WANG Mingpeng1,2,3, CHEN Lei1,2, ZHAO Yiran1, ZHANG Yimin1, ZHENG Qifan1, LIU Xinyang1, WANG Yixue1, WANG Qinhong2,3
Received:
2024-12-03
Revised:
2025-04-14
Published:
2025-04-18
Contact:
WANG Qinhong
王明鹏1,2,3, 陈蕾1,2, 赵一冉1, 张祎慜1, 郑琪帆1, 刘馨阳1, 王毅学1, 王钦宏2,3
通讯作者:
王钦宏
作者简介:
基金资助:
CLC Number:
WANG Mingpeng, CHEN Lei, ZHAO Yiran, ZHANG Yimin, ZHENG Qifan, LIU Xinyang, WANG Yixue, WANG Qinhong. Halogenases in Biocatalysis: Advances in Mechanism Elucidation, Directed Evolution, and Green Manufacturing[J]. Synthetic Biology Journal, DOI: 10.12211/2096-8280.2024-091.
王明鹏, 陈蕾, 赵一冉, 张祎慜, 郑琪帆, 刘馨阳, 王毅学, 王钦宏. 卤化酶在生物催化中的应用:机制解析、定向进化和绿色制造的进展[J]. 合成生物学, DOI: 10.12211/2096-8280.2024-091.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2024-091
名称 | 来源 | 同源蛋白(相似性%) | 产物 | 功能 | 文献 |
---|---|---|---|---|---|
DarH | 藤黄紫假交替单胞菌 Pseudoalteromonas luteoviolacea | YpdA(<27%) | 溴化达罗巴汀 | 抗生素 | [ |
AltN | 假交替单胞菌 Pseudoalteromonas sp. strain T1lg65 | Bmp2 | 溴化或双溴变色素 | 抗生素 | [ |
SclC | 无刺蜜蜂青霉菌 Penicillium meliponae | AclH (63%) | 核丛青霉素中间产物 | 中间代谢物 | [ |
ChlCz9 | 图巴塔哈链霉菌 Streptomyces tubbatahanensis sp. nov. | 来自Streptomyces diacarni的 黄素依赖型氧化还原酶(95.1%) | 氯代咔唑生物碱 | 抗生素 | [ |
SzoI | 黏细菌 Sandaracinus sp. MSr10575 | 未提及 | 桑达拉唑类Sandarazol | 防御性化合物, 毒素 | [ |
LutA | 塔拉霉属 Talaromyces sp. | GedL (56.7%) | 氯化阿扎菲酮类 | [ | |
OrfA | 溶瘤链霉菌 Streptomyces tumemacerans JCM5050 | XanH (35%) LlpH (34%) | 卤化白真菌素 | 抗生素 | [ |
PtlK | 杜鹃花拟盘多毛孢菌 Pestalotiopsis rhododendri LF-19-12 | GedL (51%) | 氯化二苯甲酮衍生物 | 抗生素 | [ |
DnHal | 黑囊基地衣属 Dirinaria sp. | RadH (65%) | 氯化赤星衣酸甲酯 | 中间代谢物, 有机合成骨架 | [ |
Tal-halo | 嗜松塔拉霉菌 Talaromyces pinophilus LD‑7 | RadH (56%) | 氯化异香豆素 | 中间代谢物, 有机合成骨架 | [ |
Table 1 Examples of halogenase discovered by genome mining
名称 | 来源 | 同源蛋白(相似性%) | 产物 | 功能 | 文献 |
---|---|---|---|---|---|
DarH | 藤黄紫假交替单胞菌 Pseudoalteromonas luteoviolacea | YpdA(<27%) | 溴化达罗巴汀 | 抗生素 | [ |
AltN | 假交替单胞菌 Pseudoalteromonas sp. strain T1lg65 | Bmp2 | 溴化或双溴变色素 | 抗生素 | [ |
SclC | 无刺蜜蜂青霉菌 Penicillium meliponae | AclH (63%) | 核丛青霉素中间产物 | 中间代谢物 | [ |
ChlCz9 | 图巴塔哈链霉菌 Streptomyces tubbatahanensis sp. nov. | 来自Streptomyces diacarni的 黄素依赖型氧化还原酶(95.1%) | 氯代咔唑生物碱 | 抗生素 | [ |
SzoI | 黏细菌 Sandaracinus sp. MSr10575 | 未提及 | 桑达拉唑类Sandarazol | 防御性化合物, 毒素 | [ |
LutA | 塔拉霉属 Talaromyces sp. | GedL (56.7%) | 氯化阿扎菲酮类 | [ | |
OrfA | 溶瘤链霉菌 Streptomyces tumemacerans JCM5050 | XanH (35%) LlpH (34%) | 卤化白真菌素 | 抗生素 | [ |
PtlK | 杜鹃花拟盘多毛孢菌 Pestalotiopsis rhododendri LF-19-12 | GedL (51%) | 氯化二苯甲酮衍生物 | 抗生素 | [ |
DnHal | 黑囊基地衣属 Dirinaria sp. | RadH (65%) | 氯化赤星衣酸甲酯 | 中间代谢物, 有机合成骨架 | [ |
Tal-halo | 嗜松塔拉霉菌 Talaromyces pinophilus LD‑7 | RadH (56%) | 氯化异香豆素 | 中间代谢物, 有机合成骨架 | [ |
Table 2 The uniqueness and superiority of the CLEAN algorithm framework
Table 3 Typical engineering cases of natural halogenase in recent years
Fig. 13 The typical structure SAM-dependent halogenase [84-91]The red lines indicate the residues that are crucial for fluorination activity; the yellow lines indicate the residues that can form hydrogen bonds with the modification groups at the C2′ position of adenine
卤化酶 | 动力学参数 | 产物 | 对映体催化类型 | 产率 | 对映体比率 |
---|---|---|---|---|---|
![]() ![]() | 去对称化反应 | ||||
KM kcat | ![]() | 阻转选择性卤化 | |||
KM kcat | ![]() | 卤代环化反应 | |||
![]() | 卤代环化反应 | ||||
![]() | 卤代环化反应 |
Tab. 4 Examples of FDHs catalyzing enantioselective reactions[125-127]
卤化酶 | 动力学参数 | 产物 | 对映体催化类型 | 产率 | 对映体比率 |
---|---|---|---|---|---|
![]() ![]() | 去对称化反应 | ||||
KM kcat | ![]() | 阻转选择性卤化 | |||
KM kcat | ![]() | 卤代环化反应 | |||
![]() | 卤代环化反应 | ||||
![]() | 卤代环化反应 |
Tab. 5 Recent cases and key data related to the potential industrial application of halogenases
1 | LATHAM J, BRANDENBURGER E, SHEPHERD S A, et al. Development of halogenase enzymes for use in synthesis[J]. Chemical Reviews, 2018, 118(1): 232-269. |
2 | NEWMAN D J, CRAGG G M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019[J]. Journal of Natural Products, 2020, 83(3): 770-803. |
3 | XU Z, YANG Z, LIU Y, et al. Halogen bond: its role beyond drug-target binding affinity for drug discovery and development[J]. Journal of chemical information and modeling, 2014, 54(1): 69-78. |
4 | CROWE C, MOLYNEUX S, SHARMA S V, et al. Halogenases: a palette of emerging opportunities for synthetic biology-synthetic chemistry and C-H functionalization [J]. Chemical Society Reviews, 2021, 50(17): 9443-9481. |
5 | Sun C, Ma B D, Li G, et al. Engineering the substrate specificity of a P450 dimerase enables the collective biosynthesis of heterodimeric tryptophan-containing diketopiperazines[J]. Angewandte Chemie International Edition, 2023, 62(25): e202304994. |
