Qian LI, E. Ferrell James, Yuping CHEN
Received:
2024-12-02
Revised:
2025-03-04
Published:
2025-03-04
Contact:
Qian LI, Yuping CHEN
李倩, James E. Ferrell, 陈于平
通讯作者:
李倩,陈于平
作者简介:
基金资助:
CLC Number:
Qian LI, E. Ferrell James, Yuping CHEN. Cytoplasmic concentration: an old question and a new parameter in cell biology[J]. Synthetic Biology Journal, DOI: 10.12211/2096-8280.2024-086.
李倩, James E. Ferrell, 陈于平. 细胞质浓度:细胞生物学的老问题、新参数[J]. 合成生物学, DOI: 10.12211/2096-8280.2024-086.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2024-086
细胞生理 | 细胞质浓度(变化前为100%) | 浓度变化原因 | 后果 | 参考文献 |
---|---|---|---|---|
有丝分裂肿胀 | 80%~90% | 未知 | 未知 | [ |
配子成熟 | 增加 | 排水 | 配子抗逆性增加 | [ |
血细胞成熟 | 增加或减少; 血红细胞细胞质浓度最大;单核细胞其次 | 血红细胞:血红蛋白大量合成 | 血红细胞携氧量增加 | [ |
[ | ||||
渗透压 | 64%~155% | 渗透压改变 | 微管聚合速率变化范围:64%~477%;微管解聚速率变化范围:42%~645% | [ |
翻译/降解 | 10%~200% | 人工浓缩、稀释 | 翻译速度先增加后降低,降解速度增加 | [ |
基因组稀释 | cdc28-13突变体:923% | 限制温度培养,细胞周期停滞,细胞体积增加 | 基因表达激活停滞;基因组稳定性降低 | [ |
衰老 | hTERT-RPE1细胞:590% MCF7细胞:262% | Palbociclib处理,细胞体积增加 | 激活 p53-p21 信号传导;53BP1不再修复 DNA 损伤;有丝分裂失败;基因组不稳定性;细胞周期永久退出 | [ |
Table 1 Physiological processes affecting cytoplasmic concentration
细胞生理 | 细胞质浓度(变化前为100%) | 浓度变化原因 | 后果 | 参考文献 |
---|---|---|---|---|
有丝分裂肿胀 | 80%~90% | 未知 | 未知 | [ |
配子成熟 | 增加 | 排水 | 配子抗逆性增加 | [ |
血细胞成熟 | 增加或减少; 血红细胞细胞质浓度最大;单核细胞其次 | 血红细胞:血红蛋白大量合成 | 血红细胞携氧量增加 | [ |
[ | ||||
渗透压 | 64%~155% | 渗透压改变 | 微管聚合速率变化范围:64%~477%;微管解聚速率变化范围:42%~645% | [ |
翻译/降解 | 10%~200% | 人工浓缩、稀释 | 翻译速度先增加后降低,降解速度增加 | [ |
基因组稀释 | cdc28-13突变体:923% | 限制温度培养,细胞周期停滞,细胞体积增加 | 基因表达激活停滞;基因组稳定性降低 | [ |
衰老 | hTERT-RPE1细胞:590% MCF7细胞:262% | Palbociclib处理,细胞体积增加 | 激活 p53-p21 信号传导;53BP1不再修复 DNA 损伤;有丝分裂失败;基因组不稳定性;细胞周期永久退出 | [ |
1 | WILSON E B. The Cell in Development and Inheritance [M]. Macmillan, 1896. |
2 | MILO R, PHILLIPS R. Cell biology by the numbers [M]. Garland Science, 2015. |
3 | NATHANS D, SMITH H O. Restriction endonucleases in the analysis and restructuring of dna molecules [J]. Annu Rev Biochem, 1975, 44(Volume 44, 1975): 273-93. |
4 | CHIEN A, EDGAR D B, TRELA J M. Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus [J]. Journal of bacteriology, 1976, 127(3): 1550-7. |
5 | ALBERTS B, JOHNSON A, LEWIS J, et al. Molecular Biology of the Cell [M]. Garland Science, 2014. |
6 | JACKSON D A, SYMONS R H, BERG P. Biochemical method for inserting new genetic information into DNA of Simian Virus 40: circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli [J]. Proc Natl Acad Sci U S A, 1972, 69(10): 2904-9. |
7 | PRASHER D C, ECKENRODE V K, WARD W W, et al. Primary structure of the Aequorea victoria green-fluorescent protein [J]. Gene, 1992, 111(2): 229-33. |
8 | JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity [J]. Science, 2012, 337(6096): 816-21. |
9 | ELOWITZ M B, LEIBLER S. A synthetic oscillatory network of transcriptional regulators [J]. Nature, 2000, 403(6767): 335-8. |
10 | TRUNNELL N B, POON A C, KIM S Y, et al. Ultrasensitivity in the Regulation of Cdc25C by Cdk1 [J]. Mol Cell, 2011, 41(3): 263-74. |
