Chuangen TANG1,2,3,4(), Jing WANG1, Shuo ZHANG1, Haoning ZHANG1, Zhen KANG2,4
Received:
2024-08-28
Revised:
2024-11-11
Published:
2024-11-15
Contact:
Chuangen TANG
汤传根1,2,3,4(), 王璟1, 张烁1, 张昊宁1, 康振2,4
通讯作者:
汤传根
作者简介:
CLC Number:
Chuangen TANG, Jing WANG, Shuo ZHANG, Haoning ZHANG, Zhen KANG. Recent advances in synthesis and mining strategies of functional peptides[J]. Synthetic Biology Journal, DOI: 10.12211/2096-8280.2024-067.
汤传根, 王璟, 张烁, 张昊宁, 康振. 功能肽合成和挖掘策略研究进展[J]. 合成生物学, DOI: 10.12211/2096-8280.2024-067.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2024-067
分类 | 作用机制和典型氨基酸序列 | 特点和应用场景 | 参考 文献 |
---|---|---|---|
抗菌肽 | a.破坏细胞膜结构:通过与细菌细胞膜中的磷脂双层结合,增加膜通透性,导致细胞内容物泄漏,从而杀死细菌;b.抑制细菌代谢途径:干扰细菌DNA、RNA和蛋白质合成,抑制细菌生长和繁殖;典型氨基酸序列:Phe-Trp-Lys-Phe-Lys | 广谱抗菌、抗感染,特别是对抗耐药性菌株感染有很好效果;伤口愈合;预防感染;女性阴道念珠菌感染等 | [ |
抗病毒肽 | a.阻断病毒进入细胞:通过与病毒外壳蛋白或宿主细胞受体结合,阻止病毒附着和进入宿主细胞;b.抑制病毒复制:干扰病毒RNA或DNA合成,从而抑制病毒复制;典型氨基酸序列:Ala-Ala-Val-Ala-Leu-Leu-Pro-Ala-Val--Leu-Leu-Ala-Leu-Leu-Ala-Pro | 通过抑制病毒蛋白的功能,阻断病毒生命周期;可预防病毒感染,对于已感染病毒患者,则可阻止病毒在体内的进一步扩展 | [ |
抗氧化肽 | a.清除自由基:通过捐献电子或氢原子,中和体内自由基,减少自由基对细胞损伤;b.提高抗氧化酶活性:通过提高超氧化物歧化酶(Superoxide dismutase, SOD)和过氧化氢酶等抗氧化酶的活性,增强机体抗氧化能力;典型氨基酸序列:Leu-Ala-Asn-Ala-Lys | 安全性高,可以用在食品领域抗氧化上;也可开发相应抗氧化化妆品、保健食品或者药品 | [ |
抗紫外肽 | a.吸收紫外线:通过吸收紫外线光子,减少其对皮肤的穿透和损伤;b.修复紫外线损伤:通过促进DNA修复机制,修复紫外线引起的DNA损伤,减少皮肤癌的发生;典型氨基酸序列:Leu-Val-Asn-Glu-Leu-Thr-Glu-Phe-Ala-Gln | 增强皮肤对紫外线损伤的防御和修护能力以及防止光老化,在防晒护肤品中应用前景广阔 | [ |
抗癌肽 | a.诱导细胞凋亡:通过激活凋亡信号通路,如Caspase级联反应,诱导癌细胞凋亡;b.抑制血管生成:通过抑制血管内皮生长因子(Vascular endothelial growth factor, VEGF)活性,减少肿瘤血管生成,从而抑制肿瘤生长;典型氨基酸序列:Xxx-Arg-Gly-Asp-Xxx | 肽易于人体吸收,可选择性地抑制肿瘤细胞生长,同时对正常细胞影响较小,亦可降低化疗药物毒副作用 | [ |
免疫调节肽 | a.增强免疫细胞功能:促进T细胞、B细胞和自然杀伤细胞(Natural killer cell, NK Cell)的增殖和活化,提高免疫系统整体功能;b.调节细胞因子分泌:通过调节细胞因子分泌,平衡促炎和抗炎反应,维持免疫稳态;典型氨基酸序列:Gly-Arg-Gly-(Asp)9 | 增强机体免疫反应或抑制过度免疫反应,达到免疫平衡效果,在调节免疫方面有良好的应用前景 | [ |