6 | Yan X, Zhang J, Tan H, et al. A pair of atypical KAS III homologues with initiation and elongation functions program the polyketide biosynthesis in asukamycin[J]. Angewandte Chemie International Edition, 2022, 61(19): e202200879. |
7 | CHRÉTIEN J M, ZAMMATTIO F, LE GROGNEC E, et al. Polymer-supported organotin reagents for regioselective halogenation of aromatic amines[J]. The Journal of organic chemistry, 2005, 70(7): 2870-2873. |
8 | INKPEN M S, DU S, DRIVER M, et al. Oxidative purification of halogenated ferrocenes[J]. Dalton Transactions, 2013, 42(8): 2813-2816. |
9 | CANTILLO D, KAPPE C O. Halogenation of organic compounds using continuous flow and microreactor technology[J]. Reaction Chemistry & Engineering, 2017, 2(1): 7-19. |
10 | HENDERSON S H, WEST R A, WARD S E, et al. Metal-free selective mono-halodecarboxylation of heteroarenes under mild conditions[J]. Royal Society Open Science, 2018, 5(6): 180333. |
11 | PAUNOVIĆ V, PÉREZ-RAMÍREZ J. Catalytic halogenation of methane: a dream reaction with practical scope?[J]. Catalysis Science & Technology, 2019, 9(17): 4515-4530. |
12 | BERGER G, FRANGVILLE P, MEYER F. Halogen bonding for molecular recognition: New developments in materials and biological sciences[J]. Chemical communications, 2020, 56(37): 4970-4981. |
13 | MINGES H, SEWALD N. Recent advances in synthetic application and engineering of halogenases. ChemCatChem[J], 2020, 12(18), 4450-4470. |
14 | CROS A, ALFARO-ESPINOZA G, DE MARIA A, et al. Synthetic metabolism for biohalogenation[J]. Current opinion in biotechnology, 2022, 74: 180-193. |
15 | SENN H M. Insights into enzymatic halogenation from computational studies[J]. Frontiers in Chemistry, 2014, 2: 98. |
16 | RUIZ-CASTILLO P, BUCHWALD S L. 2016. Applications of palladium-catalyzed C-N cross-coupling reactions. Chem Rev 116:12564-12649. |
17 | MENON BRK, RICHMOND D, MENON N. Halogenases for biosynthetic pathway engineering: Toward new routes to naturals and non-naturals[J]. Catalysis Reviews, 2022, 64(3): 533-591. |
18 | JIANG Y, LEWIS J C. Asymmetric catalysis by flavin-dependent halogenases[J]. Chirality, 2023, 35(8): 452-460. |
19 | ANDORFER M C, LEWIS J C. Understanding and improving the activity of flavin-dependent halogenases via random and targeted mutagenesis[J]. Annual review of biochemistry, 2018, 87(1): 159-185. |
20 | BÜCHLER J, PAPADOPOULOU A, BULLER R. Recent advances in flavin-dependent halogenase biocatalysis: sourcing, engineering, and application[J]. Catalysts, 2019, 9(12): 1030. |
21 | ZENG J, ZHAN J. Chlorinated natural products and related halogenases[J]. Israel Journal of Chemistry, 2019, 59(5): 387-402. |
22 | COCHEREAU B, MESLET-CLADIÈRE L, POUCHUS Y F, et al. Halogenation in fungi: what do we know and what remains to be discovered [J]? Molecules, 2022, 27(10): 3157. |
23 | LUDEWIG H, MOLYNEUX S, FERRINHO S, et al. Halogenases: structures and functions[J]. Current Opinion in Structural Biology, 2020, 65: 51-60. |
24 | 郑哲麟, 胡文达, 何亚文. 微生物卤化酶及其应用研究进展[J].微生物前沿, 2020, 9(4): 141-155. |
ZHENG Z L, HU W D, HE Y W. Research progress in microbial halogenases and their industrial applications[J]. Advances in Microbiology, 2020, 9(4): 141-155. | |
25 | 王汇滨, 车昌丽, 游松. Fe/α-酮戊二酸依赖型卤化酶在绿色卤化反应中的研究进展[J].合成生物学, 2022, 3(3): 545-566. |
WANG H B, CHE C L, YOU S. Recent advances of enzymatic synthesis of organohalogens catalyzed by Fe/αKG-dependent halogenases[J]. Synthetic Biology Journal, 2022, 3(3): 545-566. | |
26 | YEH E, BLASIAK L C, KOGLIN A, et al. Chlorination by a long-lived intermediate in the mechanism of flavin-dependent halogenases[J]. Biochemistry, 2007, 46(5): 1284-1292. |
27 | FLECKS S, PATALLO E P, ZHU X, et al. New insights into the mechanism of enzymatic chlorination of tryptophan[J]. Angewandte Chemie (International ed. in English), 2008, 47(49): 9533. |
28 | SHAW P D, HAGER L P. Biological Chlorination. IV. Peroxidative Nature of Enzymatic Chlorination1[J]. Journal of the American Chemical Society, 1959, 81(24): 6527-6528. |
29 | Jeon J, Lee J, Jung S M, et al. Genomic determinants encode the reactivity and regioselectivity of flavin-dependent halogenases in bacterial genomes and metagenomes[J]. Msystems, 2021, 6(3): 10.1128/msystems. 00053-21. |
30 | GKOTSI D S, LUDEWIG H, SHARMA S V, et al. A marine viral halogenase that iodinates diverse substrates[J]. Nature chemistry, 2019, 11(12): 1091-1097. |