11 | PARDEE A B, JACOB F, MONOD J. The genetic control and cytoplasmic expression of "Inducibility" in the synthesis of β-galactosidase by E. coli [J]. Journal of Molecular Biology, 1959, 1(2): 165-78. |
12 | KANEHISA M. Enzyme Annotation and Metabolic Reconstruction Using KEGG [J]. Methods Mol Biol, 2017, 1611: 135-45. |
13 | CHEN Y, HUANG J H, PHONG C, et al. Viscosity-dependent control of protein synthesis and degradation [J]. Nat Commun, 2024, 15(1): 2149. |
14 | ALRIC B, FORMOSA-DAGUE C, DAGUE E, et al. Macromolecular crowding limits growth under pressure [J]. Nat Phys, 2022, 18(4): 411-6. |
15 | MOLINES A T, LEMIERE J, GAZZOLA M, et al. Physical properties of the cytoplasm modulate the rates of microtubule polymerization and depolymerization [J]. Dev Cell, 2022, 57(4): 466-79 e6. |
16 | WEBB B A, CHIMENTI M, JACOBSON M P, et al. Dysregulated pH: a perfect storm for cancer progression [J]. Nat Rev Cancer, 2011, 11(9): 671-7. |
17 | ELOWITZ M B, SURETTE M G, WOLF P E, et al. Protein mobility in the cytoplasm of Escherichia coli [J]. Journal of bacteriology, 1999, 181(1): 197-203. |
18 | BEGASSE M L, LEAVER M, VAZQUEZ F, et al. Temperature Dependence of Cell Division Timing Accounts for a Shift in the Thermal Limits of C. elegans and C. briggsae [J]. Cell Rep, 2015, 10(5): 647-53. |
19 | PERSSON L B, AMBATI V S, BRANDMAN O. Cellular Control of Viscosity Counters Changes in Temperature and Energy Availability [J]. Cell, 2020, 183(6): 1572-85 e16. |
20 | MINTON A P. Implications of macromolecular crowding for protein assembly [J]. Curr Opin Struct Biol, 2000, 10(1): 34-9. |
21 | HARRIS R F. Effect of Water Potential on Microbial Growth and Activity [M]. Water Potential Relations in Soil Microbiology. 2015: 23-95. |
22 | CHAKRABARTI B, RACHH M, SHVARTSMAN S Y, et al. Cytoplasmic stirring by active carpets [J]. Proc Natl Acad Sci U S A, 2024, 121(30): e2405114121. |
23 | BRANGWYNNE C P, KOENDERINK G H, MACKINTOSH F C, et al. Cytoplasmic diffusion: molecular motors mix it up [J]. The Journal of cell biology, 2008, 183(4): 583-7. |
24 | BRANGWYNNE C P, KOENDERINK G H, MACKINTOSH F C, et al. Intracellular transport by active diffusion [J]. Trends in cell biology, 2009, 19(9): 423-7. |
25 | NEUROHR G E, AMON A. Relevance and Regulation of Cell Density [J]. Trends in cell biology, 2020, 30(3): 213-25. |
26 | DILL K A, GHOSH K, SCHMIT J D. Physical limits of cells and proteomes [J]. Proc Natl Acad Sci U S A, 2011, 108(44): 17876-82. |
27 | ELLIS R J. Macromolecular crowding: obvious but underappreciated [J]. Trends Biochem Sci, 2001, 26(10): 597-604. |
28 | GUO M, PEGORARO A F, MAO A, et al. Cell volume change through water efflux impacts cell stiffness and stem cell fate [J]. Proc Natl Acad Sci U S A, 2017, 114(41): E8618-E27. |
29 | CADART C, BARTZ J, OAKS G, et al. Polyploidy in Xenopus lowers metabolic rate by decreasing total cell surface area [J]. Current biology : CB, 2023, 33(9): 1744-52 e7. |
30 | CADART C, VENKOVA L, RECHO P, et al. The physics of cell-size regulation across timescales [J]. Nature Physics, 2019, 15(10): 993-1004. |
