Synthetic Biology Journal ›› 2023, Vol. 4 ›› Issue (3): 590-610.DOI: 10.12211/2096-8280.2023-005
• Invited Review • Previous Articles Next Articles
TANG Yiming, YAO Yifei, YANG Zhongyuan, ZHOU Yun, WANG Zichao, WEI Guanghong
Received:2023-01-12
															
							
																	Revised:2023-03-28
															
							
															
							
																	Online:2023-07-05
															
							
																	Published:2023-06-30
															
						Contact:
								WEI Guanghong   
													唐一鸣, 姚逸飞, 杨中元, 周运, 王子超, 韦广红
通讯作者:
					韦广红
							作者简介:基金资助:CLC Number:
TANG Yiming, YAO Yifei, YANG Zhongyuan, ZHOU Yun, WANG Zichao, WEI Guanghong. Pathological aggregation and liquid-liquid phase separation of proteins associated with neurodegenerative diseases[J]. Synthetic Biology Journal, 2023, 4(3): 590-610.
唐一鸣, 姚逸飞, 杨中元, 周运, 王子超, 韦广红. 神经退行性疾病相关蛋白病理性聚集和液液相分离研究进展[J]. 合成生物学, 2023, 4(3): 590-610.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2023-005
| 蛋白质 | 相关疾病 | 相关文献 | |
|---|---|---|---|
| 纤维化能力 | 相分离能力 | ||
| β淀粉样蛋白(β-amyloid) | 阿尔茨海默病 | [ | 暂无报道 | 
| 微管相关蛋白(Tau) | 阿尔茨海默病、额颞叶痴呆、帕金森病 | [ | [ | 
| 普里昂蛋白(Prion) | 疯牛病、家族性致死性失眠症、羊瘙痒症、库鲁病 | [ | [ | 
| α-突触核蛋白(α-synuclein) | 帕金森病 | [ | [ | 
| 反式激活核酸结合蛋白-43(TDP-43) | 肌萎缩侧索硬化症、额颞叶变性运动神经元疾病 | [ | [ | 
| 融合肉瘤蛋白(FUS) | 肌萎缩侧索硬化症、额颞叶痴呆 | [ | [ | 
| 亨廷顿蛋白(Huntingtin) | 亨廷顿病 | [ | [ | 
Table 1 Aggregation and phase separation of proteins associated with neurodegenerative diseases
| 蛋白质 | 相关疾病 | 相关文献 | |
|---|---|---|---|
| 纤维化能力 | 相分离能力 | ||
| β淀粉样蛋白(β-amyloid) | 阿尔茨海默病 | [ | 暂无报道 | 
| 微管相关蛋白(Tau) | 阿尔茨海默病、额颞叶痴呆、帕金森病 | [ | [ | 
| 普里昂蛋白(Prion) | 疯牛病、家族性致死性失眠症、羊瘙痒症、库鲁病 | [ | [ | 
| α-突触核蛋白(α-synuclein) | 帕金森病 | [ | [ | 
| 反式激活核酸结合蛋白-43(TDP-43) | 肌萎缩侧索硬化症、额颞叶变性运动神经元疾病 | [ | [ | 
| 融合肉瘤蛋白(FUS) | 肌萎缩侧索硬化症、额颞叶痴呆 | [ | [ | 
| 亨廷顿蛋白(Huntingtin) | 亨廷顿病 | [ | [ | 
| 实验方法 | 研究内容 | 参考文献 | |||
|---|---|---|---|---|---|
| 解析空间结构 | 表征二级结构 | 表征空间形貌 | 表征蛋白内/间相互作用 | ||
| 圆二色谱(CD spectra) | × | √ | × | × | [ | 
| 傅里叶红外光谱(FTIR) | × | √ | × | × | [ | 
| ThT荧光光谱(ThT-FS) | × | √ | × | × | [ | 
| 扫描电子显微镜(SEM) | × | × | √ | × | [ | 
| 透射电子显微镜(TEM) | x | x | √ | × | [ | 
| 原子力显微镜(AFM) | × | × | √ | × | [ | 
| 微分干涉差显微镜(DIC) | × | × | √ | × | [ | 
| 固体核磁共振(ssNMR) | √ | √ | × | √ | [ | 
| X射线衍射(XRD) | √ | √ | × | × | [ | 
| 冷冻电镜(Cryo-EM) | √ | √ | × | × | [ | 
| 化学交联质谱(XL-MS) | × | × | × | √ | [ | 
| 荧光共振能量转移(FRET) | × | × | × | √ | [ | 
Table 2 Major experimental methods for studying protein pathological aggregation
| 实验方法 | 研究内容 | 参考文献 | |||
|---|---|---|---|---|---|
| 解析空间结构 | 表征二级结构 | 表征空间形貌 | 表征蛋白内/间相互作用 | ||
| 圆二色谱(CD spectra) | × | √ | × | × | [ | 
| 傅里叶红外光谱(FTIR) | × | √ | × | × | [ | 
| ThT荧光光谱(ThT-FS) | × | √ | × | × | [ | 
| 扫描电子显微镜(SEM) | × | × | √ | × | [ | 
| 透射电子显微镜(TEM) | x | x | √ | × | [ | 
| 原子力显微镜(AFM) | × | × | √ | × | [ | 
| 微分干涉差显微镜(DIC) | × | × | √ | × | [ | 
| 固体核磁共振(ssNMR) | √ | √ | × | √ | [ | 
| X射线衍射(XRD) | √ | √ | × | × | [ | 
| 冷冻电镜(Cryo-EM) | √ | √ | × | × | [ | 
| 化学交联质谱(XL-MS) | × | × | × | √ | [ | 
| 荧光共振能量转移(FRET) | × | × | × | √ | [ | 
| 121 | MANN J R, GLEIXNER A M, MAUNA J C, et al. RNA binding antagonizes neurotoxic phase transitions of TDP-43[J]. Neuron, 2019, 102(2): 321-338.e8. | 
| 122 | CARTER G C, HSIUNG C H, SIMPSON L, et al. N-terminal domain of TDP43 enhances liquid-liquid phase separation of globular proteins[J]. Journal of Molecular Biology, 2021, 433(10): 166948. | 
| 123 | HARDENBERG M C, SINNIGE T, CASFORD S, et al. Observation of an α-synuclein liquid droplet state and its maturation into Lewy body-like assemblies[J]. Journal of Molecular Cell Biology, 2021, 13(4): 282-294. | 
| 124 | ALBERTI S, GLADFELTER A, MITTAG T. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates[J]. Cell, 2019, 176(3): 419-434. | 
| 125 | BABINCHAK W M, SUREWICZ W K. Studying protein aggregation in the context of liquid-liquid phase separation using fluorescence and atomic force microscopy, fluorescence and turbidity assays, and FRAP[J]. Bio-protocol, 2020, 10(2): e3489. | 
| 126 | BABINCHAK W M, SUREWICZ W K. Liquid-liquid phase separation and its mechanistic role in pathological protein aggregation[J]. Journal of Molecular Biology, 2020, 432(7): 1910-1925. | 
| 127 | SHUSTER S O, LEE J C. Watching liquid droplets of TDP-43CTD age by Raman spectroscopy[J]. Journal of Biological Chemistry, 2022, 298(2): 101528. | 
| 128 | AVNI A, JOSHI A, WALIMBE A, et al. Single-droplet surface-enhanced Raman scattering decodes the molecular determinants of liquid-liquid phase separation[J]. Nature Communications, 2022, 13: 4378. | 
| 129 | SAWNER A S, RAY S, YADAV P, et al. Modulating α-synuclein liquid-liquid phase separation[J]. Biochemistry, 2021, 60(48): 3676-3696. | 
| 130 | HUANG S, MO X L, WANG J Y, et al. α-Synuclein phase separation and amyloid aggregation are modulated by C-terminal truncations[J]. FEBS Letters, 2022, 596(11): 1388-1400. | 
| 131 | XU B K, MO X L, CHEN J, et al. Myricetin inhibits α-synuclein amyloid aggregation by delaying the liquid-to-solid phase transition[J]. ChemBioChem, 2022, 23(16): e202200216. | 
| 132 | LI H R, CHEN T C, HSIAO C L, et al. The physical forces mediating self-association and phase-separation in the C-terminal domain of TDP-43[J]. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2018, 1866(2): 214-223. | 
| 133 | LIN Y, ZHOU X M, KATO M, et al. Redox-mediated regulation of an evolutionarily conserved cross-β structure formed by the TDP43 low complexity domain[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(46): 28727-28734. | 
| 134 | ZHOU X M, SUMROW L, TASHIRO K, et al. Mutations linked to neurological disease enhance self-association of low-complexity protein sequences[J]. Science, 2022, 377(6601): eabn5582. | 
| 135 | GRUIJS DA SILVA L A, SIMONETTI F, HUTTEN S, et al. Disease-linked TDP-43 hyperphosphorylation suppresses TDP-43 condensation and aggregation[J]. The EMBO Journal, 2022, 41(8): e108443. | 
| 136 | ZHANG X M, VIGERS M, MCCARTY J, et al. The proline-rich domain promotes Tau liquid-liquid phase separation in cells[J]. The Journal of Cell Biology, 2020, 219(11): e202006054. | 
| 137 | AMBADIPUDI S, REDDY J G, BIERNAT J, et al. Residue-specific identification of phase separation hot spots of Alzheimer's-related protein Tau[J]. Chemical Science, 2019, 10(26): 6503-6507. | 
| 138 | BOYKO X. QI X, CHEN T H,et al. Liquid-liquid phase separation of Tau protein: the crucial role of electrostatic interactions[J]. Journal of Biological Chemistry, 2019, 294(29): 11054-11059. | 
| 139 | MAJUMDAR A, DOGRA P, MAITY S, et al. Liquid-liquid phase separation is driven by large-scale conformational unwinding and fluctuations of intrinsically disordered protein molecules[J]. The Journal of Physical Chemistry Letters, 2019, 10(14): 3929-3936. | 
| 140 | RANE J S, KUMARI A, PANDA D. An acetylation mimicking mutation, K274Q, in Tau imparts neurotoxicity by enhancing Tau aggregation and inhibiting tubulin polymerization[J]. The Biochemical Journal, 2019, 476(10): 1401-1417. | 
| 141 | BOYKO S, SUREWICZ K, SUREWICZ W K. Regulatory mechanisms of Tau protein fibrillation under the conditions of liquid-liquid phase separation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(50): 31882-31890. | 
| 142 | PATEL A, LEE H O, JAWERTH L, et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation[J]. Cell, 2015, 162(5): 1066-1077. | 
| 143 | KANG J, LIM L, LU Y M, et al. A unified mechanism for LLPS of ALS/FTLD-causing FUS as well as its modulation by ATP and oligonucleic acids[J]. PLoS Biology, 2019, 17(6): e3000327. | 
| 144 | HAN T W, KATO M, XIE S H, et al. Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies[J]. Cell, 2012, 149(4): 768-779. | 
| 145 | DAROVIC S, PRPAR MIHEVC S, ŽUPUNSKI V, et al. Phosphorylation of C-terminal tyrosine residue 526 in FUS impairs its nuclear import[J]. Journal of Cell Science, 2015, 128(22): 4151-4159. | 
| 146 | MONAHAN Z, RYAN V H, JANKE A M, et al. Phosphorylation of the FUS low-complexity domain disrupts phase separation, aggregation, and toxicity[J]. The EMBO Journal, 2017, 36(20): 2951-2967. | 
| 147 | DHAKAL S, WYANT C E, GEORGE H E, et al. Prion-like C-terminal domain of TDP-43 and α-synuclein interact synergistically to generate neurotoxic hybrid fibrils[J]. Journal of Molecular Biology, 2021, 433(10): 166953. | 
| 148 | GRACIA P, POLANCO D, TARANCÓN-DÍEZ J, et al. Molecular mechanism for the synchronized electrostatic coacervation and co-aggregation of alpha-synuclein and Tau[J]. Nature Communications, 2022, 13: 4586. | 
| 149 | BHOPATKAR A A, UVERSKY V N, RANGACHARI V. Granulins modulate liquid-liquid phase separation and aggregation of the prion-like C-terminal domain of the neurodegeneration-associated protein TDP-43[J]. The Journal of Biological Chemistry, 2020, 295(8): 2506-2519. | 
| 150 | LIN Y, PROTTER D S, ROSEN M K, et al. Formation and maturation of phase-separated liquid droplets by RNA-binding proteins[J]. Molecular Cell, 2015, 60(2): 208-219. | 
| 151 | MAHARANA S, WANG J, PAPADOPOULOS D K, et al. RNA buffers the phase separation behavior of Prion-like RNA binding proteins[J]. Science, 2018, 360(6391): 918-921. | 
| 152 | GRESE Z R, BASTOS A C, MAMEDE L D, et al. Specific RNA interactions promote TDP-43 multivalent phase separation and maintain liquid properties[J]. EMBO Reports, 2021, 22(12): e53632. | 
| 153 | OVERBEEK J T G, VOORN M J. Phase separation in polyelectrolyte solutions. theory of complex coacervation[J]. Journal of Cellular and Comparative Physiology, 1957, 49(S1): 7-26. | 