31 | SMITH D R M, URIA A R, HELFRICH E J N, et al. An unusual flavin-dependent halogenase from the metagenome of the marine sponge Theonella swinhoei WA[J]. ACS chemical biology, 2017, 12(5): 1281-1287. |
32 | NEUBAUER P R, PIENKNY S, WESSJOHANN L, et al. Predicting the Substrate Scope of the Flavin-Dependent Halogenase BrvH[J]. ChemBioChem, 2020, 21(22): 3282-3288. |
33 | LAVECCHIA A, FOSSO B, ENGELEN A H, et al. Macroalgal microbiomes unveil a valuable genetic resource for halogen metabolism[J]. Microbiome, 2024, 12(1): 47. |
34 | FISHER B F, SNODGRASS H M, JONES K A, et al. Site-selective C-H halogenation using flavin-dependent halogenases identified via family-wide activity profiling[J]. ACS central science, 2019, 5(11): 1844-1856. |
35 | Böhringer N, Kramer J C, de la Mora E, et al. Genome-and metabolome-guided discovery of marine BamA inhibitors revealed a dedicated darobactin halogenase[J]. Cell Chemical Biology, 2023, 30(8): 943-952. e7. |
36 | Ren Y, Liu R, Zheng Y, et al. Biosynthetic mechanism of the yellow pigments in the marine bacterium Pseudoalteromonas sp. strain T1lg65[J]. Applied and Environmental Microbiology, 2024, 90(2): e01779-23. |
37 | Sousa T F, de Araújo Júnior M B, Peres E G, et al. Discovery of dual PKS involved in sclerotiorin biosynthesis in Penicillium meliponae using genome mining and gene knockout[J]. Archives of Microbiology, 2023, 205(2): 75. |
38 | Tenebro C P, Trono D J V L, Balida L A P, et al. Synergy between genome mining, metabolomics, and bioinformatics uncovers antibacterial chlorinated carbazole alkaloids and their biosynthetic gene cluster from Streptomyces tubbatahanensis sp. Nov., a novel actinomycete isolated from Sulu Sea, Philippines[J]. Microbiology Spectrum, 2023, 11(2): e03661-22. |
39 | PANTER F, BADER C D, MÜLLER R. The Sandarazols are Cryptic and structurally unique plasmid-encoded toxins from a rare Myxobacterium[J]. Angewandte Chemie International Edition, 2021, 60(15): 8081-8088. |
40 | HUANG X, LI D, LONG B, et al. Activation of a silent gene cluster from the endophytic fungus talaromyces sp. unearths cryptic azaphilone metabolites[J]. Journal of Agricultural and Food Chemistry, 2024, 72(28): 15801-15810. |
41 | WANG Z C, LO I W, LIN K H, et al. Genetic and biochemical characterization of halogenation and drug transportation genes encoded in the albofungin biosynthetic gene cluster[J]. Applied and Environmental Microbiology, 2022, 88(17): e00806-22. |
42 | LUO M, WANG M, CHANG S, et al. Halogenase-targeted genome mining leads to the discovery of (±) pestalachlorides A1a, A2a, and their atropisomers[J]. Antibiotics, 2022, 11(10): 1304. |
43 | HASAN N S, LING J G, BAKAR M F A, et al. The lichen flavin-dependent halogenase, DnHal: identification, heterologous expression and functional characterization[J]. Applied Biochemistry and Biotechnology, 2023, 195(11): 6708-6736. |
44 | REN M, LI Z, WANG Z, et al. Antiviral chlorinated drimane meroterpenoids from the fungus Talaromyces pinophilus LD-7 and their biosynthetic pathway[J]. Journal of Natural Products, 2024, 87(8): 2034-2044. |
45 | ZHAO C, YAN S, LI Q, et al. An Fe2+- and α-ketoglutarate-dependent halogenase acts on nucleotide substrates[J]. Angewandte Chemie International Edition, 2020, 59(24): 9478-9484. |
46 | NI J, ZHUANG J, SHI Y, et al. Discovery and substrate specificity engineering of nucleotide halogenases[J]. Nature Communications, 2024, 15(1): 5254. |
47 | Baumgartner J T, McKinnie S M K. Regioselective halogenation of lavanducyanin by a site-selective vanadium-dependent chloroperoxidase[J]. Organic Letters, 2024, 26(27): 5725-5730. |
48 | UNIPROT CONSORTIUM. UniProt: the universal protein knowledgebase in 2021[J]. Nucleic acids research, 2021, 49(D1): D480-D489. |
49 | JIANG K, CHEN X, YAN X, et al. An unusual aromatase/cyclase programs the formation of the phenyldimethylanthrone framework in anthrabenzoxocinones and fasamycin[J]. Proceedings of the National Academy of Sciences, 2024, 121(11): e2321722121. |
50 | RADIVOJAC P, CLARK W T, ORON T R, et al. A large-scale evaluation of computational protein function prediction[J]. Nature methods, 2013, 10(3): 221-227. |
51 | YU T, CUI H, LI J C, et al. Enzyme function prediction using contrastive learning[J]. Science, 2023, 379(6639): 1358-1363. |
52 | ADAK S, MOORE B S. Cryptic halogenation reactions in natural product biosynthesis[J]. Natural product reports, 2021, 38(10): 1760-1774. |
53 | VAILLANCOURT F H, YEH E, VOSBURG D A, et al. Cryptic chlorination by a non-haem iron enzyme during cyclopropyl amino acid biosynthesis[J]. Nature, 2005, 436(7054): 1191-1194. |
54 | GU L, WANG B, KULKARNI A, et al. Metamorphic enzyme assembly in polyketide diversification[J]. Nature, 2009, 459(7247): 731-735. |
55 | YAMANAKA K, RYAN K S, GULDER T A M, et al. Flavoenzyme-catalyzed atropo-selective N, C-bipyrrole homocoupling in marinopyrrole biosynthesis[J]. Journal of the American Chemical Society, 2012, 134(30): 12434-12437. |
56 | MARCHAND J A, NEUGEBAUER M E, ING M C, et al. Discovery of a pathway for terminal-alkyne amino acid biosynthesis[J]. Nature, 2019, 567(7748): 420-424. |
57 | NAKAMURA H, HAMER H A, SIRASANI G, et al. Cylindrocyclophane biosynthesis involves functionalization of an unactivated carbon center[J]. Journal of the American Chemical Society, 2012, 134(45): 18518-18521. |
58 | NAKAMURA H, SCHULTZ E E, BALSKUS E P. A new strategy for aromatic ring alkylation in cylindrocyclophane biosynthesis[J]. Nature Chemical Biology, 2017, 13(8): 916-921. |
59 | GLASSER N R, CUI D, RISSER D D, et al. Accelerating the discovery of alkyl halide-derived natural products using halide depletion[J]. Nature Chemistry, 2024, 16(2): 173-182. |
60 | REED K B, D'OELSNITZ S, BROOKS S M, et al. Fluorescence-based screens for engineering enzymes linked to halogenated tryptophan[J]. ACS Synthetic Biology, 2024, 13(4): 1373-1381. |
61 | DONG C, KOTZSCH A, DORWARD M, et al. Crystallization and X-ray diffraction of a halogenating enzyme, tryptophan 7-halogenase, from Pseudomonas fluorescens [J]. Acta Crystallographica Section D: Biological Crystallography, 2004, 60(8): 1438-1440. |
62 | MORI S, PANG A H, THAMBAN CHANDRIKA N, et al. Unusual substrate and halide versatility of phenolic halogenase PltM[J]. Nature communications, 2019, 10(1): 1255. |
63 | GAMAL A EL, AGARWAL V, DIETHELM S, et al. Biosynthesis of coral settlement cue tetrabromopyrrole in marine bacteria by a uniquely adapted brominase-thioesterase enzyme pair[J]. Proceedings of the National Academy of Sciences, 2016, 113(14): 3797-3802. |
64 | PODZELINSKA K, LATIMER R, BHATTACHARYA A, et al. Chloramphenicol biosynthesis: the structure of CmlS, a flavin-dependent halogenase showing a covalent flavin-aspartate bond[J]. Journal of molecular biology, 2010, 397(1): 316-331. |
65 | AGARWAL V, GAMAL A A EL, YAMANAKA K, et al. Biosynthesis of polybrominated aromatic organic compounds by marine bacteria[J]. Nature chemical biology, 2014, 10(8): 640-647. |
66 | ADAK S, LUKOWSKI A L, SCHÄFER R J B, et al. From tryptophan to toxin: nature's convergent biosynthetic strategy to aetokthonotoxin[J]. Journal of the American Chemical Society, 2022, 144(7): 2861-2866. |
67 | MINGES H. Engineering of halogenases towards synthetic applications: increasing the thermostability and investigations on a marine brominase Bmp5[M]. Springer, 2017. |
68 | GÄFE S, NIEMANN H H. Structural basis of regioselective tryptophan dibromination by the single-component flavin-dependent halogenase AetF[J]. Acta Crystallographica Section D: Structural Biology, 2023, 79(7): 596-609. |
69 | BARKER R D, YU Y, DE MARIA L, et al. Mechanism of action of flavin-dependent halogenases[J]. ACS catalysis, 2022, 12(24): 15352-15360. |
70 | Dai L, Zhang X, Hu Y, et al. Structural and functional insights into a nonheme iron-and α-ketoglutarate-dependent halogenase that catalyzes chlorination of nucleotide substrates[J]. Applied and Environmental Microbiology, 2022, 88(9): e02497-21. |
71 | WILSON R H, CHATTERJEE S, SMITHWICK E R, et al. Role of secondary coordination sphere residues in halogenation catalysis of non-heme iron enzymes[J]. ACS Catalysis, 2022, 12(17): 10913-10924. |
72 | LI R N, CHEN S L. Mechanism for the halogenation and azidation of lysine catalyzed by non-heme iron BesD enzyme[J]. Chemistry-An Asian Journal, 2022, 17(17): e202200438. |
73 | KASTNER D W, NANDY A, MEHMOOD R, et al. Mechanistic insights into substrate positioning that distinguish non-heme Fe (II)/α-ketoglutarate-dependent halogenases and hydroxylases[J]. ACS Catalysis, 2023, 13(4): 2489-2501. |
74 | PAPADOPOULOU A, MEYER F, BULLER R M. Engineering Fe (II)/α-ketoglutarate-dependent halogenases and desaturases[J]. Biochemistry, 2022, 62(2): 229-240. |
75 | ZWICK III C R, RENATA H. Overview of amino acid modifications by iron-and α-ketoglutarate-dependent enzymes[J]. ACS Catalysis, 2023, 13(7): 4853-4865. |
76 | SMITHWICK E R, WILSON R H, CHATTERJEE S, et al. Electrostatically regulated active site assembly governs reactivity in nonheme iron halogenases[J]. ACS Catalysis, 2023, 13(20): 13743-13755. |