31 | MINTON A P. The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media [J]. The Journal of biological chemistry, 2001, 276(14): 10577-80. |
32 | LEMIERE J, REAL-CALDERON P, HOLT L J, et al. Control of nuclear size by osmotic forces in Schizosaccharomyces pombe [J]. Elife, 2022, 11: e76075. |
33 | HARTWELL L H. Periodic density fluctuation during the yeast cell cycle and the selection of synchronous cultures [J]. Journal of bacteriology, 1970, 104(3): 1280-5. |
34 | RAHMAN Y E, ELSON D L, CERNY E A. Studies on the mechanism of erythrocyte aging and destruction. I. Separation of rat erythrocytes according to age by Ficoll gradient centrifugation [J]. Mech Ageing Dev, 1973, 2(2): 141-50. |
35 | SEGAL A W, FORTUNATO A, HERD T. A rapid single centrifugation step method for the separation of erythrocytes, granulocytes and mononuclear cells on continuous density gradients of Percoll [J]. J Immunol Methods, 1980, 32(3): 209-14. |
36 | CATSIMPOOLAS N. Methods of cell separation [M]. Springer Science & Business Media, 2012. |
37 | KRUGER N J. The Bradford method for protein quantitation [J]. The protein protocols handbook, 2009: 17-24. |
38 | NOBLE J E, BAILEY M J A. Chapter 8 Quantitation of Protein [M]//BURGESS R R, DEUTSCHER M P. Methods in Enzymology. Academic Press. 2009: 73-95. |
39 | PETERSON M S, PATKAR A Y, SEO J H. Flow cytometric analysis of total protein content and size distributions of recombinant Saccharomyces cerevisiae [J]. Biotechnology Techniques, 1992, 6(3): 203-6. |
40 | CRISSMAN H A, STEINKAMP J A. Rapid, simultaneous measurement of DNA, protein, and cell volume in single cells from large mammalian cell populations [J]. The Journal of cell biology, 1973, 59(3): 766-71. |
41 | ROTH B L, POOT M, YUE S T, et al. Bacterial viability and antibiotic susceptibility testing with SYTOX green nucleic acid stain [J]. Appl Environ Microbiol, 1997, 63(6): 2421-31. |
42 | NASH R, TOKIWA G, ANAND S, et al. The WHI1+ gene of Saccharomyces cerevisiae tethers cell division to cell size and is a cyclin homolog [J]. EMBO J, 1988, 7(13): 4335-46. |
43 | ROSEBROCK A P. Analysis of the Budding Yeast Cell Cycle by Flow Cytometry [J]. Cold Spring Harb Protoc, 2017, 2017(1): pdb.prot088740. |
44 | BLATTER L A. [16] Cell volume measurements by fluorescence confocal microscopy: Theoretical and practical aspects [M]. Methods in Enzymology. Academic Press. 1999: 274-95. |
45 | XIE S, SKOTHEIM J M. A G1 Sizer Coordinates Growth and Division in the Mouse Epidermis [J]. Current biology : CB, 2020, 30(5): 916-24 e2. |
46 | ZLOTEK-ZLOTKIEWICZ E, MONNIER S, CAPPELLO G, et al. Optical volume and mass measurements show that mammalian cells swell during mitosis [J]. Journal of Cell Biology, 2015, 211(4): 765-74. |
47 | GROVER W H, BRYAN A K, DIEZ-SILVA M, et al. Measuring single-cell density [J]. Proc Natl Acad Sci U S A, 2011, 108(27): 10992-6. |
48 | SON S, KANG J H, OH S, et al. Resonant microchannel volume and mass measurements show that suspended cells swell during mitosis [J]. Journal of Cell Biology, 2015, 211(4): 757-63. |