美白肽 | a.抑制酪氨酸酶活性:美白肽通过与酪氨酸酶结合,抑制其活性,从而减少黑色素的合成;b.干扰黑色素转运:某些美白肽可干扰黑色素小体从黑素细胞向角质形成细胞的转运,减少皮肤色素沉着;典型氨基酸序列: H-Met-Pro-D-Phe-Arg-D-Trp-Phe-Lys-Pro-Val-NH2 | 具有更好的安全性和美白活性,可在美白护肤品中广泛应用 | [ |
减肥肽 | a.促进胰岛素分泌:胰高血糖素样肽-1受体激动剂(Glucagon-like peptide-1 receptor agonists, GLP-1RA)可增加胰岛素分泌,降低血糖水平;b.抑制胰高血糖素分泌:GLP-1RA可减少胰高血糖素的分泌,减缓肝脏释放葡萄糖;c.延缓胃排空:GLP-1RA能延缓胃排空速度,使饭后血糖上升更为温和;d.减少食欲:GLP-1RA可降低食欲;典型氨基酸序列:His-Aib-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Val-Ser-Ser-Tyr-Leu-Glu-Gly-Gln-Ala-Ala-Lys-Glu-Phe-Ile-Ala-Trp-Leu-Val-Arg-Gly-Arg-Gly | GLP-1RA不仅能够良好安全的控制血糖水平,适用于2型糖尿病患者的血糖控制;而且能有效减少热量摄入,帮助控制体重,达到有效减肥效果 | [ |
Table 1 Functional peptide classification, mechanism of action, characteristics and application scenarios
分类 | 作用机制和典型氨基酸序列 | 特点和应用场景 | 参考 文献 |
---|---|---|---|
抗菌肽 | a.破坏细胞膜结构:通过与细菌细胞膜中的磷脂双层结合,增加膜通透性,导致细胞内容物泄漏,从而杀死细菌;b.抑制细菌代谢途径:干扰细菌DNA、RNA和蛋白质合成,抑制细菌生长和繁殖;典型氨基酸序列:Phe-Trp-Lys-Phe-Lys | 广谱抗菌、抗感染,特别是对抗耐药性菌株感染有很好效果;伤口愈合;预防感染;女性阴道念珠菌感染等 | [ |
抗病毒肽 | a.阻断病毒进入细胞:通过与病毒外壳蛋白或宿主细胞受体结合,阻止病毒附着和进入宿主细胞;b.抑制病毒复制:干扰病毒RNA或DNA合成,从而抑制病毒复制;典型氨基酸序列:Ala-Ala-Val-Ala-Leu-Leu-Pro-Ala-Val--Leu-Leu-Ala-Leu-Leu-Ala-Pro | 通过抑制病毒蛋白的功能,阻断病毒生命周期;可预防病毒感染,对于已感染病毒患者,则可阻止病毒在体内的进一步扩展 | [ |
抗氧化肽 | a.清除自由基:通过捐献电子或氢原子,中和体内自由基,减少自由基对细胞损伤;b.提高抗氧化酶活性:通过提高超氧化物歧化酶(Superoxide dismutase, SOD)和过氧化氢酶等抗氧化酶的活性,增强机体抗氧化能力;典型氨基酸序列:Leu-Ala-Asn-Ala-Lys | 安全性高,可以用在食品领域抗氧化上;也可开发相应抗氧化化妆品、保健食品或者药品 | [ |
抗紫外肽 | a.吸收紫外线:通过吸收紫外线光子,减少其对皮肤的穿透和损伤;b.修复紫外线损伤:通过促进DNA修复机制,修复紫外线引起的DNA损伤,减少皮肤癌的发生;典型氨基酸序列:Leu-Val-Asn-Glu-Leu-Thr-Glu-Phe-Ala-Gln | 增强皮肤对紫外线损伤的防御和修护能力以及防止光老化,在防晒护肤品中应用前景广阔 | [ |
抗癌肽 | a.诱导细胞凋亡:通过激活凋亡信号通路,如Caspase级联反应,诱导癌细胞凋亡;b.抑制血管生成:通过抑制血管内皮生长因子(Vascular endothelial growth factor, VEGF)活性,减少肿瘤血管生成,从而抑制肿瘤生长;典型氨基酸序列:Xxx-Arg-Gly-Asp-Xxx | 肽易于人体吸收,可选择性地抑制肿瘤细胞生长,同时对正常细胞影响较小,亦可降低化疗药物毒副作用 | [ |