| 154 | NOTT T J, PETSALAKI E, FARBER P, et al. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles[J]. Molecular Cell, 2015, 57(5): 936-947. | 
| 155 | LIN Y H, FORMAN-KAY J D, CHAN H S. Sequence-specific polyampholyte phase separation in membraneless organelles[J]. Physical Review Letters, 2016, 117(17): 178101. | 
| 156 | WESSÉN J, PAL T, CHAN H S. Field theory description of ion association in re-entrant phase separation of polyampholytes[J]. The Journal of Chemical Physics, 2022, 156(19): 194903. | 
| 1 | HARDY J, SELKOE D J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics[J]. Science, 2002, 297(5580): 353-356. | 
| 2 | STEFANIS L. α-Synuclein in Parkinson's disease[J]. Cold Spring Harbor Perspectives in Medicine, 2012, 2(2): a009399. | 
| 3 | PRASAD A, BHARATHI V, SIVALINGAM V, et al. Molecular mechanisms of TDP-43 misfolding and pathology in amyotrophic lateral sclerosis[J]. Frontiers in Molecular Neuroscience, 2019, 12: 25. | 
| 4 | KANAAN N M, HAMEL C, GRABINSKI T, et al. Liquid-liquid phase separation induces pathogenic Tau conformations in vitro [J]. Nature Communications, 2020, 11(1): 2809. | 
| 5 | RAY S, SINGH N, KUMAR R, et al. α-Synuclein aggregation nucleates through liquid-liquid phase separation[J]. Nature Chemistry, 2020, 12(8): 705-716. | 
| 6 | CONICELLA A E, ZERZE G H, MITTAL J, et al. ALS mutations disrupt phase separation mediated by α-helical structure in the TDP-43 low-complexity C-terminal domain[J]. Structure, 2016, 24(9): 1537-1549. | 
| 7 | GOMES E, SHORTER J. The molecular language of membraneless organelles[J]. Journal of Biological Chemistry, 2019, 294(18): 7115-7127. | 
| 8 | WEGMANN S, EFTEKHARZADEH B, TEPPER K, et al. Tau protein liquid-liquid phase separation can initiate Tau aggregation[J]. The EMBO Journal, 2018, 37(7): e98049. | 
| 9 | MOLLIEX A, TEMIROV J, LEE J H, et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization[J]. Cell, 2015, 163(1): 123-133. | 
| 10 | AHMAD A, UVERSKY V N, KHAN R H. Aberrant liquid-liquid phase separation and amyloid aggregation of proteins related to neurodegenerative diseases[J]. International Journal of Biological Macromolecules, 2022, 220: 703-720. | 
| 11 | MEINHARDT J, SACHSE C, HORTSCHANSKY P, et al. Aβ(1-40) fibril polymorphism implies diverse interaction patterns in amyloid fibrils[J]. Journal of Molecular Biology, 2009, 386(3): 869-877. | 
| 12 | BITAN G, KIRKITADZE M D, LOMAKIN A, et al. Amyloid β-protein (Aβ) assembly: Aβ40 and Aβ42 oligomerize through distinct pathways[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(1): 330-335. | 
| 157 | MCCARTY J, DELANEY K T, DANIELSEN S P O, et al. Complete phase diagram for liquid-liquid phase separation of intrinsically disordered proteins[J]. The Journal of Physical Chemistry Letters, 2019, 10(8): 1644-1652. | 
| 158 | DIGNON G L, ZHENG W W, KIM Y C, et al. Sequence determinants of protein phase behavior from a coarse-grained model[J]. PLoS Computational Biology, 2018, 14(1): e1005941. | 
| 159 | DIGNON L G, ZHENG W W, MITTAL J. Simulation methods for liquid-liquid phase separation of disordered proteins[J]. Current Opinion in Chemical Engineering, 2019, 23: 92-98. | 
| 160 | ASHBAUGH H S, HATCH H W. Natively unfolded protein stability as a coil-to-globule transition in charge/hydropathy space[J]. Journal of the American Chemical Society, 2008, 130(29): 9536-9542. | 
| 161 | KIM Y C, HUMMER G. Coarse-grained models for simulations of multiprotein complexes: application to ubiquitin binding[J]. Journal of Molecular Biology, 2008, 375(5): 1416-1433. | 
| 162 | MURTHY A C, DIGNON G L, KAN Y, et al. Molecular interactions underlying liquid-liquid phase separation of the FUS low-complexity domain[J]. Nature Structural & Molecular Biology, 2019, 26(7): 637-648. | 
| 163 | CONICELLA A E, DIGNON G L, ZERZE G H, et al. TDP-43 α-helical structure tunes liquid-liquid phase separation and function[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(11): 5883-5894. | 
| 164 | REGY R M, DIGNON G L, ZHENG W W, et al. Sequence dependent phase separation of protein-polynucleotide mixtures elucidated using molecular simulations[J]. Nucleic Acids Research, 2020, 48(22): 12593-12603. | 
| 165 | BATSIS J A, BOATENG G G, SEO L M, et al. Development and usability assessment of a connected resistance exercise band application for strength-monitoring[J]. World Academy of Science, Engineering and Technology, 2019, 13(5): 340-348. | 
| 166 | MISHRA A, SIPMA W, VEENHOFF L M, et al. The effect of FG-nup phosphorylation on NPC selectivity: a one-bead-per-amino-acid molecular dynamics study[J]. International Journal of Molecular Sciences, 2019, 20(3): 596. | 
| 167 | DAS S, LIN Y H, VERNON R M, et al. Comparative roles of charge, π, and hydrophobic interactions in sequence-dependent phase separation of intrinsically disordered proteins[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(46): 28795-28805. | 