49 | ICHA J, WEBER M, WATERS J C, et al. Phototoxicity in live fluorescence microscopy, and how to avoid it [J]. BioEssays, 2017, 39(8): 1700003. |
50 | DEMCHENKO A P. Photobleaching of organic fluorophores: quantitative characterization, mechanisms, protection [J]. Methods Appl Fluoresc, 2020, 8(2): 022001. |
51 | PARK Y, DEPEURSINGE C, POPESCU G. Quantitative phase imaging in biomedicine [J]. Nature Photonics, 2018, 12(10): 578-89. |
52 | CURL C L, BELLAIR C J, HARRIS T, et al. Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy [J]. Cytometry A, 2005, 65(1): 88-92. |
53 | BON P, MAUCORT G, WATTELLIER B, et al. Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells [J]. Opt Express, 2009, 17(15): 13080-94. |
54 | CREATH K, GOLDSTEIN G. Dynamic quantitative phase imaging for biological objects using a pixelated phase mask [J]. Biomed Opt Express, 2012, 3(11): 2866-80. |
55 | GARDINER D J. Introduction to Raman scattering [M]. Practical Raman Spectroscopy. Springer. 1989: 1-12. |
56 | FREUDIGER C W, MIN W, SAAR B G, et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy [J]. Science, 2008, 322(5909): 1857-61. |
57 | CHENG J X, XIE X S. Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine [J]. Science, 2015, 350(6264): aaa8870. |
58 | HILL A H, MANIFOLD B, FU D. Tissue imaging depth limit of stimulated Raman scattering microscopy [J]. Biomed Opt Express, 2020, 11(2): 762-74. |
59 | FU D, LU F K, ZHANG X, et al. Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy [J]. J Am Chem Soc, 2012, 134(8): 3623-6. |
60 | OH S, LEE C, YANG W, et al. Protein and lipid mass concentration measurement in tissues by stimulated Raman scattering microscopy [J]. Proc Natl Acad Sci U S A, 2022, 119(17): e2117938119. |
61 | GARNER R M, MOLINES A T, THERIOT J A, et al. Vast heterogeneity in cytoplasmic diffusion rates revealed by nanorheology and Doppelganger simulations [J]. Biophys J, 2023, 122(5): 767-83. |
62 | HUANG W Y C, CHENG X, FERRELL J E, JR. Cytoplasmic organization promotes protein diffusion in Xenopus extracts [J]. Nat Commun, 2022, 13(1): 5599. |
63 | PHILLIPS R, KONDEV J, THERIOT J, et al. Physical biology of the cell [M]. Garland Science, 2012. |
64 | DELARUE M, BRITTINGHAM G P, PFEFFER S, et al. mTORC1 Controls Phase Separation and the Biophysical Properties of the Cytoplasm by Tuning Crowding [J]. Cell, 2018, 174(2): 338-49 e20. |
65 | SHU T, MITRA G, ALBERTS J, et al. Mesoscale molecular assembly is favored by the active, crowded cytoplasm [J]. bioRxiv, 2023. |
66 | KRICHEVSKY O, BONNET G. Fluorescence correlation spectroscopy: the technique and its applications [J]. Reports on Progress in Physics, 2002, 65(2): 251-97. |
67 | HUANG W Y C, BOXER S G, FERRELL J E, JR. Membrane localization accelerates association under conditions relevant to cellular signaling [J]. Proc Natl Acad Sci U S A, 2024, 121(10): e2319491121. |