77 | KISSMAN E N, KIPOUROS I, SLATER J W, et al. Dynamic metal coordination controls chemoselectivity in radical halogenases[J]. bioRxiv, 2024: 2024.09.19.613983. |
78 | KISSMAN E N, NEUGEBAUER M E, SUMIDA K H, et al. Biocatalytic control of site-selectivity and chain length-selectivity in radical amino acid halogenases[J]. Proceedings of the National Academy of Sciences, 2023, 120(12): e2214512120. |
79 | KULIK H J, DRENNAN C L. Substrate placement influences reactivity in non-heme Fe (II) halogenases and hydroxylases[J]. Journal of Biological Chemistry, 2013, 288(16): 11233-11241. |
80 | ZHANG J, LI Y, YUAN W, et al. Conformational isomerization of the Fe (III)-OH species enables selective halogenation in carrier-protein-independent halogenase BesD and hydroxylase-evolved halogenase[J]. ACS Catalysis, 2024, 14: 9342-9353. |
81 | CHIANG C Y, OHASHI M, LE J, et al. Copper-dependent halogenase catalyses unactivated C-H bond functionalization[J]. Nature, 2025, 638, 126-132. |
82 | O'HAGAN D, SCHAFFRATH C, COBB S L, et al. Biosynthesis of an organofluorine molecule[J]. Nature, 2002, 416(6878): 279-279. |
83 | DONG C, HUANG F, DENG H, et al. Crystal structure and mechanism of a bacterial fluorinating enzyme[J]. Nature, 2004, 427(6974): 561-565. |
84 | EUSTÁQUIO A S, POJER F, NOEL J P, et al. Discovery and characterization of a marine bacterial SAM-dependent chlorinase[J]. Nature Chemical Biology, 2008, 4(1): 69-74. |
85 | DENG H, O'HAGAN D. The fluorinase, the chlorinase and the duf-62 enzymes[J]. Current opinion in chemical biology, 2008, 12(5): 582-592. |
86 | BUTLER A, SANDY M. Mechanistic considerations of halogenating enzymes[J]. Nature, 2009, 460(7257): 848-854. |
87 | O'HAGAN D, DENG H. Enzymatic fluorination and biotechnological developments of the fluorinase[J]. Chemical reviews, 2015, 115(2): 634-649. |
88 | Pardo I, Bednar D, Calero P, et al. A nonconventional archaeal fluorinase identified by in silico mining for enhanced fluorine biocatalysis[J]. ACS catalysis, 2022, 12(11): 6570-6577. |
89 | JIANG Y, YAO M, NIU H, et al. Enzyme engineering renders chlorinase the activity of fluorinase[J]. Journal of Agricultural and Food Chemistry, 2024, 72(2): 1203-1212. |
90 | LOWE P T, LÜDDECKE I, O'HAGAN D. Exploring fluorinase substrate tolerance at C-2 of SAM[J]. ChemBioChem, 2025, 26(1): e202400861. |
91 | HE K, YAN Y, FENG S, et al. Two fluorinases prioritized from protein families of fluorinase, SAM-dependent chlorinase and hydroxide adenosyltransferase[J]. Organic & Biomolecular Chemistry, 2025, 23(2): 318-322. |
92 | LIN Y, XUE W, LI H, et al. Advances in enzymatic incorporation of small fluorine modules[J]. European Journal of Organic Chemistry, 2024, 27(17): e202400003. |
93 | LIU H Y, QIAN F, ZHANG H M, et al. Tri-enzyme fusion of tryptophan halogenase achieves a concise strategy for coenzyme self-sufficiency and the continuous halogenation of L-tryptophan[J]. Biotechnology Journal, 2024, 19(4): 2300557. |
94 | KOKKONEN P, BEDNAR D, PINTO G, et al. Engineering enzyme access tunnels[J]. Biotechnology advances, 2019, 37(6): 107386. |
95 | PHINTHA A, PRAKINEE K, JARUWAT A, et al. Dissecting the low catalytic capability of flavin-dependent halogenases[J]. Journal of Biological Chemistry, 2021, 296. |
96 | PRAKINEE K, PHINTHA A, VISITSATTHAWONG S, et al. Mechanism-guided tunnel engineering to increase the efficiency of a flavin-dependent halogenase[J]. Nature Catalysis, 2022, 5(6): 534-544. |
97 | DAI L, LI H, DAI S, et al. Structural and functional insights into the self-sufficient flavin-dependent halogenase[J]. International Journal of Biological Macromolecules, 2024, 260: 129312. |
98 | BESSE C, NIEMANN H H, SEWALD N. Increasing the stability of flavin-dependent halogenases by disulfide engineering[J]. ChemBioChem, 2024, 25(1): e202300700. |
99 | GEBAUER J, PIETRUSZKA J, CLASSEN T. Expression and characterization of PrnC-a flavin-dependent halogenase from the pyrrolnitrin biosynthetic pathway of Pseudomonas protegens Pf-5[J]. Frontiers in Catalysis, 2023, 3: 1231765. |
100 | HU Y, PENG S Y, MA X, et al. Functional characterization and molecular basis of a multi-site halogenase in naphthacemycin biosynthesis[J]. Angewandte Chemie International Edition, 2024: e202418843. |
101 | DIEPOLD N, REESE F, PRIOR T, et al. Balance between photoreduction efficiency, cofactor affinity, and allosteric coupling of halogenase flavoenzymes[J]. Photochemical & Photobiological Sciences, 2024: 1-15. |