| 168 | WOHL S, JAKUBOWSKI M, ZHENG W W. Salt-dependent conformational changes of intrinsically disordered proteins[J]. The Journal of Physical Chemistry Letters, 2021, 12(28): 6684-6691. | 
| 169 | SANCHEZ-BURGOS I, ESPINOSA J R, JOSEPH J A, et al. RNA length has a non-trivial effect in the stability of biomolecular condensates formed by RNA-binding proteins[J]. PLoS Computational Biology, 2022, 18(2): e1009810. | 
| 13 | FITZPATRICK A W P, FALCON B, HE S D, et al. Cryo-EM structures of Tau filaments from Alzheimer's disease[J]. Nature, 2017, 547(7662): 185-190. | 
| 14 | ŠIMIĆ G, BABIĆ LEKO M, WRAY S, et al. Tau protein hyperphosphorylation and aggregation in Alzheimer's disease and other tauopathies, and possible neuroprotective strategies[J]. Biomolecules, 2016, 6(1): 6. | 
| 15 | AMBADIPUDI S, BIERNAT J, RIEDEL D, et al. Liquid-liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau[J]. Nature Communications, 2017, 8: 275. | 
| 16 | WANG L Q, ZHAO K, YUAN H Y, et al. Cryo-EM structure of an amyloid fibril formed by full-length human prion protein[J]. Nature Structural & Molecular Biology, 2020, 27(6): 598-602. | 
| 17 | AISHWARYA A, MUKHOPADHYAY S. Prion protein biology through the lens of liquid-liquid phase separation[J]. Journal of Molecular Biology, 2022, 434(1): 167368. | 
| 18 | TANGE H, ISHIBASHI D, NAKAGAKI T, et al. Liquid-liquid phase separation of full-length prion protein initiates conformational conversion in vitro [J]. The Journal of Biological Chemistry, 2021, 296: 100367. | 
| 19 | GUERRERO-FERREIRA R, TAYLOR N M, ARTENI A A, et al. Two new polymorphic structures of human full-length alpha-synuclein fibrils solved by cryo-electron microscopy[J]. eLife, 2019, 8: e48907. | 
| 20 | SCHWEIGHAUSER M, SHI Y, TARUTANI A, et al. Structures of α-synuclein filaments from multiple system atrophy[J]. Nature, 2020, 585(7825): 464-469. | 
| 21 | LI Q Y, BABINCHAK W M, SUREWICZ W K. Cryo-EM structure of amyloid fibrils formed by the entire low complexity domain of TDP-43[J]. Nature Communications, 2021, 12(1): 1620. | 
| 22 | MURRAY D T, KATO M, LIN Y, et al. Structure of FUS protein fibrils and its relevance to self-assembly and phase separation of low-complexity domains[J]. Cell, 2017, 171(3): 615-627.e16. | 
| 23 | MURAKAMI T, QAMAR S, LIN J Q, et al. ALS/FTD mutation-induced phase transition of FUS liquid droplets and reversible hydrogels into irreversible hydrogels impairs RNP granule function[J]. Neuron, 2015, 88(4): 678-690. | 
| 24 | SCHERZINGER E, LURZ R, TURMAINE M, et al. Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo [J]. Cell, 1997, 90(3): 549-558. | 
| 170 | DAS S, MUTHUKUMAR M. Microstructural organization in α-synuclein solutions[J]. Macromolecules, 2022, 55(11): 4228-4236. | 
| 171 | NGUEMAHA V, ZHOU H X. Liquid-liquid phase separation of patchy particles illuminates diverse effects of regulatory components on protein droplet formation[J]. Scientific Reports, 2018, 8: 6728. | 
| 172 | GHOSH A, MAZARAKOS K, ZHOU H X. Three archetypical classes of macromolecular regulators of protein liquid-liquid phase separation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(39): 19474-19483. | 
| 173 | BENAYAD Z, VON BÜLOW S, STELZL L S, et al. Simulation of FUS protein condensates with an adapted coarse-grained model[J]. Journal of Chemical Theory and Computation, 2021, 17(1): 525-537. | 
| 174 | TSANAI M, FREDERIX P W J M, SCHROER C F E, et al. Coacervate formation studied by explicit solvent coarse-grain molecular dynamics with the Martini model[J]. Chemical Science, 2021, 12(24): 8521-8530. | 
| 175 | TANG Y M, BERA S, YAO Y F, et al. Prediction and characterization of liquid-liquid phase separation of minimalistic peptides[J]. Cell Reports Physical Science, 2021, 2(9): 100579. | 
| 176 | DONG X W, BERA S, QIAO Q, et al. Liquid-liquid phase separation of Tau protein is encoded at the monomeric level[J]. The Journal of Physical Chemistry Letters, 2021, 12(10): 2576-2586. | 
| 177 | ZHENG W W, DIGNON G L, JOVIC N, et al. Molecular details of protein condensates probed by microsecond long atomistic simulations[J]. The Journal of Physical Chemistry B, 2020, 124(51): 11671-11679. | 
| 178 | NING W S, GUO Y P, LIN S F, et al. DrLLPS: a data resource of liquid-liquid phase separation in eukaryotes[J]. Nucleic Acids Research, 2020, 48(D1): D288-D295. | 
| 179 | LI Q, PENG X J, LI Y Q, et al. LLPSDB: a database of proteins undergoing liquid-liquid phase separation in vitro [J]. Nucleic Acids Research, 2020, 48(D1): D320-D327. | 
| 180 | YOU K Q, HUANG Q, YU C Y, et al. PhaSepDB: a database of liquid-liquid phase separation related proteins[J]. Nucleic Acids Research, 2020, 48(D1): D354-D359. | 
| 181 | HOU C, XIE H T, FU Y, et al. MloDisDB: a manually curated database of the relations between membraneless organelles and diseases[J]. Briefings in Bioinformatics, 2021, 22(4): bbaa271. | 
| 182 | CHU X Q, SUN T L, LI Q, et al. Prediction of liquid-liquid phase separating proteins using machine learning[J]. BMC Bioinformatics, 2022, 23(1): 72. | 
| 183 | VAN MIERLO G, JANSEN J R G, WANG J, et al. Predicting protein condensate formation using machine learning[J]. Cell Reports, 2021, 34(5): 108705. | 
| 25 | POIRIER M A, LI H L, MACOSKO J, et al. Huntingtin spheroids and protofibrils as precursors in polyglutamine fibrilization[J]. Journal of Biological Chemistry, 2002, 277(43): 41032-41037. | 
| 26 | POSEY A E, RUFF K M, HARMON T S, et al. Profilin reduces aggregation and phase separation of huntingtin N-terminal fragments by preferentially binding to soluble monomers and oligomers[J]. Journal of Biological Chemistry, 2018, 293(10): 3734-3746. | 
| 27 | PESKETT T R, RAU F, O'DRISCOLL J, et al. A liquid to solid phase transition underlying pathological huntingtin Exon1 aggregation[J]. Molecular Cell, 2018, 70(4): 588-601.e6. | 
| 28 | IADANZA M G, JACKSON M P, HEWITT E W, et al. A new era for understanding amyloid structures and disease[J]. Nature Reviews Molecular Cell Biology, 2018, 19(12): 755-773. | 
| 29 | NGUYEN P H, RAMAMOORTHY A, SAHOO B R, et al. Amyloid oligomers: a joint experimental/computational perspective on Alzheimer's disease, Parkinson's disease, type Ⅱ diabetes, and amyotrophic lateral sclerosis[J]. Chemical Reviews, 2021, 121(4): 2545-2647. | 
| 30 | NASICA-LABOUZE J, NGUYEN P H, STERPONE F, et al. Amyloid β protein and Alzheimer's disease: when computer simulations complement experimental studies[J]. Chemical Reviews, 2015, 115(9): 3518-3563. | 
| 31 | 吴荣波, 李丕龙. 液-液相分离与生物分子凝集体[J]. 科学通报, 2019, 64(22): 2285-2291. | 
| WU R B, LI P L. Liquid-liquid phase separation and biomolecular condensates[J]. Chinese Science Bulletin, 2019, 64(22): 2285-2291. | |
| 32 | 郜一飞, 李丕龙. 生物大分子“液-液”相分离: 现状与展望[J]. 中国细胞生物学学报, 2019, 41(2): 185-191. | 
| GAO Y F, LI P L. "Liquid-liquid" phase separation of biological macromolecules: current situation and prospects[J]. Chinese Journal of Cell Biology, 2019, 41(2): 185-191. | |
| 33 | GREENFIELD N, FASMAN G D. Computed circular dichroism spectra for the evaluation of protein conformation[J]. Biochemistry, 1969, 8(10): 4108-4116. | 
| 34 | MOVASAGHI Z, REHMAN S, REHMAN D I UR. Fourier transform infrared (FTIR) spectroscopy of biological tissues[J]. Applied Spectroscopy Reviews, 2008, 43(2): 134-179. | 
| 35 | SEBASTIAO M, QUITTOT N, BOURGAULT S. Thioflavin T fluorescence to analyse amyloid formation kinetics: measurement frequency as a factor explaining irreproducibility[J]. Analytical Biochemistry, 2017, 532: 83-86. | 
| 36 | PRETORIUS E, VERMEULEN N, BESTER J, et al. A novel method for assessing the role of iron and its functional chelation in fibrin fibril formation: the use of scanning electron microscopy[J]. Toxicology Mechanisms and Methods, 2013, 23(5): 352-359. | 
| 37 | HOLMES D F, GRAHAM H K, TROTTER J A, et al. STEM/TEM studies of collagen fibril assembly[J]. Micron, 2001, 32(3): 273-285. | 
| 38 | DROLLE E, HANE F, LEE B, et al. Atomic force microscopy to study molecular mechanisms of amyloid fibril formation and toxicity in Alzheimer's disease[J]. Drug Metabolism Reviews, 2014, 46(2): 207-223. | 
| 39 | SIADAT S M, SILVERMAN A A, DIMARZIO C A, et al. Measuring collagen fibril diameter with differential interference contrast microscopy[J]. Journal of Structural Biology, 2021, 213(1): 107697. | 
| 40 | LEE Y H, GOTO Y. Kinetic intermediates of amyloid fibrillation studied by hydrogen exchange methods with nuclear magnetic resonance[J]. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2012, 1824(12): 1307-1323. | 
| 41 | BHATTACHARYYA D, KUMAR R, MEHRA S, et al. Multitude NMR studies of α-synuclein familial mutants: probing their differential aggregation propensities[J]. Chemical Communications, 2018, 54(29): 3605-3608. | 
| 42 | SUNDE M, SERPELL L C, BARTLAM M, et al. Common core structure of amyloid fibrils by synchrotron X-ray diffraction[J]. Journal of Molecular Biology, 1997, 273(3): 729-739. | 
| 43 | SEIDLER P M, MURRAY K A, BOYER D R, et al. Structure-based discovery of small molecules that disaggregate Alzheimer's disease tissue derived Tau fibrils in vitro [J]. Nature Communications, 2022, 13: 5451. | 
| 44 | BRONSOMS S, TREJO S A. Applications of mass spectrometry to the study of protein aggregation[M]. Insoluble Proteins: Methods and Protocols, 2015, 1258: 331-345. | 
| 45 | SCHULER B, EATON W A. Protein folding studied by single-molecule FRET[J]. Current Opinion in Structural Biology, 2008, 18(1): 16-26. | 