68 | AXELROD D, KOPPEL D E, SCHLESSINGER J, et al. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics [J]. Biophys J, 1976, 16(9): 1055-69. |
69 | ZHOU H X, RIVAS G, MINTON A P. Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences [J]. Annual review of biophysics, 2008, 37(1): 375-97. |
70 | WEISS M, ELSNER M, KARTBERG F, et al. Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells [J]. Biophys J, 2004, 87(5): 3518-24. |
71 | RIVAS G, MINTON A P. Macromolecular Crowding In Vitro, In Vivo, and In Between [J]. Trends Biochem Sci, 2016, 41(11): 970-81. |
72 | ALGAR W R, HILDEBRANDT N, VOGEL S S, et al. FRET as a biomolecular research tool - understanding its potential while avoiding pitfalls [J]. Nat Methods, 2019, 16(9): 815-29. |
73 | BOERSMA A J, ZUHORN I S, POOLMAN B. A sensor for quantification of macromolecular crowding in living cells [J]. Nat Methods, 2015, 12(3): 227-9, 1 p following 9. |
74 | LIU X, OH S, KIRSCHNER M W. The uniformity and stability of cellular mass density in mammalian cell culture [J]. Front Cell Dev Biol, 2022, 10: 1017499. |
75 | MIETTINEN T P, KANG J H, YANG L F, et al. Mammalian cell growth dynamics in mitosis [J]. Elife, 2019, 8: e44700. |
76 | ZHURINSKY J, LEONHARD K, WATT S, et al. A coordinated global control over cellular transcription [J]. Current biology: CB, 2010, 20(22): 2010-5. |
77 | SWAFFER M P, MARINOV G K, ZHENG H, et al. RNA polymerase II dynamics and mRNA stability feedback scale mRNA amounts with cell size [J]. Cell, 2023, 186(24): 5254-68 e26. |
78 | NEUROHR G E, TERRY R L, LENGEFELD J, et al. Excessive Cell Growth Causes Cytoplasm Dilution And Contributes to Senescence [J]. Cell, 2019, 176(5): 1083-97 e18. |
79 | CHEN Y, ZHAO G, ZAHUMENSKY J, et al. Differential Scaling of Gene Expression with Cell Size May Explain Size Control in Budding Yeast [J]. Mol Cell, 2020, 78(2): 359-70 e6. |
80 | LANZ M C, ZATULOVSKIY E, SWAFFER M P, et al. Increasing cell size remodels the proteome and promotes senescence [J]. Mol Cell, 2022, 82(17): 3255-69 e8. |
81 | BRANGWYNNE C P, ECKMANN C R, COURSON D S, et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation [J]. Science, 2009, 324(5935): 1729-32. |
82 | MOLLIEX A, TEMIROV J, LEE J, et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization [J]. Cell, 2015, 163(1): 123-33. |
83 | LUO Y, NA Z, SLAVOFF S A. P-Bodies: Composition, Properties, and Functions [J]. Biochemistry, 2018, 57(17): 2424-31. |
84 | LAFONTAINE D L J, RIBACK J A, BASCETIN R, et al. The nucleolus as a multiphase liquid condensate [J]. Nat Rev Mol Cell Biol, 2021, 22(3): 165-82. |
85 | HE J, HUO X, PEI G, et al. Dual-role transcription factors stabilize intermediate expression levels [J]. Cell, 2024, 187(11): 2746-66 e25. |
86 | CHEN Y, FERRELL J E, JR. C. elegans colony formation as a condensation phenomenon [J]. Nat Commun, 2021, 12(1): 4947. |
87 | ALBERTI S, HYMAN A A. Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing [J]. Nat Rev Mol Cell Biol, 2021, 22(3): 196-213. |
