Synthetic Biology Journal

   

Application of functional framework materials in C1 biotransformation

Zeyan DI1,2, Shuo ZHOU1,2, Mingfang YANG1,2, Xin LIU1, Yao CHEN1,2   

  1. 1.State Key Laboratory of Biopharmaceutical Preparation and Delivery,Institute of Process Engineering,Chinese Academy of Sciences,Beijing 100190,China
    2.State Key Laboratory of Medicinal Chemical Biology,Nankai University,Tianjin 300071,China
  • Received:2025-01-02 Revised:2025-03-09 Published:2025-03-11
  • Contact: Xin LIU, Yao CHEN

功能框架材料在一碳生物转化中的应用

狄泽燕1,2, 周铄1,2, 杨铭方1,2, 刘昕1, 陈瑶1,2   

  1. 1.中国科学院过程工程研究所,生物药制备与递送全国重点实验室,北京 100190
    2.南开大学,药物化学生物全国重点实验室,天津 300071
  • 通讯作者: 刘昕,陈瑶
  • 作者简介:狄泽燕(1999—),女,在读硕士。研究方向为晶态材料固定化酶。E-mail:dizeyan@163.com
    刘昕(1992—),女,博士,助理研究员。研究方向为合成生物学以及光-生物偶联催化。E-mail:liuxin@ipe.ac.cn
    陈瑶(1984—),女,博士,教授。研究方向为生物大分子/细胞固定化制剂、新型生物医药材料及相关应用转化(如生物药制剂及生物催化等)。E-mail:chenyao@ipe.ac.cn
  • 基金资助:
    国家重点研发计划(2021YFC2102100);国家自然科学基金面上项目(22371136);生物药制备与递送全国重点实验室自主部署课题(552024000621);中科院“百人计划”(2024ZZ-03)

Abstract:

The bioconversion of one-carbon (C1) compounds (CO2, methane, methanol, etc.) is a critical pathway for green biomanufacturing, yet its efficiency is constrained by challenges such as the difficulty in capturing gaseous substrates, insufficient stability of biocatalysts under harsh environmental conditions, high cost and operational complexity of cofactor regeneration, and inherent inefficiencies of natural microbial systems. Functional framework materials, including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and hydrogen-bonded organic frameworks (HOFs), offer novel solutions to these challenges due to their exceptional structural versatility, high surface area, and tunable physicochemical properties. These materials enable precise control over enzyme-microbe interactions, substrate enrichment, and catalytic microenvironment optimization. This review systematically summarizes recent advancements in the application of functional framework materials for C1 bioconversion: (1) serving as enzyme immobilization carriers to enhance catalytic robustness and operational stability, (2) constructing multi-enzyme cascade systems for sequential substrate conversion, (3) developing framework-based artificial enzymes mimicking natural catalytic mechanisms, and (4) synergizing microbial catalysis through material-mediated nutrient supply and metabolic regulation. By integrating material science with biocatalysis, these approaches address critical limitations in substrate accessibility, reaction kinetics, and system scalability. However, functional framework materials in C1 bioconversion face challenges, including limited diversity in immobilized enzyme types, mass transfer constraints due to pore structure mismatches, low compatibility of natural microbial strains with industrial processes, and high costs associated with material synthesis and scale-up. Furthermore, the long-term stability of frameworks under industrial operating conditions (e.g., humidity, acidic environments) remains a significant hurdle, alongside the technical complexity of co-immobilizing enzymes and microbial cells for hybrid catalytic systems. Future efforts should prioritize: (1) designing hierarchical porous frameworks to minimize mass transfer barriers, (2) leveraging synthetic biology to engineer microbial chassis with enhanced C1 assimilation pathways, (3) developing cost-effective, scalable synthesis methods for framework materials, (4) expanding the functional scope of frameworks to include non-metallic catalytic centers and stimuli-responsive properties, and (5) validating industrial compatibility through material densification and lifecycle sustainability assessments. The deep integration of functional framework materials with biocatalysis will provide transformative technological support for the high-value utilization of C1 resources.

Key words: C1 conversion, Biocatalysis, MOFs, COFs, HOFs

摘要:

一碳化合物(CO₂、甲烷、甲醇等)的生物转化是实现绿色生物制造的重要途径,但其效率受限于气相底物捕获困难、生物催化剂稳定性不足及辅因子再生成本高、操作复杂等问题。功能框架材料(金属有机框架(MOFs)、共价有机框架(COFs)和氢键有机框架(HOFs)等)凭借其高比表面积、可调孔道结构和多功能特性,为解决上述挑战提供了新思路。本文系统综述了功能框架材料在一碳生物转化中的最新研究进展:(1)作为酶固定化载体,显著提升催化稳定性与效率;(2)构建级联催化体系;(3)开发框架材料基人工酶;(4)协同微生物催化。然而,功能框架材料在一碳生物转化中应用面临固定化酶种类受限及传质阻力、天然微生物和酶效率低、规模化成本高及工业化适配性亟待突破等挑战。未来需重点优化定向固定化策略以减少传质限制;利用合成生物学改造微生物和酶;开发低成本、可大量制备的框架材料,突破规模化生产与工业适配性瓶颈,并评估全生命周期环境影响。功能框架材料与生物催化的深度融合将为一碳资源的高值化利用提供变革性技术支撑。

关键词: 一碳转化, 生物催化, 金属有机框架, 共价有机框架, 氢键有机框架

CLC Number: