MA Muqing, WU Yan, QU Maohua, LU Xiafeng, CAO Min, DU Feng, JI Rongtao, DONG Leichi, LUO Zhibo
Received:
2025-06-06
Revised:
2025-06-30
Published:
2025-07-03
Contact:
LUO Zhibo
马牧青, 吴彦, 曲茂华, 卢夏锋, 曹敏, 杜峰, 季荣涛, 董磊迟, 罗志波
通讯作者:
罗志波
作者简介:
基金资助:
CLC Number:
MA Muqing, WU Yan, QU Maohua, LU Xiafeng, CAO Min, DU Feng, JI Rongtao, DONG Leichi, LUO Zhibo. Extracellular Multi-enzyme Assembly and Biocatalytic Cascade: Advances and Prospects[J]. Synthetic Biology Journal, DOI: 10.12211/2096-8280.2025-056.
马牧青, 吴彦, 曲茂华, 卢夏锋, 曹敏, 杜峰, 季荣涛, 董磊迟, 罗志波. 体外多酶组装与生物级联催化:进展与展望[J]. 合成生物学, DOI: 10.12211/2096-8280.2025-056.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2025-056
应用领域 | 酶系统组成 | 设计思路 | 性能指标 | 优势 | 文献 |
---|---|---|---|---|---|
1,4-丁二醇合成 | 己内酯水解酶+羧酸还原酶+醇脱氢酶 | • 三酶级联简化化学路线• 辅酶循环(FDH) | • 替代高压化学法• 减少有毒试剂使用 | • 产量2.41 g/L• 反应步骤从9步减至3步 | [ |
(S)-2-羟基丁酸 | 苏氨酸脱氨酶+乳酸脱氢酶+甲酸脱氢酶 | • 动态动力学拆分• NADH循环系统 | • 高转化率(97%)• 光学纯度>99% | • 产量143 g/L• 无需外源辅酶 | [ |
索磷布韦中间体 | 转氨酶+亚胺还原酶 | •适配NADPH再生系统 •选择热稳定性突变体 | • 产物e.e.值>99.5% • 高转化率(>90%) | • 产率提升至92% • 半衰期延长至120小时 | [ |
手性胺合成 | 转氨酶+甲酸脱氢酶 | • 热力学耦合设计• 辅酶NADH原位再生 | • 原子经济性>98%• 产物e.e.值>99.9% | • 时空产率8.3 g/L/h• 辅酶周转数12,000 | [ |
肌醇合成 | 淀粉磷酸化酶+肌醇-1-磷酸合酶等四酶 | • 以淀粉为廉价底物• 仿生代谢路径重构 | • 转化率84.6%• 成本较化学法低70% | • 产量42.3 g/L• 4步反应“一锅法” | [ |
D-甘露醇生产 | 甘露糖脱氢酶+葡萄糖脱氢酶 | • 双酶辅因子循环• 底物通道效应优化 | • 摩尔转化率81.9%• 避免化学还原步骤 | • 产量81.9 g/L• 反应条件温和 | [ |
Table 1 Comparative Analysis Table of Application Cases of In Vitro Multi-enzyme Catalysis
应用领域 | 酶系统组成 | 设计思路 | 性能指标 | 优势 | 文献 |
---|---|---|---|---|---|
1,4-丁二醇合成 | 己内酯水解酶+羧酸还原酶+醇脱氢酶 | • 三酶级联简化化学路线• 辅酶循环(FDH) | • 替代高压化学法• 减少有毒试剂使用 | • 产量2.41 g/L• 反应步骤从9步减至3步 | [ |
(S)-2-羟基丁酸 | 苏氨酸脱氨酶+乳酸脱氢酶+甲酸脱氢酶 | • 动态动力学拆分• NADH循环系统 | • 高转化率(97%)• 光学纯度>99% | • 产量143 g/L• 无需外源辅酶 | [ |
索磷布韦中间体 | 转氨酶+亚胺还原酶 | •适配NADPH再生系统 •选择热稳定性突变体 | • 产物e.e.值>99.5% • 高转化率(>90%) | • 产率提升至92% • 半衰期延长至120小时 | [ |
手性胺合成 | 转氨酶+甲酸脱氢酶 | • 热力学耦合设计• 辅酶NADH原位再生 | • 原子经济性>98%• 产物e.e.值>99.9% | • 时空产率8.3 g/L/h• 辅酶周转数12,000 | [ |
肌醇合成 | 淀粉磷酸化酶+肌醇-1-磷酸合酶等四酶 | • 以淀粉为廉价底物• 仿生代谢路径重构 | • 转化率84.6%• 成本较化学法低70% | • 产量42.3 g/L• 4步反应“一锅法” | [ |
D-甘露醇生产 | 甘露糖脱氢酶+葡萄糖脱氢酶 | • 双酶辅因子循环• 底物通道效应优化 | • 摩尔转化率81.9%• 避免化学还原步骤 | • 产量81.9 g/L• 反应条件温和 | [ |
[1] | WATARI T, HATA S, NAKAJIMA K, et al. Limited quantity and quality of steel supply in a zero-emission future [J]. Nature Sustainability, 2023, 6(3): 336-43. |
[2] | SHELDON R A, WOODLEY J M. Role of Biocatalysis in Sustainable Chemistry [J]. Chemical Reviews, 2017, 118(2): 801-38. |
[3] | SCHRITTWIESER J H, VELIKOGNE S, HALL M, et al. Artificial Biocatalytic Linear Cascades for Preparation of Organic Molecules [J]. Chemical Reviews, 2017, 118(1): 270-348. |
[4] | XIAO Y, FENG C, FU J, et al. Band structure engineering and defect control of Ta3N5 for efficient photoelectrochemical water oxidation [J]. Nature Catalysis, 2020, 3(11): 932-40. |
[5] | ROSA R, SPINELLI R, NERI P, et al. Life Cycle Assessment of Chemical vs Enzymatic-Assisted Extraction of Proteins from Black Soldier Fly Prepupae for the Preparation of Biomaterials for Potential Agricultural Use [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(39): 14752-64. |
[6] | 国家统计局. 中国高技术产业统计年鉴 [Z]. 北京: 中国统计出版社. 2023 |
National Bureau of Statistics. Statistical Yearbook of China's High-tech Industries [Z]. Beijing: China Statistics Press. 2023. | |