免疫调节肽 | a.增强免疫细胞功能:促进T细胞、B细胞和自然杀伤细胞(Natural killer cell, NK Cell)的增殖和活化,提高免疫系统整体功能;b.调节细胞因子分泌:通过调节细胞因子分泌,平衡促炎和抗炎反应,维持免疫稳态;典型氨基酸序列:Gly-Arg-Gly-(Asp)9 | 增强机体免疫反应或抑制过度免疫反应,达到免疫平衡效果,在调节免疫方面有良好的应用前景 | [ |
美白肽 | a.抑制酪氨酸酶活性:美白肽通过与酪氨酸酶结合,抑制其活性,从而减少黑色素的合成;b.干扰黑色素转运:某些美白肽可干扰黑色素小体从黑素细胞向角质形成细胞的转运,减少皮肤色素沉着;典型氨基酸序列: H-Met-Pro-D-Phe-Arg-D-Trp-Phe-Lys-Pro-Val-NH2 | 具有更好的安全性和美白活性,可在美白护肤品中广泛应用 | [ |
减肥肽 | a.促进胰岛素分泌:胰高血糖素样肽-1受体激动剂(Glucagon-like peptide-1 receptor agonists, GLP-1RA)可增加胰岛素分泌,降低血糖水平;b.抑制胰高血糖素分泌:GLP-1RA可减少胰高血糖素的分泌,减缓肝脏释放葡萄糖;c.延缓胃排空:GLP-1RA能延缓胃排空速度,使饭后血糖上升更为温和;d.减少食欲:GLP-1RA可降低食欲;典型氨基酸序列:His-Aib-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Val-Ser-Ser-Tyr-Leu-Glu-Gly-Gln-Ala-Ala-Lys-Glu-Phe-Ile-Ala-Trp-Leu-Val-Arg-Gly-Arg-Gly | GLP-1RA不仅能够良好安全的控制血糖水平,适用于2型糖尿病患者的血糖控制;而且能有效减少热量摄入,帮助控制体重,达到有效减肥效果 | [ |
对比维度 | 固相合成法(SPPS) | 液相合成法(LPPS) |
---|---|---|
原理与过程 | 固相载体上逐步缩合氨基酸 | 溶液中氨基酸/肽片段进行耦合 |
自动化程度 | 高,流程化的操作可以通过自动化的多肽合成设备实现自动化生产 | 较低,操作过程较为复杂,目前难以实现大规模自动化生产 |
适用范围 | 中长链多肽(通常40个氨基酸以内) | 短肽及特定结构要求的多肽(通常10个氨基酸以内) |
产率 | 较高,随着肽链延长收率下降 | 适中,随着肽链延长收率迅速下降 |
纯度 | 较高,随着肽链延长纯度下降 | 适中,随着肽链延长纯度迅速下降 |
耗时 | 较长,通常2-3小时/氨基酸 | 适中,合成简洁迅速 |
成本 | 较高,树脂和大量溶剂 | 相对较低 |
Table 2 Advantages and disadvantages and application scope of solid phase synthesis and liquid phase synthesis
对比维度 | 固相合成法(SPPS) | 液相合成法(LPPS) |
---|---|---|
原理与过程 | 固相载体上逐步缩合氨基酸 | 溶液中氨基酸/肽片段进行耦合 |
自动化程度 | 高,流程化的操作可以通过自动化的多肽合成设备实现自动化生产 | 较低,操作过程较为复杂,目前难以实现大规模自动化生产 |
适用范围 | 中长链多肽(通常40个氨基酸以内) | 短肽及特定结构要求的多肽(通常10个氨基酸以内) |
产率 | 较高,随着肽链延长收率下降 | 适中,随着肽链延长收率迅速下降 |
纯度 | 较高,随着肽链延长纯度下降 | 适中,随着肽链延长纯度迅速下降 |
耗时 | 较长,通常2-3小时/氨基酸 | 适中,合成简洁迅速 |
成本 | 较高,树脂和大量溶剂 | 相对较低 |
名称 | 原料 | 蛋白酶种类 | 酶解条件 | 分离纯化 | 功能描述 | 参考 文献 |
---|---|---|---|---|---|---|
降压肽 | 大豆蛋白 | 嗜热菌蛋白酶、 胃蛋白酶、胰蛋白酶 | 5% w/v,55°C,pH 8, 3h和37°C,pH 8, 3 h和37°C,pH 7.6,3 h | 离心、LC-MS | ACE抑制活性 | [ |
降压肽 | 诃子果实 | 胃蛋白酶 | 1:25w/w,37°C,12 h | 离心、RP-HPLC | ACE抑制活性 | [ |
