU J Z, et al. L-lysine production by systems metabolic engineering of an NADPH auto-regulated Corynebacterium glutamicum [J]. Bioresource technology, 2023, 387: 129701. |
101 | LI Y, WEI H, WANG T, et al. Current status on metabolic engineering for the production of L-aspartate family amino acids and derivatives[J]. Bioresource technology, 2017, 245(Pt B): 1588-1602. |
102 | ZHAO Z, CAI M, LIU Y, et al. Genomics and transcriptomics-guided metabolic engineering Corynebacterium glutamicum for L-arginine production[J]. Bioresource Technology, 2022, 364: 128054.. |
103 | WEN J, XIAO Y, LIU T, et al. Rich biotin content in lignocellulose biomass plays the key role in determining cellulosic glutamic acid accumulation by Corynebacterium glutamicum [J]. Biotechnology for biofuels, 2018, 11: 132. |
104 | WITTHOFF S, SCHMITZ K, NIEDENFüHR S, et al. Metabolic engineering of Corynebacterium glutamicum for methanol metabolism[J]. Applied and Environmental Microbiology, 2015, 81(6): 2215-25. |
105 | WHITAKER W B, JONES J A, BENNETT R K, et al. Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli [J]. Metabolic Engineering Communications, 2017, 39: 49-59. |
106 | BENNETT R K, GONZALEZ J E, WHITAKER W B, et al. Expression of heterologous non-oxidative pentose phosphate pathway from Bacillus methanolicus and phosphoglucose isomerase deletion improves methanol assimilation and metabolite production by a synthetic Escherichia coli methylotroph[J]. Metabolic Engineering Communications, 2018, 45: 75-85. |
107 | CHEN F Y H, JUNG H W, TSUEI C Y, et al. Converting Escherichia coli to a Synthetic Methylotroph Growing Solely on Methanol[J]. Cell, 2020, 182(4): 933-946.e914. |
108 | REITER M A, BRADLEY T, BüCHEL L A, et al. A synthetic methylotrophic Escherichia coli as a chassis for bioproduction from methanol[J]. Nature Catalysis, 2024, 7(5): 560-573. |
109 | TUYISHIME P, WANG Y, FAN L, et al. Engineering Corynebacterium glutamicum for methanol-dependent growth and glutamate production[J]. Metabolic Engineering Communications, 2018, 49: 220-31. |
110 | GREGORY G J, BENNETT R K, PAPOUTSAKIS E T. Recent advances toward the bioconversion of methane and methanol in synthetic methylotrophs[J]. Metabolic Engineering Communications, 2022, 71: 99-116. |
111 | BRAUTASET T, JAKOBSEN Ø M, JOSEFSEN K D, et al. Bacillus methanolicus: a candidate for industrial production of amino acids from methanol at 50 degrees C[J]. Applied microbiology and biotechnology, 2007, 74(1), 22-34. |
112 | BRAUTASET T, JAKOBSEN Ø M, DEGNES K F, et al. Bacillus methanolicus pyruvate carboxylase and homoserine dehydrogenase I and II and their roles for L-lysine production from methanol at 50 degrees C[J]. Applied microbiology and biotechnology, 2010, 87(3): 951-964. |
[1] | 陈子苓, 向阳飞. 类器官技术与合成生物学协同研究进展[J]. 合成生物学, 2024, 5(4): 795-812. |
[2] | 蔡冰玉, 谭象天, 李伟. 合成生物学在干细胞工程化改造中的研究进展[J]. 合成生物学, 2024, 5(4): 782-794. |
[3] | 陈锡玮, 张华然, 邹懿. 真菌源非核糖体肽类药物生物合成及代谢工程[J]. 合成生物学, 2024, 5(3): 571-592. |
[4] | 谢皇, 郑义蕾, 苏依婷, 阮静怡, 李永泉. 放线菌聚酮类化合物生物合成体系重构研究进展[J]. 合成生物学, 2024, 5(3): 612-630. |
[5] | 查文龙, 卜兰, 訾佳辰. 中药药效成分群的合成生物学研究进展[J]. 合成生物学, 2024, 5(3): 631-657. |
[6] | 惠真, 唐啸宇. CRISPR/Cas9编辑系统在微生物天然产物研究中的应用[J]. 合成生物学, 2024, 5(3): 658-671. |
[7] | 刘晓楠, 李静, 祝晓熙, 徐子硕, 齐健, 江会锋. 紫杉醇生物合成机制研究进展[J]. 合成生物学, 2024, 5(3): 527-547. |
[8] | 叶精勤, 黄文华, 潘超, 朱力, 王恒樑. 合成生物学在多糖结合疫苗研发中的应用[J]. 合成生物学, 2024, 5(2): 338-352. |
[9] | 马雪璟, 郭畅, 华兆琳, 侯百东. 合成生物技术助力纳米颗粒疫苗理性设计时代的到来[J]. 合成生物学, 2024, 5(2): 353-368. |
[10] | 涂辉阳, 韩为东, 张斌. 肿瘤新抗原疫苗的设计与优化策略[J]. 合成生物学, 2024, 5(2): 254-266. |
[11] | 方超, 黄卫人. 合成生物学在肿瘤疫苗设计中的应用进展[J]. 合成生物学, 2024, 5(2): 239-253. |
[12] | 王步森, 徐婧含, 高智强, 侯利华. 病毒载体疫苗研究进展[J]. 合成生物学, 2024, 5(2): 281-293. |
[13] | 章金勇, 顾江, 关山, 李海波, 曾浩, 邹全明. 合成生物学助力细菌疫苗研发[J]. 合成生物学, 2024, 5(2): 321-337. |
[14] | 袁为锋, 赵永亮, 吴芷萱, 徐可. 合成生物学在新冠病毒广谱疫苗研发中的应用[J]. 合成生物学, 2024, 5(2): 369-384. |
[15] | 袁燕燕, 陈慧芳, 杨思慧, 王洪辉, 聂舟. 人工调控受体聚集的化学合成生物学策略及应用[J]. 合成生物学, 2024, 5(1): 53-76. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||