[7] | WU B, WANG Y-W, DAI Y-H, et al. Current status and future prospective of bio-ethanol industry in China [J]. Renewable and Sustainable Energy Reviews, 2021, 145: 120-39. |
[8] | DENG W, YAN L, WANG B, et al. Efficient Catalysts for the Green Synthesis of Adipic Acid from Biomass [J]. Angewandte Chemie International Edition, 2021, 60(9): 4712-9. |
[9] | LI M, ZHANG Z-J, KONG X-D, et al. Engineering Streptomyces coelicolor Carbonyl Reductase for Efficient Atorvastatin Precursor Synthesis [J]. Applied and environmental microbiology, 2017, 83(12): 3360. |
[10] | DARGó G, KIS D, RáDULY A, et al. Furandicarboxylic Acid (FDCA): Electrosynthesis and Its Facile Recovery From Polyethylene Furanoate (PEF) via Depolymerization [J]. ChemSusChem, 2024, 18(3): 119. |
[11] | MOKALE KOGNOU A L, SHRESTHA S, JIANG Z, et al. High-fructose corn syrup production and its new applications for 5-hydroxymethylfurfural and value-added furan derivatives: Promises and challenges [J]. Journal of Bioresources and Bioproducts, 2022, 7(3): 148-60. |
[12] | 李举谋, 石焜, 张志钧, 等. 多酶级联反应的构建及其在双官能团功能化学品合成中的应用 [J]. 生物工程学报, 2023, 39(06): 2158-89. |
LI J M, SHI K, ZHANG Z J, et al. Construction of multi-enzyme cascade reactions and their application in the synthesis of bifunctional functional chemicals [J]. Chinese Journal of Biotechnology, 2023, 39(06): 2158-89. | |
[13] | LOPEZ-GALLEGO F, SCHMIDT-DANNERT C. Multi-enzymatic synthesis [J]. Current Opinion in Chemical Biology, 2010, 14(2): 174-83. |
[14] | KANG W, MA T, LIU M, et al. Modular enzyme assembly for enhanced cascade biocatalysis and metabolic flux [J]. Nature Communications, 2019, 10(1): 42-8. |
[15] | ABIDIN M Z, SARAVANAN T, ZHANG J, et al. Modular Enzymatic Cascade Synthesis of Vitamin B5 and Its Derivatives [J]. Chemistry-A European Journal, 2018, 24(66): 17434-8. |
[16] | DONG H, GUO N, HU D, et al. Chemoenzymatic total synthesis of alchivemycin A [J]. Nature Synthesis, 2024, 3(9): 1124-33. |
[17] | SHI Q, ZHANG B, WU Z, et al. Cascade Catalytic Systems for Converting CO2 into C2+ Products [J]. ChemSusChem, 2024, 18(7): 147. |
[18] | 郭华, 张蕾, 董旭, 等. 固定化多酶级联反应器 [J]. 化学进展, 2020, 32(04): 392-405. |
GUO H, ZHANG L, DONG X, et al. Fixed- bed multi-enzyme cascade reactor [J]. Progress in Chemistry, 2020, 32(04): 392-405. | |
[19] | JIANG S, LI H, ZHANG L, et al. Generic Diagramming Platform (GDP): a comprehensive database of high-quality biomedical graphics [J]. Nucleic Acids Research, 2024, 53(D1): D1670-D6. |
[20] | GAO Y, LI F, LUO Z, et al. Modular assembly of an artificially concise biocatalytic cascade for the manufacture of phenethylisoquinoline alkaloids [J]. Nature Communications, 2024, 15(1): 2231. |
[21] | KHOBRAGADE T P, SARAK S, PAGAR A D, et al. Synthesis of Sitagliptin Intermediate by a Multi-Enzymatic Cascade System Using Lipase and Transaminase with Benzylamine As an Amino Donor [J]. 2021, 9(1): 300-309. |
[82] | HOLZMAN D C. The Carbon Footprint of Biofuels: Can We Shrink It Down to Size in Time? [J]. Environmental Health Perspectives, 2008, 116(6): 1110. |
[83] | KHOBRAGADE T P, PAGAR A D, GIRI P, et al. Biocatalytic Cascade for Synthesis of Sitagliptin Intermediate Employing Coupled Transaminase [J]. Biotechnology and Bioprocess Engineering, 2023, 28(2): 300-9. |