降压肽 | 米糠 | 胰蛋白酶 | 50 mg/ml,1500 U/mg, 37°C,pH 8,2 h | 离心 | ACE抑制活性、抗氧化 | [ |
降压肽 | 鸡皮 | 碱性蛋白酶 | 1% w/v,60°C,pH 9.5,4 h | 离心、超滤 | ACE抑制活性 | [ |
降压肽 | 短鳍鱼 | 碱性蛋白酶 | 1% w/v | 离心、过滤 | ACE抑制活性 | [ |
抗氧化肽 | 牛毛 | 碱性蛋白酶 | 5%,55°C,8 h | 离心、凝胶过滤、 分子排阻色谱 | 抗氧化 | [ |
二肽酶抑制肽 | 三文鱼鱼白 | 蜂蜜曲霉蛋白酶 | 5种蛋白酶筛选,50°C,>5 h, 17.5 g酶/7.2 kg原料 | 硅藻土过滤、 超滤、浓缩 | 控制血糖 | [ |
血糖控制 以及抗炎肽 | 去骨三文鱼 | 胃蛋白酶、胰蛋白酶、 胰凝乳蛋白酶 | N/A | 过滤、超滤 | 控制血糖、抗炎 | [ |
抗氧化肽 | 黄鳍金枪鱼 | 碱性蛋白酶 | 酶量3000 U/g,50°C,5 h,100 rpm | 离心、超滤 Sephadex G-15 | 抗氧化 | [ |
抗氧化肽 | 鱿鱼 | 碱性蛋白酶 | 酶量5-30 U/g,5-180 min | 离心 | 抗氧化 | [ |
抗癌肽 | 虾壳 | Cryotin酶 | pH8,50°C,45 min | 离心、超滤 | 抗恶性细胞增殖 | [ |
Table 3 Summary of functional peptides prepared by enzymatic hydrolysis
名称 | 原料 | 蛋白酶种类 | 酶解条件 | 分离纯化 | 功能描述 | 参考 文献 |
---|---|---|---|---|---|---|
降压肽 | 大豆蛋白 | 嗜热菌蛋白酶、 胃蛋白酶、胰蛋白酶 | 5% w/v,55°C,pH 8, 3h和37°C,pH 8, 3 h和37°C,pH 7.6,3 h | 离心、LC-MS | ACE抑制活性 | [ |
降压肽 | 诃子果实 | 胃蛋白酶 | 1:25w/w,37°C,12 h | 离心、RP-HPLC | ACE抑制活性 | [ |
降压肽 | 米糠 | 胰蛋白酶 | 50 mg/ml,1500 U/mg, 37°C,pH 8,2 h | 离心 | ACE抑制活性、抗氧化 | [ |
降压肽 | 鸡皮 | 碱性蛋白酶 | 1% w/v,60°C,pH 9.5,4 h | 离心、超滤 | ACE抑制活性 | [ |
降压肽 | 短鳍鱼 | 碱性蛋白酶 | 1% w/v | 离心、过滤 | ACE抑制活性 | [ |
抗氧化肽 | 牛毛 | 碱性蛋白酶 | 5%,55°C,8 h | 离心、凝胶过滤、 分子排阻色谱 | 抗氧化 | [ |
二肽酶抑制肽 | 三文鱼鱼白 | 蜂蜜曲霉蛋白酶 | 5种蛋白酶筛选,50°C,>5 h, 17.5 g酶/7.2 kg原料 | 硅藻土过滤、 超滤、浓缩 | 控制血糖 | [ |
血糖控制 以及抗炎肽 | 去骨三文鱼 | 胃蛋白酶、胰蛋白酶、 胰凝乳蛋白酶 | N/A | 过滤、超滤 | 控制血糖、抗炎 | [ |
抗氧化肽 | 黄鳍金枪鱼 | 碱性蛋白酶 | 酶量3000 U/g,50°C,5 h,100 rpm | 离心、超滤 Sephadex G-15 | 抗氧化 | [ |
抗氧化肽 | 鱿鱼 | 碱性蛋白酶 | 酶量5-30 U/g,5-180 min | 离心 | 抗氧化 | [ |
抗癌肽 | 虾壳 | Cryotin酶 | pH8,50°C,45 min | 离心、超滤 | 抗恶性细胞增殖 | [ |
表达系统 | 优势 | 不足 | 应用范围 | 产业化现状 |
---|---|---|---|---|
大肠杆菌 | 繁殖速度快、培养周期短、遗传背景清晰、工艺放大技术成熟、成本低 | 易形成包涵体、 存在内毒素风险 | 抗菌肽、抗氧化肽、减肥肽、 化妆品肽等 | 技术成熟, 可实现产业化放大 |
枯草芽 孢杆菌 | 遗传背景清晰、安全性强、可分泌表达至培养基中、纯化简单 | 表达量偏低、 重组质粒易丢失 | 淀粉酶、蛋白酶、维生素等 | 技术成熟, 产业化程度较低 |