102 | BÜCHLER J, MALCA S H, PATSCH D, et al. Algorithm-aided engineering of aliphatic halogenase WelO5* for the asymmetric late-stage functionalization of soraphens[J]. Nature Communications, 2022, 13(1): 371. |
103 | LIU H Y, NING P, QIAN F, et al. Protein scaffold-mediated multi-enzyme self-assembly and ordered co-immobilization of flavin-dependent halogenase-coenzyme cycle system for efficient biosynthesis of 6‐Cl‐L‐Trp[J]. Biotechnology and Bioengineering, 2025, 122(2): 395-404. |
104 | PRAKINEE K, LAWAN N, PHINTHA A, et al. On the Mechanisms of hypohalous acid formation and electrophilic halogenation by non-native halogenases[J]. Angewandte Chemie International Edition, 2024: e202403858. |
105 | SZPERA R, MOSELEY D F J, SMITH L B, et al. The fluorination of C-H bonds: developments and perspectives[J]. Angewandte Chemie International Edition, 2019, 58(42): 14824-14848. |
106 | LEIBLER I N M, GANDHI S S, TEKLE-SMITH M A, et al. Strategies for nucleophilic C(sp3 )–(radio) fluorination[J]. Journal of the American Chemical Society, 2023, 145(18): 9928-9950. |
107 | HAYASHI T, LIGIBEL M, SAGER E, et al. Evolved aliphatic halogenases enable regiocomplementary C-H functionalization of a pharmaceutically relevant compound[J]. Angewandte Chemie International Edition, 2019, 58(51): 18535-18539. |
108 | ZHAO L P, MAI B K, CHENG L, et al. Biocatalytic enantioselective C(sp3 )–H fluorination enabled by directed evolution of non-haem iron enzymes[J]. Nature Synthesis, 2024, 3, 967–975. |
109 | ZHAO Q, CHEN Z, SOLER J, et al. Engineering non-haem iron enzymes for enantioselective C(sp3 )–F bond formation via radical fluorine transfer[J]. Nature Synthesis, 2024, 3, 958–966. |
110 | JIANG Y, YAO M, FENG J, et al. Molecular insights into converting hydroxide adenosyltransferase into halogenase[J]. Journal of Agricultural and Food Chemistry, 2024, 72(22): 12685–12695. |
111 | YU K, ZHANG K, JAKOB R P, et al. An artificial nickel chlorinase based on the biotin–streptavidin technology[J]. Chemical Communications, 2024, 60(14): 1944-1947. |
112 | MILNE N, SÁEZ-SÁEZ J, NIELSEN A M, et al. Engineering Saccharomyces cerevisiae for the de novo production of halogenated tryptophan and tryptamine derivatives[J]. ChemistryOpen, 2023, 12(4): e202200266. |
113 | REED K B, BROOKS S M, WELLS J, et al. A modular and synthetic biosynthesis platform for de novo production of diverse halogenated tryptophan-derived molecules[J]. Nature communications, 2024, 15(1): 3188. |
114 | PUTRI V R M, JUNG M H, LEE J Y, et al. Fermentative aminopyrrolnitrin production by metabolically engineered Corynebacterium glutamicum [J]. Microbial Cell Factories, 2024, 23(1): 147. |
115 | PEH G R, TAY T, TAN L L, et al. Site-selective chlorination of pyrrolic heterocycles by flavin dependent enzyme PrnC[J]. Communications Chemistry, 2024, 7(1): 7. |
116 | MOWZOON-MOGHARRABI R, STOUT C N, RENATA H. Chemoenzymatic synthesis of 7-chloro-4-dimethylallyl-L-tryptophan, a fragment of Krisynomycin[J]. Tetrahedron, 2024: 134127. |
117 | BRADLEY S A, LEHKA B J, HANSSON F G, et al. Biosynthesis of natural and halogenated plant monoterpene indole alkaloids in yeast[J]. Nature Chemical Biology, 2023, 19(12): 1551-1560 |
118 | LEE J, KIM J, SONG J E, et al. Production of Tyrian purple indigoid dye from tryptophan in Escherichia coli[J]. Nature chemical biology, 2021, 17(1): 104-112. |
119 | LI F, CHEN Q, DENG H, et al. One-pot selective biosynthesis of Tyrian purple in Escherichia coli [J]. Metabolic Engineering, 2024, 81: 100-109. |
120 | YI B, LEE B W, YU K, et al. Production of halogenated indigo by Escherichia coli whole-cell conversion system with novel halogenase derived from Pseudoalteromonas nigrifaciens [J]. Biotechnology and Bioprocess Engineering, 2024, 29: 806-814. |
121 | MONTUA N, THYE P, HARTWIG P, et al. Enzymatic peptide and protein bromination: the BromoTrp tag[J]. Angewandte Chemie International Edition, 2024, 63(5): e202314961. |
122 | GUO Y, CHENG L, HU Y, et al. Biosynthesis of halogenated tryptophans for protein engineering using genetic code expansion[J]. ChemBioChem, 2024, 25(20): e202400366. |
123 | SAHA N, VIDYA F N U, XIE R, et al. Halogenase-assisted alkyne/aryl bromide Sonogashira coupling for ribosomally synthesized peptides[J]. Journal of the American Chemical Society, 2024, 146(44): 30009-30013. |