[84] | 曹熙. 一种固定化脂肪酶的方法及其在生物柴油反应中的应用 [D]. 北京: 北京化工大学, 2015. |
CAO X. A Method for Fixing Lipase and Its Application in Bio-diesel Reactions [D]. Beijing: Beijing University of Chemical Technology, 2015. | |
[85] | TING W-W, NISHIKAWA S, YU W-C, et al. Chemo-enzymatic Synthesis of Coenzyme A Using Copurified Enzymes from Probiotic Escherichia coli Nissle [J]. ACS Sustainable Chemistry & Engineering, 2024, 12(27): 10068-74. |
[86] | PAN Y, LIU Y, PHAN T L, et al. Biomanufacturing of Inositol from Corn Stover with Biological Pretreatment by an In Vitro Synthetic Biology Platform [J]. ACS Sustainable Chemistry & Engineering, 2024, 13(1): 436-46. |
[87] | LI Z, NING X, ZHAO Y, et al. Efficient One-Pot Synthesis of Cytidine 5′-Monophosphate Using an Extremophilic Enzyme Cascade System [J]. Journal of Agricultural and Food Chemistry, 2020, 68(34): 9188-94. |
[88] | FERREIRA S, BALOLA A, SVESHNIKOVA A, et al. Computer-aided design and implementation of efficient biosynthetic pathways to produce high added-value products derived from tyrosine in Escherichia coli [J]. Frontiers in Bioengineering and Biotechnology, 2024, 12: 399-410. |
[89] | IMAM H T, MARR P C, MARR A C. Enzyme entrapment, biocatalyst immobilization without covalent attachment [J]. Green Chemistry, 2021, 23(14): 4980-5005. |
[90] | YU T, CUI H, LI J C, et al. Enzyme function prediction using contrastive learning [J]. Science, 2023, 379(6639): 1358-63. |
[91] | LI R, WIJMA H J, SONG L, et al. Computational redesign of enzymes for regio- and enantioselective hydroamination [J]. Nature Chemical Biology, 2018, 14(7): 664-70. |
[92] | JIAO Y, WANG H, WANG H, et al. A DNA origami–based enzymatic cascade nanoreactor for chemodynamic cancer therapy and activation of antitumor immunity [J]. Science Advances, 2025, 11(2): 2314. |
[22] | SIEGEL J B, ZANGHELLINI A, LOVICK H M, et al. Computational Design of an Enzyme Catalyst for a Stereoselective Bimolecular Diels-Alder Reaction [J]. Science, 2010, 329(5989): 309-13. |
[23] | WANG C, ZHANG H, WANG Y, et al. A General Strategy for the Synthesis of Hierarchically Ordered Metal-Organic Frameworks with Tunable Macro-, Meso-, and Micro-Pores [J]. Small, 2023, 19(3): 499-522. |
[24] | YIM H, HASELBECK R, NIU W, et al. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol [J]. Nature Chemical Biology, 2011, 7(7): 445-52. |
[25] | RAUTER M, NIETZ D, KUNZE G. Cutinase ACut2 from Blastobotrysraffinosifermentans for the Selective Desymmetrization of the Symmetric Diester Diethyl Adipate to the Monoester Monoethyl Adipate [J]. Microorganisms, 2022, 10(7): 1316-. |
[26] | WANG F, QI H, LI H, et al. State-of-the-art strategies and research advances for the biosynthesis of D-amino acids [J]. Critical Reviews in Biotechnology, 2023, 44(4): 495-513. |
[27] | SUN Y, SHU T, MA J, et al. Rational Design of ZIF-8 for Constructing Luminescent Biosensors with Glucose Oxidase and AIE-Type Gold Nanoclusters [J]. Analytical Chemistry, 2022, 94(7): 3408-17. |
[28] | ENGEL J, BORNSCHEUER U T, KARA S. Kinetics Modeling of a Convergent Cascade Catalyzed by Monooxygenase-Alcohol Dehydrogenase Coupled Enzymes [J]. Organic Process Research & Development, 2020, 25(3): 411-20. |