| 46 | PELTON J T, MCLEAN L R. Spectroscopic methods for analysis of protein secondary structure[J]. Analytical Biochemistry, 2000, 277(2): 167-176. | 
| 47 | TOWNSEND D, FULLWOOD N J, YATES E A, et al. Aggregation kinetics and filament structure of a Tau fragment are influenced by the sulfation pattern of the cofactor heparin[J]. Biochemistry, 2020, 59(41): 4003-4014. | 
| 48 | HUDSON S A, ECROYD H, KEE T W, et al. The thioflavin T fluorescence assay for amyloid fibril detection can be biased by the presence of exogenous compounds[J]. The FEBS Journal, 2009, 276(20): 5960-5972. | 
| 49 | ISLAM T, GHARIBYAN A L, LEE C C, et al. Morphological analysis of apolipoprotein E binding to Aβ amyloid using a combination of surface plasmon resonance, immunogold labeling and scanning electron microscopy[J]. BMC Biotechnology, 2019, 19(1): 97. | 
| 50 | MAKKY A, BOUSSET L, MADIONA K, et al. Atomic force microscopy imaging and nanomechanical properties of six Tau isoform assemblies[J]. Biophysical Journal, 2020, 119(12): 2497-2507. | 
| 51 | SALVESON P J, SPENCER R K, KREUTZER A G, et al. X-ray crystallographic structure of a compact dodecamer from a peptide derived from Aβ16-36 [J]. Organic Letters, 2017, 19(13): 3462-3465. | 
| 52 | TUTTLE M D, COMELLAS G, NIEUWKOOP A J, et al. Solid-state NMR structure of a pathogenic fibril of full-length human α-synuclein[J]. Nature Structural & Molecular Biology, 2016, 23(5): 409-415. | 
| 53 | GREMER L, SCHOELZEL D, SCHENK C, et al. Fibril structure of amyloid-β (1-42) by cryo-electron microscopy[J]. Science, 2017, 358(6359): 116-119. | 
| 54 | UBBIALI D, FRATINI M, PIERSIMONI L, et al. Direct observation of "Elongated" conformational states in α-synuclein upon liquid-liquid phase separation[J]. Angewandte Chemie, 2022, 134(46): e202205726. | 
| 55 | TAKAMUKU M, SUGISHITA T, TAMAKI H, et al. Evolution of α-synuclein conformation ensemble toward amyloid fibril via liquid-liquid phase separation (LLPS) as investigated by dynamic nuclear polarization-enhanced solid-state MAS NMR[J]. Neurochemistry International, 2022, 157: 105345. | 
| 56 | MENG F J, BELLAICHE M M J, KIM J Y, et al. Highly disordered amyloid-β monomer probed by single-molecule FRET and MD simulation[J]. Biophysical Journal, 2018, 114(4): 870-884. | 
| 57 | MAHAKUD A K, SHAIKH J, RIFA IQBAL V V, et al. Amyloids on membrane interfaces: implications for neurodegeneration[J]. The Journal of Membrane Biology, 2022, 255(6): 705-722. | 
| 58 | LU J X, QIANG W, YAU W M, et al. Molecular structure of β-amyloid fibrils in Alzheimer's disease brain tissue[J]. Cell, 2013, 154(6): 1257-1268. | 
| 69 | KIDD M. Paired helical filaments in electron microscopy of Alzheimer's disease[J]. Nature, 1963, 197(4863): 192-193. | 
| 60 | YAGISHITA S, ITOH Y, NAN W, et al. Reappraisal of the fine structure of Alzheimer's neurofibrillary tangles[J]. Acta Neuropathologica, 1981, 54(3): 239-246. | 
| 61 | ZHANG W J, TARUTANI A, NEWELL K L, et al. Novel Tau filament fold in corticobasal degeneration[J]. Nature, 2020, 580(7802): 283-287. | 
| 62 | SHI Y, ZHANG W J, YANG Y, et al. Structure-based classification of tauopathies[J]. Nature, 2021, 598(7880): 359-363. | 
| 63 | INGELSSON M. Alpha-synuclein oligomers — neurotoxic molecules in Parkinson's disease and other lewy body disorders[J]. Frontiers in Neuroscience, 2016, 10: 408. | 
| 64 | LI Y W, ZHAO C Y, LUO F, et al. Amyloid fibril structure of α-synuclein determined by cryo-electron microscopy[J]. Cell Research, 2018, 28(9): 897-903. | 
| 65 | GUERRERO-FERREIRA R, TAYLOR N M, MONA D, et al. Cryo-EM structure of alpha-synuclein fibrils[J]. eLife, 2018, 7: e36402. | 
| 66 | LI B S, GE P, MURRAY K A, et al. Cryo-EM of full-length α-synuclein reveals fibril polymorphs with a common structural kernel[J]. Nature Communications, 2018, 9: 3609. | 
| 67 | BOYER D R, LI B S, SUN C Q, et al. Structures of fibrils formed by α-synuclein hereditary disease mutant H50Q reveal new polymorphs[J]. Nature Structural & Molecular Biology, 2019, 26(11): 1044-1052. | 
| 68 | SUN Y P, LONG H F, XIA W C, et al. The hereditary mutation G51D unlocks a distinct fibril strain transmissible to wild-type α-synuclein[J]. Nature Communications, 2021, 12: 6252. | 
| 69 | SUN Y P, HOU S Q, ZHAO K, et al. Cryo-EM structure of full-length α-synuclein amyloid fibril with Parkinson's disease familial A53T mutation[J]. Cell Research, 2020, 30(4): 360-362. | 
| 70 | MCGLINCHEY R P, NI X D, SHADISH J A, et al. The N terminus of α-synuclein dictates fibril formation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(35): e2023487118. | 
| 71 | ZHAO K, LIM Y J, LIU Z Y, et al. Parkinson's disease-related phosphorylation at Tyr39 rearranges α-synuclein amyloid fibril structure revealed by cryo-EM[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(33): 20305-20315. | 
| 72 | CAO Q, BOYER D R, SAWAYA M R, et al. Cryo-EM structures of four polymorphic TDP-43 amyloid cores[J]. Nature Structural & Molecular Biology, 2019, 26(7): 619-627. | 
| 73 | GUENTHER E L, CAO Q, TRINH H, et al. Atomic structures of TDP-43 LCD segments and insights into reversible or pathogenic aggregation[J]. Nature Structural & Molecular Biology, 2018, 25(6): 463-471. | 
| 74 | GUO W R, CHEN Y B, ZHOU X H, et al. An ALS-associated mutation affecting TDP-43 enhances protein aggregation, fibril formation and neurotoxicity[J]. Nature Structural & Molecular Biology, 2011, 18(7): 822-830. | 
| 75 | JIANG L L, ZHAO J, YIN X F, et al. Two mutations G335D and Q343R within the amyloidogenic core region of TDP-43 influence its aggregation and inclusion formation[J]. Scientific Reports, 2016, 6: 23928. | 
| 76 | LAGIER-TOURENNE C, POLYMENIDOU M, CLEVELAND D W. TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration[J]. Human Molecular Genetics, 2010, 19(R1): R46-R64. | 
| 77 | LUO F, GUI X R, ZHOU H, et al. Atomic structures of FUS LC domain segments reveal bases for reversible amyloid fibril formation[J]. Nature Structural & Molecular Biology, 2018, 25(4): 341-346. | 
| 78 | LEE M, GHOSH U, THURBER K R, et al. Molecular structure and interactions within amyloid-like fibrils formed by a low-complexity protein sequence from FUS[J]. Nature Communications, 2020, 11: 5735. | 
| 79 | SUN Y P, ZHANG S Q, HU J J, et al. Molecular structure of an amyloid fibril formed by FUS low-complexity domain[J]. iScience, 2022, 25(1): 103701. | 
| 80 | SIMÓN-SÁNCHEZ J, SCHULTE C, BRAS J M, et al. Genome-wide association study reveals genetic risk underlying Parkinson's disease[J]. Nature Genetics, 2009, 41(12): 1308-1312. | 
| 81 | VASILI E, DOMINGUEZ-MEIJIDE A, OUTEIRO T F. Spreading of α-synuclein and Tau: a systematic comparison of the mechanisms involved[J]. Frontiers in Molecular Neuroscience, 2019, 12: 107. | 
| 82 | ISEKI E, TAKAYAMA N, MARUI W, et al. Relationship in the formation process between neurofibrillary tangles and Lewy bodies in the hippocampus of dementia with Lewy bodies brains[J]. Journal of the Neurological Sciences, 2002, 195(1): 85-91. | 
| 83 | SENGUPTA U, GUERRERO-MUÑOZ M J, CASTILLO-CARRANZA D L, et al. Pathological interface between oligomeric alpha-synuclein and tau in synucleinopathies[J]. Biological Psychiatry, 2015, 78(10): 672-683. | 
| 84 | SIEGERT A, RANKOVIC M, FAVRETTO F, et al. Interplay between Tau and α-synuclein liquid-liquid phase separation[J]. Protein Science, 2021, 30(7): 1326-1336. | 
| 85 | TSIGELNY I F, CREWS L, DESPLATS P, et al. Mechanisms of hybrid oligomer formation in the pathogenesis of combined Alzheimer's and Parkinson's diseases[J]. PLoS One, 2008, 3(9): e3135. | 
| 86 | MORALES R, ESTRADA L D, DIAZ-ESPINOZA R, et al. Molecular cross talk between misfolded proteins in animal models of Alzheimer's and Prion diseases[J]. The Journal of Neuroscience, 2010, 30(13): 4528-4535. | 
| 87 | ZOU W Q, XIAO X Z, YUAN J, et al. Amyloid-β42 interacts mainly with insoluble prion protein in the Alzheimer brain[J]. The Journal of Biological Chemistry, 2011, 286(17): 15095-15105. | 
| 88 | GENG H, CHEN F F, YE J, et al. Applications of molecular dynamics simulation in structure prediction of peptides and proteins[J]. Computational and Structural Biotechnology Journal, 2019, 17: 1162-1170. | 
| 89 | ZHAN C D, CHEN Y J, TANG Y M, et al. Green tea extracts EGCG and EGC display distinct mechanisms in disrupting Aβ42 protofibril[J]. ACS Chemical Neuroscience, 2020, 11(12): 1841-1851. | 
| 90 | LI F Y, CHEN Y J, LIU X S, et al. Atomistic insights into A315E mutation-enhanced pathogenicity of TDP-43 core fibrils[J]. ACS Chemical Neuroscience, 2022, 13(18): 2743-2754. | 
| 91 | NATESH S R, HUMMELS A R, SACHLEBEN J R, et al. Molecular dynamics study of water channels in natural and synthetic amyloid-β fibrils[J]. The Journal of Chemical Physics, 2021, 154(23): 235102. | 
| 92 | LEMKUL J A, BEVAN D R. Destabilizing Alzheimer's Abeta(42) protofibrils with morin: mechanistic insights from molecular dynamics simulations[J]. Biochemistry, 2010, 49(18): 3935-3946. | 
| 93 | FAN H M, GU R X, WANG Y J, et al. Destabilization of Alzheimer's Aβ42 protofibrils with a novel drug candidate wgx-50 by molecular dynamics simulations[J]. The Journal of Physical Chemistry B, 2015, 119(34): 11196-11202. | 
| 94 | FROST C V, ZACHARIAS M. From monomer to fibril: Abeta-amyloid binding to Aducanumab antibody studied by molecular dynamics simulation[J]. Proteins: Structure, Function, and Bioinformatics, 2020, 88(12): 1592-1606. | 