124 | PAYNE J T, POOR C B, LEWIS J C. Directed evolution of RebH for site-selective halogenation of large biologically active molecules[J]. Angewandte Chemie, 2015, 127(14): 4300-4304. |
125 | MONDAL D, FISHER B F, JIANG Y, et al. Flavin-dependent halogenases catalyze enantioselective olefin halocyclization[J]. Nature Communications, 2021, 12(1): 3268. |
126 | SNODGRASS H M, MONDAL D, LEWIS J C. Directed evolution of flavin-dependent halogenases for site-and atroposelective halogenation of 3-aryl-4 (3 H)-quinazolinones via kinetic or dynamic kinetic resolution[J]. Journal of the American Chemical Society, 2022, 144(36): 16676-16682. |
127 | CRAVEN E J, LATHAM J, SHEPHERD S A, et al. Programmable late-stage C-H bond functionalization enabled by integration of enzymes with chemocatalysis[J]. Nature Catalysis, 2021, 4(5): 385-394. |
128 | JIANG Y, SNODGRASS H M, ZUBI Y S, et al. The single-component flavin reductase/flavin-dependent halogenase AetF is a versatile catalyst for selective bromination and iodination of arenes and olefins[J]. Angewandte Chemie, 2022, 134(51): e202214610. |
129 | JIANG Y, MONDAL D, LEWIS J C. Expanding the reactivity of flavin-dependent halogenases toward olefins via enantioselective intramolecular haloetherification and chemoenzymatic oxidative rearrangements[J]. ACS catalysis, 2022, 12(21): 13501-13505. |
130 | JIANG Y, KIM A, OLIVE C, et al. Selective C-H halogenation of alkenes and alkynes using flavin-dependent halogenases[J]. Angewandte Chemie International Edition, 2024, 63(13): e202317860. |
131 | LUKOWSKI A L, HUBERT F M, NGO T E, et al. Enzymatic halogenation of terminal alkynes[J]. Journal of the American Chemical Society, 2023, 145(34): 18716-18721. |
132 | WILSON R H, CHATTERJEE S, SMITHWICK E R, et al. Controllable multi-halogenation of a non-native substrate by SyrB2 iron halogenase[J]. ACS Catalysis, 2024, 14(17): 13209-13218 |
133 | BARBER V, MIELKE T, CARTWRIGHT J, et al. Unspecific Peroxygenase (UPO) can be Tuned for Oxygenation or Halogenation Activity by Controlling the Reaction pH[J]. Chemistry–A European Journal, 2024: e202401706. |
134 | BÜCHLER J, HEGARTY E, SCHROER K, et al. A collaborative journey towards the late-stage functionalization of added-value chemicals using engineered halogenases[J]. Helvetica Chimica Acta, 2023, 106(1): e202200128. |
135 | Kerbs A, Burgardt A, Veldmann K H, et al. Fermentative production of halogenated tryptophan derivatives with Corynebacterium glutamicum overexpressing tryptophanase or decarboxylase genes[J]. ChemBioChem, 2022, 23(9): e202200007. |
136 | HOU Y, ZHAO W, DING X, et al. Co-production of 7-chloro-tryptophan and indole pyruvic acid based on an efficient FAD/FADH2 regeneration system[J]. Applied Microbiology and Biotechnology, 2023, 107(15): 4873-4885. |
137 | MONTUA N, SEWALD N. Extended biocatalytic halogenation cascades involving a single‐polypeptide regeneration system for diffusible FADH2 [J]. ChemBioChem, 2023, 24(22): e202300478. |
138 | ABRAMSON J, ADLER J, DUNGER J, et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3[J]. Nature, 2024, 630: 493-500. |
139 | WEI G, DUAN B, ZHOU T P, et al. A nucleobase-driven P450 peroxidase system enables regio-and stereo-specific formation of C-C and C-N bonds[J]. Proceedings of the National Academy of Sciences, 2024, 121(46): e2412890121. |
140 | BAEK M, ANISHCHENKO I, HUMPHREYS I R, et al. Efficient and accurate prediction of protein structure using RoseTTAFold2[J]. 2023. Preprint at bioRxiv . |
141 | ANISHCHENKO I, KIPNIS Y, KALVET I, et al. Modeling protein-small molecule conformational ensembles with ChemNet[J]. 2024. Preprint at bioRxiv . |
142 | ZHANG Z, SHEN W X, LIU Q, et al. Efficient generation of protein pockets with PocketGen[J]. Nature Machine Intelligence, 2024, 6: 1382–1395. |
143 | MUELLERS S N, ALLEN K N, WHITTY A. MEnTaT: A machine-learning approach for the identification of mutations to increase protein stability[J]. Proceedings of the National Academy of Sciences, 2023, 120(49): e2309884120. |
144 | WANG T, HE X, LI M, et al. Ab initio characterization of protein molecular dynamics with AI2BMD[J]. Nature, 2024, 635:1019–1027. |
145 | KORTEMME T. De novo protein design-From new structures to programmable functions[J]. Cell, 2024, 187(3): 526-544. |
146 | YEH A H W, NORN C, KIPNIS Y, et al. De novo design of luciferases using deep learning[J]. Nature, 2023, 614(7949): 774-780. |
147 | WANG J, LISANZA S, JUERGENS D, et al. Scaffolding protein functional sites using deep learning[J]. Science, 2022, 377(6604): 387-394. |