[29] | ZHANG D, JING X, ZHANG W, et al. Highly selective synthesis of d-amino acids from readily available l-amino acids by a one-pot biocatalytic stereoinversion cascade [J]. RSC Advances, 2019, 9(51): 29927-35. |
[30] | LI S-F, ZHANG W, ZHANG W, et al. Recent Advances in the Synthesis and Analysis of Atorvastatin and its Intermediates [J]. Current Medicinal Chemistry, 2024, 31(37): 6063-83. |
[31] | TIBREWAL N, TANG Y. Biocatalysts for Natural Product Biosynthesis [J]. Annual Review of Chemical and Biomolecular Engineering, 2014, 5(1): 347-66. |
[32] | MONTERREY D T, AZCONA L, REVUELTA J, et al. Polyphosphate Kinase from Burkholderia Cenocepacia, One Enzyme Catalyzing a Two Step Cascade Reaction to Synthesize ATP from AMP [J]. 2024, 1(3): 12995-. |
[33] | XIAO W, HUANG T-E, ZHOU J, et al. Inhibition of MAT2A Impairs Skeletal Muscle Repair Function [J]. Biomolecules, 2024, 14(9): 2424. |
[93] | XU K, CHATZITAKIS A, BACKE P H, et al. In situ cofactor regeneration enables selective CO2 reduction in a stable and efficient enzymatic photoelectrochemical cell [J]. Applied Catalysis B: Environmental, 2021, 296: 120349. |
[94] | 支睿, 李国辉, 毛银, 等. 己二酸生物合成的途径改造以及发酵条件优化 [J]. 食品与发酵工业, 2024, 50(03): 38-44. |
ZHI R, LI G H, MAO Y, et al. Modification of the pathway for adipic acid biosynthesis and optimization of fermentation conditions [J]. Food and Fermentation Industries Editorial Staff, 2024, 50(03): 38-44. | |
[95] | WANG F, ZHAO J, LI Q, et al. One-pot biocatalytic route from cycloalkanes to α,ω‐dicarboxylic acids by designed Escherichia coli consortia [J]. Nature Communications, 2020, 11(1): 5123. |
[96] | LI X, CAO Y, LUO K, et al. Highly active enzyme-metal nanohybrids synthesized in protein-polymer conjugates [J]. Nature Catalysis, 2019, 2(8): 718-25. |
[97] | 郭艺鸣, 姜君逸, 潘学玮, 等. 多酶级联反应催化γ-丁内酯生成1,4-丁二醇 [J]. 应用与环境生物学报, 2024, 30(01): 167-75. |
GUO Y M, JIANG J Y, PAN X W, et al. Multienzyme cascade reaction catalyzes the formation of 1,4-butanediol from γ-butyrolactone [J]. Journal of Applied and Environmental Biology, 2024, 30(01): 167-75. | |
[98] | 姜君逸, 郭艺鸣, 杨套伟, et al. 代谢工程改造大肠杆菌从头合成1,4-丁二醇 [J]. 生物工程学报 [J]. 2024, 40(09): 3142-57. |
JIANG J Y, GUO Y M, YANG T W, et al. Metabolic engineering to modify Escherichia coli for the in vitro synthesis of 1,4-butanediol [J]. Chinese Journal of Biotechnology [J]. 2024, 40(09): 3142-57. | |
[99] | 田灵芝, 周俊平, 杨套伟, 等. 基于多酶级联协调表达策略高效催化合成(S)-2-羟基丁酸 [J]. 生物工程学报, 2021, 37(12): 4231-42. |
TIAN L Z, ZHOU J P, YANG T W, et al. Efficient catalytic synthesis of (S)-2-hydroxybutyric acid based on multi-enzyme cascade coordinated expression strategy [J]. Chinese Journal of Biotechnology, 2021, 37(12): 4231-42. | |
[100] | BENíTEZ-MATEOS A I, ROURA PADROSA D, PARADISI F. Multistep enzyme cascades as a route towards green and sustainable pharmaceutical syntheses [J]. Nature Chemistry, 2022, 14(5): 489-99. |
[34] | RODRIGUEZ‐ABETXUKO A, REIFS A, SáNCHEZ‐DEALCáZAR D, et al. A Versatile Chemoenzymatic Nanoreactor that Mimics NAD(P)H Oxidase for the In Situ Regeneration of Cofactors [J]. Angewandte Chemie International Edition, 2022, 61(39): 1322. |
[35] | SHI J, WU Y, ZHANG S, et al. Bioinspired construction of multi-enzyme catalytic systems [J]. Chemical Society Reviews, 2018, 47(12): 4295-313. |
[36] | PENG T, TIAN J, ZHAO Y, et al. Multienzyme Redox System with Cofactor Regeneration for Cyclic Deracemization of Sulfoxides [J]. Angewandte Chemie-International Edition, 2022, 61(37): 435-45. |
[37] | GHIMIRE N, T-J OH. Cell-free system for one-pot production of protocatechuate via a two-enzyme cascade with coenzyme regeneration [J]. International Journal of Biological Macromolecules, 2025, 306(Pt 2): 141269. |
[38] | ZHOU M J, BOUAZZAOUI S, JONES L E, et al. Isolation and structural determination of non-racemic tertiary cathinone derivatives [J]. Organic & Biomolecular Chemistry, 2015, 13(37): 9629-36. |
[39] | DEL VECCHIO D. Modularity, context-dependence, and insulation in engineered biological circuits [J]. Trends in Biotechnology, 2015, 33(2): 111-9. |
[40] | KIM Y C, YOO H-W, PARK B G, et al. One-Pot Biocatalytic Route from Alkanes to α,ω-Diamines by Whole-Cell Consortia of Engineered Yarrowia lipolytica and Escherichia coli [J]. ACS Synthetic Biology, 2024, 13(7): 2188-98. |
[41] | SAVILE C K, JANEY J M, MUNDORFF E C, et al. Biocatalytic Asymmetric Synthesis of Chiral Amines from Ketones Applied to Sitagliptin Manufacture [J]. Science, 2010, 329(5989): 305-9. |
[42] | HUANG X, FENG J, CUI J, et al. Photoinduced chemomimetic biocatalysis for enantioselective intermolecular radical conjugate addition [J]. Nature Catalysis, 2022, 5(7): 586-93. |
[43] | NGUYEN L T, YANG K-L. Combined cross-linked enzyme aggregates of horseradish peroxidase and glucose oxidase for catalyzing cascade chemical reactions [J]. Enzyme and Microbial Technology, 2017, 100: 52-9. |
[44] | FERNANDES C G, SAWANT S C, MULE T A, et al. Enhancing cellulases through synergistic β-glucosidases for intensifying cellulose hydrolysis [J]. Process Biochemistry, 2022, 120: 202-12. |
[45] | YU X, CHEN X-Y, YU H-L, et al. Regio- and stereo-selective amination of fatty acids tod-amino acids by a three-step one-pot cascade [J]. Green Chemistry, 2023, 25(9): 3469-74. |
[101] | LIU L, WANG D-H, CHEN F-F, et al. Development of an engineered thermostable amine dehydrogenase for the synthesis of structurally diverse chiral amines [J]. Catalysis Science & Technology, 2020, 10(8): 2353-8. |
[102] | 王高杨,崔建东. 肌醇-1-磷酸合成酶的固定化及其在肌醇合成中应用 [D]. 天津: 天津科技大学, 2021. |
WANG G Y, CUI J D. Immobilization of Inositol-1-Phosphate Synthase and Its Application in Inositol Synthesis [D]. Tianjin: Tianjin University of Science and Technology, 2021. | |
[103] | 魏梓佳, 樊宇成, 张槿博, 等. 肌醇-1-磷酸合酶的重组表达及在多酶级联催化合成肌醇中的应用 [J]. 食品与发酵工业, 2025, 51(04): 280-7. |
WEI Z J, FAN Y C, ZHANG J B, et al. Recombinant Expression of Inositol-1-Phosphate Synthase and Its Application in the Multi-Enzyme Cascade Catalytic Synthesis of Inositol [J]. Food and Fermentation Industries Editorial Staff, 2025, 51(04): 280-287. | |
[104] | 潘珊, 胡孟凯, 潘学玮, 等. 基于双酶级联协调表达策略高效催化合成D-甘露醇 [J]. 生物工程学报, 2022, 38(07): 2549-65. |
PAN S, HU M K, PAN X W, et al. Efficient catalytic synthesis of D-mannitol based on a dual-enzyme cascade coordinated expression strategy [J]. Chinese Journal of Biotechnology, 2022, 38(07): 2549-2565. | |
[105] | 张建志, 付立豪, 唐婷, 等. 基于合成生物学策略的酶蛋白元件规模化挖掘 [J]. 合成生物学, 2020, 1(03): 319-36. |
ZHANG J Z, FU L H, TANG T, et al. Scale-up mining of enzyme protein elements based on synthetic biology strategies [J]. Synthetic Biology Journal, 2020, 1(03): 319-36. | |