88 | MINTON A P. The effect of volume occupancy upon the thermodynamic activity of proteins: some biochemical consequences [J]. Mol Cell Biochem, 1983, 55(2): 119-40. |
89 | KLOSIN A, OLTSCH F, HARMON T, et al. Phase separation provides a mechanism to reduce noise in cells [J]. Science, 2020, 367(6476): 464-8. |
90 | LUBY-PHELPS K. Cytoarchitecture and Physical Properties of Cytoplasm: Volume, Viscosity, Diffusion, Intracellular Surface Area [M]//WALTER H, BROOKS D E, SRERE P A. Microcompartmentation and Phase Separation in Cytoplasm. Academic Press. 1999: 189-221. |
91 | MINTON A P. Influence of excluded volume upon macromolecular structure and associations in 'crowded' media [J]. Curr Opin Biotechnol, 1997, 8(1): 65-9. |
92 | HU Z, CHEN K, XIA Z, et al. Nucleosome loss leads to global transcriptional up-regulation and genomic instability during yeast aging [J]. Genes Dev, 2014, 28(4): 396-408. |
93 | NEUROHR G E, TERRY R L, SANDIKCI A, et al. Deregulation of the G1/S-phase transition is the proximal cause of mortality in old yeast mother cells [J]. Genes Dev, 2018, 32(15-16): 1075-84. |
94 | CHEN Y, FUTCHER B. Scaling gene expression for cell size control and senescence in Saccharomyces cerevisiae [J]. Curr Genet, 2021, 67(1): 41-7. |
95 | MANOHAR S, ESTRADA M E, ULIANA F, et al. Genome homeostasis defects drive enlarged cells into senescence [J]. Mol Cell, 2023, 83(22): 4032-46 e6. |
96 | AOKI K, TAKAHASHI K, KAIZU K, et al. A quantitative model of ERK MAP kinase phosphorylation in crowded media [J]. Sci Rep, 2013, 3(1): 1541. |
97 | HUANG J H, CHEN Y, HUANG W Y C, et al. Robust trigger wave speed in Xenopus cytoplasmic extracts [J]. Nat Commun, 2024, 15(1): 5782. |
98 | JIANG H, SONG C, CHEN C C, et al. Quantitative 3D imaging of whole, unstained cells by using X-ray diffraction microscopy [J]. Proc Natl Acad Sci U S A, 2010, 107(25): 11234-9. |
99 | PLANTE S, MOON K M, LEMIEUX P, et al. Breaking spore dormancy in budding yeast transforms the cytoplasm and the solubility of the proteome [J]. PLoS Biol, 2023, 21(4): e3002042. |
100 | SHARMA R, AGARWAL A. Spermatogenesis: An Overview [M]//ZINI A, AGARWAL A. Sperm Chromatin. New York, NY; Springer New York. 2011: 19-44. |
101 | MAURER F, JOHN T, MAKHRO A, et al. Continuous Percoll Gradient Centrifugation of Erythrocytes-Explanation of Cellular Bands and Compromised Age Separation [J]. Cells, 2022, 11(8). |
102 | COOPER K L, OH S, SUNG Y, et al. Multiple phases of chondrocyte enlargement underlie differences in skeletal proportions [J]. Nature, 2013, 495(7441): 375-8. |
103 | BROUHARD G J, RICE L M. Microtubule dynamics: an interplay of biochemistry and mechanics [J]. Nat Rev Mol Cell Biol, 2018, 19(7): 451-63. |
104 | MIESCH J, WIMBISH R T, VELLUZ M C, et al. Phase separation of +TIP networks regulates microtubule dynamics [J]. Proc Natl Acad Sci U S A, 2023, 120(35): e2301457120. |
105 | FULTON A B. How crowded is the cytoplasm? [J]. Cell, 1982, 30(2): 345-7. |
106 | CAMERON I L, KANAL K M, KEENER C R, et al. A mechanistic view of the non-ideal osmotic and motional behavior of intracellular water [J]. Cell Biol Int, 1997, 21(2): 99-113. |
107 | BAR-EVEN A, NOOR E, SAVIR Y, et al. The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters [J]. Biochemistry, 2011, 50(21): 4402-10. |
108 | MAVROVOUNIOTIS M L, STEPHANOPOULOS G, STEPHANOPOULOS G. Estimation of Upper Bounds for the Rates of Enzymatic Reactions [J]. Chemical Engineering Communications, 2007, 93(1): 211-36. |
109 | STEITZ T A, SHOHAM M, BENNETT W S. Structural Dynamics of Yeast Hexokinase During Catalysis [J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 1981, 293(1063): 43-52. |
110 | KOSHLAND JR D E. The key–lock theory and the induced fit theory [J]. Angewandte Chemie International Edition in English, 1995, 33(23‐24): 2375-8. |
111 | HOPFIELD J J. Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity [J]. Proc Natl Acad Sci U S A, 1974, 71(10): 4135-9. |
112 | CHOI A A, XU K. Single-Molecule Diffusivity Quantification Unveils Ubiquitous Net Charge-Driven Protein–Protein Interaction [J]. Journal of the American Chemical Society, 2024, 146(15): 10973-8. |
113 | CHOI A A, ZHOU C Y, TABO A, et al. Single-molecule diffusivity quantification in Xenopus egg extracts elucidates physicochemical properties of the cytoplasm [J]. Proceedings of the National Academy of Sciences, 2024, 121(50): e2411402121. |
114 | AN S, KUMAR R, SHEETS E D, et al. Reversible compartmentalization of de novo purine biosynthetic complexes in living cells [J]. Science, 2008, 320(5872): 103-6. |
115 | CHAUDHURI P K, LOW B C, LIM C T. Mechanobiology of Tumor Growth [J]. Chem Rev, 2018, 118(14): 6499-515. |
116 | ALIBERT C, GOUD B, MANNEVILLE J B. Are cancer cells really softer than normal cells? [J]. Biol Cell, 2017, 109(5): 167-89. |
117 | DESSARD M, MANNEVILLE J B, BERRET J F. Cytoplasmic viscosity is a potential biomarker for metastatic breast cancer cells [J]. Nanoscale Adv, 2024, 6(6): 1727-38. |
[1] | Xiangshi LIU, Yilu WU, Peng ZHAN, Tianhao HUANG, Di CAI, Peiyong QIN. State-of-the-art for alcohol dehydrogenase development and the prospect of its applications in bio-based furan compounds valorization [J]. Synthetic Biology Journal, 2023, 4(6): 1122-1139. |
[2] | Wanqiu LIU, Xiangyang JI, Huiling XU, Yicong LU, Jian LI. Cell-free protein synthesis system enables rapid and efficient biosynthesis of restriction endonucleases [J]. Synthetic Biology Journal, 2023, 4(4): 840-851. |
[3] | Shiming TANG, Jiyuan HU, Suiping ZHENG, Shuangyan HAN, Ying LIN. Designing, building and rapid prototyping of biosynthesis module based on cell-free system [J]. Synthetic Biology Journal, 2022, 3(6): 1250-1261. |
[4] | Jiaqi HOU, Nan JIANG, Lianju MA, Yuan LU. Cell-free protein synthesis: from basic research to engineering applications [J]. Synthetic Biology Journal, 2022, 3(3): 465-486. |
[5] | Xinyu YANG, Tong ZHU, Ruifeng LI, Bian WU. Enzymatic ligation technologies for the synthesis of pharmaceutical peptides and proteins [J]. Synthetic Biology Journal, 2021, 2(1): 33-45. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||