148 | WATSON J L, JUERGENS D, BENNETT N R, et al. De novo design of protein structure and function with RFdiffusion[J]. Nature, 2023, 620(7976): 1089-1100. |
149 | KRISHNA R, WANG J, AHERN W, et al. Generalized biomolecular modeling and design with RoseTTAFold All-Atom[J]. Science, 2024, 384(6693): eadl2528. |
150 | DAUPARAS J, ANISHCHENKO I, BENNETT N, et al. Robust deep learning–based protein sequence design using ProteinMPNN[J]. Science, 2022, 378(6615): 49-56. |
151 | DAUPARAS J, LEE G R, PECORARO R, et al. Atomic context-conditioned protein sequence design using LigandMPNN[J]. 2023. Preprint at bioRxiv . |
152 | ZHOU J, ZHANG B, LI G, et al. An AI agent for fully automated multi-omic analyses[J]. Advanced Science, 2024, 11(44): 2407094. |
153 | MERLICEK L P, NEUMANN J, LEAR A, et al. AI.zymes–A modular platform for evolutionary enzyme design[J]. bioRxiv, 2025: 2025.01. 18.633707. |
154 | ZHANG Q, CHEN W, QIN M, et al. Integrating protein language models and automatic biofoundry for enhanced protein evolution[J]. Nature Communications, 2025, 16(1): 1553. |
155 | LANDWEHR G M, BOGART J W, MAGALHAES C, et al. Accelerated enzyme engineering by machine-learning guided cell-free expression[J]. Nature Communications, 2025, 16(1): 865. |
156 | HUANG H, SHI X, LEI H, et al. ProtChat: An AI multi-agent for automated protein analysis leveraging GPT-4 and protein language model[J]. Journal of Chemical Information and Modeling, 2024, 65(1): 62-70. |
[1] | ZHONG Quanzhou, SHAN Yiyi, PEI Qingyun, JIN Yanyun, WANG Yihan, MENG Luyuan, WANG Xinyun, ZHANG Yuxin, LIU Kunyuan, WANG Huizhong, FENG Shangguo. Research progress in the production of α-arbutin through biosynthesis [J]. Synthetic Biology Journal, 2025, 6(1): 118-135. |
[2] | ZHU Fanghuan, CEN Xuecong, CHEN Zhen. Research progress of diols production by microbes [J]. Synthetic Biology Journal, 2024, 5(6): 1367-1385. |
[3] | LIU Yining, PU Wei, YANG Jinxing, WANG Yu. Recent advances in the biosynthesis of ω-amino acids and lactams [J]. Synthetic Biology Journal, 2024, 5(6): 1350-1366. |
[4] | FU Yu, ZHONG Fangrui. Recent advances in chemically driven enantioselective photobiocatalysis [J]. Synthetic Biology Journal, 2024, 5(5): 1021-1049. |
[5] | ZHENG Haotian, LI Chaofeng, LIU Liangxu, WANG Jiawei, LI Hengrun, NI Jun. Design, optimization and application of synthetic carbon-negative phototrophic community [J]. Synthetic Biology Journal, 2024, 5(5): 1189-1210. |
[6] | CHENG Xiaolei, LIU Tiangang, TAO Hui. Recent research progress in non-canonical biosynthesis of terpenoids [J]. Synthetic Biology Journal, 2024, 5(5): 1050-1071. |
[7] | LIU Zijian, MU Baiyang, DUAN Zhiqiang, WANG Xuan, LU Xiaojie. Advances in the development of DNA-compatible chemistries [J]. Synthetic Biology Journal, 2024, 5(5): 1102-1124. |
[8] | ZHANG Shouqi, WANG Tao, KONG Yao, ZOU Jiasheng, LIU Yuanning, XU Zhengren. Chemoenzymatic synthesis of natural products: evolution of synthetic methodology and strategy [J]. Synthetic Biology Journal, 2024, 5(5): 913-940. |
[9] | XIE Xiangqian, GUO Wen, WANG Huan, LI Jin. Biosynthesis and chemical synthesis of ribosomally synthesized and post-translationally modified peptides containing aminovinyl cysteine [J]. Synthetic Biology Journal, 2024, 5(5): 981-996. |
[10] | TANG Zhijun, HU Youcai, LIU Wen. Enzymatic (4+2)- and (2+2)-cycloaddition reactions: fundamentals and applications of regio- and stereoselectivity [J]. Synthetic Biology Journal, 2024, 5(3): 401-407. |
[11] | ZHANG Jun, JIN Shixue, YUN Qian, QU Xudong. Biosynthesis of the unnatural extender units with polyketides and their structural modifications for applications in medicines [J]. Synthetic Biology Journal, 2024, 5(3): 561-570. |
[12] | CHEN Xiwei, ZHANG Huaran, ZOU Yi. Biosynthesis and metabolic engineering of fungal non-ribosomal peptides [J]. Synthetic Biology Journal, 2024, 5(3): 571-592. |
[13] | FENG Jin, PAN Haixue, TANG Gongli. Research advances in biosynthesis of natural product drugs within the past decade [J]. Synthetic Biology Journal, 2024, 5(3): 408-446. |
[14] | XI Mengyu, HU Yiling, GU Yucheng, GE Huiming. Genome mining-directed discovery for natural medicinal products [J]. Synthetic Biology Journal, 2024, 5(3): 447-473. |
[15] | SHI Xinjie, DU Yiling. Research advances in the biosynthesis of nonribosomal peptides within the bisintercalator family as anticancer drugs [J]. Synthetic Biology Journal, 2024, 5(3): 593-611. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||