[106] | 曲戈, 朱彤, 蒋迎迎, 等. 蛋白质工程:从定向进化到计算设计 [J]. 生物工程学报, 2019, 35(10): 1843-56. |
QU G, ZHU T, JIANG Y Y, et al. Protein Engineering: From Directed Evolution to Computational Design [J]. Chinese Journal of Biotechnology, 2019, 35(10): 1843-1856. | |
[107] | KASHINATH K P, SANJAY L R, ASHOKBHAI M K, et al. Continuous manufacturing based paradigm shift in pharmaceuticals production and current regulatory framework [J]. Chemical Engineering Research and Design, 2025, 215: 1-22. |
[108] | 石婷, 宋展, 宋世怡, 等. 体外生物转化(ivBT):生物制造的新前沿 [J]. 合成生物学, 2024, 5(06): 1437-60. |
SHI T, SONG Z, SONG S Y, et al. In Vitro Biotransformation (ivBT): A New Frontier in Biomanufacturing [J]. Synthetic Biology Journal, 2024, 5(06): 1437-1460. | |
[46] | CUI J D, QING Q J, WEI F X, et al. Biotechnological production and applications of microbial phenylalanine ammonia lyase: a recent review [J]. Critical Reviews in Biotechnology, 2014, 34(3): 258-68. |
[47] | 任杰, 曾安平. 基于二氧化碳的生物制造:从基础研究到工业应用的挑战 [J]. 合成生物学, 2021, 2(06): 854-62. |
REN J, ZENG A P. Biological Manufacturing Based on Carbon Dioxide: Challenges from Basic Research to Industrial Application [J]. Synthetic Biology Journal, 2021, 2(06): 854-62. | |
[48] | NAM K H. Glucose Isomerase: Functions, Structures, and Applications [J]. 2022, 12(1): 428. |
[49] | 徐铮, 徐恺, 陈昱金, 等. 异构酶在生物制造中的研究进展 [J]. 食品与发酵工业, 2021, 47(05): 244-51. |
XU Z, XU K, CHEN Y J, et al. Research Progress of Heterogeneous Enzymes in Biomanufacturing [J]. Food and Fermentation Industries Editorial Staff, 2021, 47(05): 244-51. | |
[50] | HAMMER S C, KUBIK G, WATKINS E, et al. Anti-Markovnikov alkene oxidation by metal-oxo-mediated enzyme catalysis [J]. Science, 2017, 358(6360): 215-8. |
[51] | GUO J, XU C, LI J, et al. Dual Role of Gluconic Acid in the Cascading Saccharification of Hemicellulose and Cellulose from Various Lignocellulosic Stuff [J]. ACS Sustainable Chemistry & Engineering, 2024, 12(22): 8325-39. |
[52] | XU J, CEN Y, SINGH W, et al. Stereodivergent Protein Engineering of a Lipase To Access All Possible Stereoisomers of Chiral Esters with Two Stereocenters [J]. Journal of the American Chemical Society, 2019, 141(19): 7934-45. |
[53] | SUN S-Z, NICHOLLS B T, BAIN D, et al. Enantioselective decarboxylative alkylation using synergistic photoenzymatic catalysis [J]. Nature Catalysis, 2023, 7(1): 35-42. |
[54] | LAUKO A. Computational Design of Serine Hydrolases [M]. Washington: University of Washington, 2024. |
[55] | PAN Y, LI G, LIU R, et al. Unnatural activities and mechanistic insights of cytochrome P450 PikC gained from site-specific mutagenesis by non-canonical amino acids [J]. Nature Communications, 2023, 14(1): 425. |
[56] | UTHARALA R, GRAB A, VAFAIZADEH V, et al. A microfluidic Braille valve platform for on-demand production, combinatorial screening and sorting of chemically distinct droplets [J]. Nature Protocols, 2022, 17(12): 2920-65. |
[57] | HOMMA F, HUANG J, VAN DER HOORN R A L. AlphaFold-Multimer predicts cross-kingdom interactions at the plant-pathogen interface [J]. Nature Communications, 2023, 14(1): 227-38. |
[58] | JANG T, S-J SHIN, H-K LIM, et al. DFT-CES2: Quantum Mechanics Based Embedding for Mean-Field QM/MM of Solid–Liquid Interfaces [J]. JACS Au, 2025: 4390-432. |
[59] | WU X, YANG C, GE J. Green synthesis of enzyme/metal-organic framework composites with high stability in protein denaturing solvents [J]. Bioresources and Bioprocessing, 2017, 4(1): 24-. |
[60] | 董玲玲, 李斐煊, 雷航彬, 等. 仿生分区室固定化多酶体系合成生物学 [J]. 生命科学, 2024, 5(06): 1518-29. |
DONG L L, LI F X, LEI H B, et al. Biomimetic Zone Chamber Fixed-Enzyme System for Synthetic Biology [J]. Life Sciences, 2024, 5(06): 1518-29. | |
[61] | BI C Y, REN T Y, ZHANG J L, et al. Co-immobilization of glucose oxidase and catalase on ion-exchange resin [Z]. Food and Fermentation Industries Editorial Staff. 2015: 13-8. |
[62] | WILLIAMS V, CUI Y, JIANG X, et al. Co-immobilized Multienzyme System for the Cofactor-Driven Cascade Synthesis of (R)-2-Amino-3-(2-bromophenyl)propanoic Acid: A Model Reaction [J]. Organic Process Research & Development, 2022, 26(11): 3024-33. |
[63] | KIM M, LEE C, JEON K, et al. Harnessing a paper-folding mechanism for reconfigurable DNA origami [J]. Nature, 2023, 619(7968): 78-86. |
[64] | WANG Y, SELIVANOVITCH E, DOUGLAS T. Enhancing Multistep Reactions: Biomimetic Design of Substrate Channeling Using P22 Virus‐Like Particles [J]. Advanced Science, 2023, 10(13): 1472. |
[65] | YANG L, YUAN Q-Y, LI T-T, et al. Recent developments and applications of pH-responsive polymers [J]. Textile Research Journal, 2025: 930-44. |
[66] | GODOY-GALLARDO M, LABAY C, TRIKALITIS V D, et al. Multicompartment Artificial Organelles Conducting Enzymatic Cascade Reactions inside Cells [J]. ACS Applied Materials & Interfaces, 2017, 9(19): 15907-21. |
[67] | YE J, CHU T, CHU J, et al. A Versatile Approach for Enzyme Immobilization Using Chemically Modified 3D-Printed Scaffolds [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(21): 18048-54. |
[68] | 苏枫. 微生物脂肪酶的固定化新技术及在生物柴油制备中的应用 [D]. 武汉: 华中科技大学, 2017. |
SU F. New Technology for the Immobilization of Microbial Lipases and Its Application in the Production of Bio-diesel [D]. Wuhan: Huazhong University of Science and Technology, 2017. | |
[69] | 陈坚, YOSHIO KATAKURA, SUTEAKI SHIOYA, SUGA KEN-ICHI. 固定化酶-离子交换组合系统进行青霉素G水解生产6-APA的模型化研究 [J]. 生物工程学报, 1995, (04): 343-9. |
CHEN J, YOSHIO KATAKURA, SUTEAKI SHIOYA, SUGA KEN-ICHI. Modeling study on the production of 6-APA through the hydrolysis of penicillin G using the immobilized enzyme-ion exchange combined system [J]. Chinese Journal of Biotechnology, 1995, (04): 343-9. | |
[70] | 万娟娟, 刘旭峰, 戎海波, 等. 酶固定化技术及固定化酶应用的研究进展 [J]. 现代化工, 2024, 44(S1): 73-9. |
WAN J J, LIU X F, RONG H B, et al. Research Progress on Enzyme Immobilization Technology and Its Application of Immobilized Enzymes [J]. Modern Chemical Journal, 2024, 44(S1): 73-9. | |
[71] | 尚红岩, 翁绮纹, 练文妃, 等. 纤维素酶固定化工艺条件优化及在甘蔗渣酶解中的应用 [J]. 甘蔗糖业, 2024, 53(05): 42-8. |
SHANG H Y, WENG Q H, LIAN W F, et al. Optimization of cellulase immobilization process conditions and its application in enzymatic hydrolysis of sugarcane bagasse [J]. Sugarcane Industry Journal, 2024, 53(05): 42-8. | |
[72] | 徐惠东, 尤扬, 游颖欣, 等. 一种高耐热乳糖酶的异源表达、固定化及酶学性质研究 [J]. 食品与发酵工业, 2024, 50(21): 1-8. |
XU H D, YOU Y, YOU Y X, et al. Study on Heterologous Expression, Immobilization and Enzymatic Properties of a High-Temperature Resistant Lactase [J]. Food and Fermentation Industries Editorial Staff, 2024, 50(21): 1-8. | |