| 95 | ZHAN C D, LAO Z H, TANG Y M, et al. Natural stereoisomeric flavonoids exhibit different disruptive effects and the mechanism of action on Aβ42 protofibril[J]. Chemical Communications, 2021, 57(35): 4267-4270. | 
| 96 | YAO Y F, TANG Y M, ZHOU Y, et al. Baicalein exhibits differential effects and mechanisms towards disruption of α-synuclein fibrils with different polymorphs[J]. International Journal of Biological Macromolecules, 2022, 220: 316-325. | 
| 97 | TARUS B, TRAN T T, NASICA-LABOUZE J, et al. Structures of the Alzheimer's wild-type Aβ1-40 dimer from atomistic simulations[J]. The Journal of Physical Chemistry B, 2015, 119(33): 10478-10487. | 
| 98 | ZHANG Y L, HASHEMI M, LV Z J, et al. Self-assembly of the full-length amyloid Aβ42 protein in dimers[J]. Nanoscale, 2016, 8(45): 18928-18937. | 
| 99 | CAO Y, JIANG X H, HAN W. Self-assembly pathways of β-sheet-rich amyloid-β(1-40) dimers: Markov state model analysis on millisecond hybrid-resolution simulations[J]. Journal of Chemical Theory and Computation, 2017, 13(11): 5731-5744. | 
| 100 | YAMAUCHI M, OKUMURA H. Dimerization of α-synuclein fragments studied by isothermal-isobaric replica-permutation molecular dynamics simulation[J]. Journal of Chemical Information and Modeling, 2021, 61(3): 1307-1321. | 
| 101 | YOON J, JANG S, LEE K, et al. Simulation studies on the stabilities of aggregates formed by fibril-forming segments of α-synuclein[J]. Journal of Biomolecular Structure & Dynamics, 2009, 27(3): 259-270. | 
| 102 | GANGULY P, DO T D, LARINI L, et al. Tau assembly: the dominant role of PHF6 (VQIVYK) in microtubule binding region repeat R3[J]. The Journal of Physical Chemistry B, 2015, 119(13): 4582-4593. | 
| 103 | DONG X W, QI R X, QIAO Q, et al. Heparin remodels the microtubule-binding repeat R3 of Tau protein towards fibril-prone conformations[J]. Physical Chemistry Chemical Physics, 2021, 23(36): 20406-20418. | 
| 104 | GUPTA A, DEY S, HICKS A, et al. Artificial intelligence guided conformational mining of intrinsically disordered proteins[J]. Communications Biology, 2022, 5: 610. | 
| 105 | JIN Y M, JOHANNISSEN L O, HAY S. Predicting new protein conformations from molecular dynamics simulation conformational landscapes and machine learning[J]. Proteins: Structure, Function, and Bioinformatics, 2021, 89(8): 915-921. | 
| 106 | BRANGWYNNE C P, ECKMANN C R, COURSON D S, et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation[J]. Science, 2009, 324(5935): 1729-1732. | 
| 107 | LI P L, BANJADE S, CHENG H C, et al. Phase transitions in the assembly of multivalent signalling proteins[J]. Nature, 2012, 483(7389): 336-340. | 
| 108 | KATO M, HAN T W, XIE S H, et al. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels[J]. Cell, 2012, 149(4): 753-767. | 
| 109 | SHIN Y, BRANGWYNNE C P. Liquid phase condensation in cell physiology and disease[J]. Science, 2017, 357(6357): eaaf4382. | 
| 110 | WIPPICH F, BODENMILLER B, TRAJKOVSKA M G, et al. Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling[J]. Cell, 2013, 152(4): 791-805. | 
| 111 | BRANGWYNNE C P, MITCHISON T J, HYMAN A A. Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(11): 4334-4339. | 
| 112 | HAO L T, FULLER H R, LAM L T, et al. Absence of gemin5 from SMN complexes in nuclear Cajal bodies[J]. BMC Cell Biology, 2007, 8: 28. | 
| 113 | HUR W Y, KEMP J P, TARZIA M, et al. CDK-regulated phase separation seeded by histone genes ensures precise growth and function of histone locus bodies[J]. Developmental Cell, 2020, 54(3): 379-394.e6. | 
| 114 | ELBAUM-GARFINKLE S, KIM Y, SZCZEPANIAK K, et al. The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(23): 7189-7194. | 
| 115 | HOFWEBER M, HUTTEN S, BOURGEOIS B, et al. Phase separation of FUS is suppressed by its nuclear import receptor and arginine methylation[J]. Cell, 2018, 173(3): 706-719.e13. | 
| 116 | ANDRÉ A A M, SPRUIJT E. Liquid-liquid phase separation in crowded environments[J]. International Journal of Molecular Sciences, 2020, 21(16): 5908. | 
| 117 | LI Y C, GU J G, LIU C, et al. A high-throughput method for exploring the parameter space of protein liquid-liquid phase separation[J]. Cell Reports Physical Science, 2022, 3(3): 100764. | 
| 118 | MOLLIEX A, TEMIROV J, LEE J H, et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization[J]. Cell, 2015, 163(1): 123-133. | 
| 119 | LEE K H, ZHANG P P, KIM H J, et al. C9orf72 dipeptide repeats impair the assembly, dynamics, and function of membrane-less organelles[J]. Cell, 2016, 167(3): 774-788.e17. | 
| 120 | SHARMA A M, THOMAS T L, WOODARD D R, et al. Tau monomer encodes strains[J]. eLife, 2018, 7: 37813. | 
| [1] | Wei GUO, Yuhao FU, Yingying FAN, Jialing ZHOU, Xin LI, Ping WEI. Artificial control of mammalian cell chemotaxis and motility [J]. Synthetic Biology Journal, 2022, 3(6): 1109-1125. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||