[73] | TANG C-D, ZHANG Z-H, SHI H-L, et al. Directed evolution of formate dehydrogenase and its application in the biosynthesis of L-phenylglycine from phenylglyoxylic acid [J]. Molecular Catalysis, 2021, 513: 309-11. |
[74] | GORAN J M, FAVELA C A, STEVENSON K J. Investigating the Electrocatalytic Oxidation of Dihydronicotinamide Adenine Dinucleotide at Nitrogen-Doped Carbon Nanotube Electrodes: Implications to Electrochemically Measuring Dehydrogenase Enzyme Kinetics [J]. ACS Catalysis, 2014, 4(9): 2969-76. |
[75] | LIU T, YIN Y, YANG Y, et al. Layer‐by‐Layer Engineered All‐Liquid Microfluidic Chips for Enzyme Immobilization [J]. Advanced Materials, 2021, 34(5): 110-21. |
[76] | LI G, MA W, YANG Y, et al. Nanoscale Covalent Organic Frameworks with Donor–Acceptor Structures as Highly Efficient Light-Responsive Oxidase-like Mimics for Colorimetric Detection of Glutathione [J]. ACS Applied Materials & Interfaces, 2021, 13(41): 49482-9. |
[77] | CHEN Y, TAO K, JI W, et al. Histidine as a key modulator of molecular self-assembly: Peptide-based supramolecular materials inspired by biological systems [J]. Materials Today, 2022, 60: 106-27. |
[78] | KIGHTLINGER W, DUNCKER K E, RAMESH A, et al. A cell-free biosynthesis platform for modular construction of protein glycosylation pathways [J]. Nature Communications, 2019, 10(1): 5404. |
[79] | SU H H, GUO Z W, WU X L, et al. Efficient Bioconversion of Sucrose to High‐Value‐Added Glucaric Acid by In Vitro Metabolic Engineering [J]. ChemSusChem, 2019, 12(10): 2278-85. |
[80] | SUN Z-B, XU J-L, LU X, et al. Directed mutation of β-glucanases from probiotics to enhance enzymatic activity, thermal and pH stability [J]. Archives of Microbiology, 2020, 202(7): 1749-56. |
[81] | BACHOSZ K, ZDARTA J, BILAL M, et al. Enzymatic cofactor regeneration systems: A new perspective on efficiency assessment [J]. Science of The Total Environment, 2023, 868: 161630. |
[1] | CHAI Meng, WANG Fengqing, WEI Dongzhi. Synthesis of organic acids from lignocellulose by biotransformation [J]. Synthetic Biology Journal, 2024, 5(6): 1242-1263. |
[2] | ZHANG Jun, JIN Shixue, YUN Qian, QU Xudong. Biosynthesis of the unnatural extender units with polyketides and their structural modifications for applications in medicines [J]. Synthetic Biology Journal, 2024, 5(3): 561-570. |
[3] | KANG Liqi, TAN Pan, HONG Liang. Enzyme engineering in the age of artificial intelligence [J]. Synthetic Biology Journal, 2023, 4(3): 524-534. |
[4] | CUI Xinyu, WU Ranran, WANG Yuanming, ZHU Zhiguang. Construction and enhancement of enzymatic bioelectrocatalytic systems [J]. Synthetic Biology Journal, 2022, 3(5): 1006-1030. |
[5] | XIONG Liangbin, SONG Lu, ZHAO Yunqiu, LIU Kun, LIU Yongjun, WANG Fengqing, WEI Dongzhi. Green biomanufacturing of steroids: from biotransformation to de novo synthesis by microorganisms [J]. Synthetic Biology Journal, 2021, 2(6): 942-963. |
[6] | ZHANG Yi-Heng. Remembering Professor Daniel I.C. Wang’s contribution to biorefining and my perspective on the progress [J]. Synthetic Biology Journal, 2021, 2(4): 497-508. |
[7] | SHI Ran, JIANG Zhengqiang. Enzymatic synthesis of 2'-fucosyllactose: advances and perspectives [J]. Synthetic Biology Journal, 2020, 1(4): 481-494. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||