酵母菌 | 一定的翻译后修饰、耐受能力强、 | 发酵周期长、表达量不高 | 抗菌肽、免疫调节肽等 | 技术成熟, 可实现产业化放大 |
Table 4 Application of different expression systems in the preparation of functional peptides
表达系统 | 优势 | 不足 | 应用范围 | 产业化现状 |
---|---|---|---|---|
大肠杆菌 | 繁殖速度快、培养周期短、遗传背景清晰、工艺放大技术成熟、成本低 | 易形成包涵体、 存在内毒素风险 | 抗菌肽、抗氧化肽、减肥肽、 化妆品肽等 | 技术成熟, 可实现产业化放大 |
枯草芽 孢杆菌 | 遗传背景清晰、安全性强、可分泌表达至培养基中、纯化简单 | 表达量偏低、 重组质粒易丢失 | 淀粉酶、蛋白酶、维生素等 | 技术成熟, 产业化程度较低 |
酵母菌 | 一定的翻译后修饰、耐受能力强、 | 发酵周期长、表达量不高 | 抗菌肽、免疫调节肽等 | 技术成熟, 可实现产业化放大 |
1 | HARTMANN R, MEISEL H. Food-derived peptides with biological activity: from research to food applications[J]. Current Opinion in Biotechnology, 2007, 18(2): 163-169. |
2 | KITTS D D, WEILER K. Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery[J]. Current Pharmaceutical Design, 2003, 9(16): 1309-1323. |
3 | HANCOCK R E W, SAHL H G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies[J]. Nature Biotechnology, 2006, 24(12): 1551-1557. |
4 | WANG G, LI X, WANG Z. APD3: the antimicrobial peptide database as a tool for research and education[J]. Nucleic Acids Research, 2016, 44(D1): D1087-D1093. |
5 | MENDIS E, RAJAPAKSE N, BYUN H G, et al. Investigation of jumbo squid (Dosidicus gigas) skin gelatin peptides for their in vitro antioxidant effects[J]. Life Sciences, 2005, 77(17): 2166-2178. |
6 | SUETSUNA K. Antioxidant peptides from the protease digest of prawn (Penaeus japonicus) muscle[J]. Marine Biotechnology, 2000, 2(1): 5-10. |
7 | SARMADI B H, ISMAIL A. Antioxidative peptides from food proteins: A review[J]. Peptides, 2010, 31(10): 1949-1956. |
8 | PIHLANTO A. Antioxidative peptides derived from milk proteins[J]. International Dairy Journal, 2006, 16(11): 1306-1314. |
9 | FREITAS A C, ANDRADE J C, SILVA F M, et al. Antioxidative peptides: Trends and perspectives for future research[J]. Current Medicinal Chemistry, 20(36): 4575-4594. |
10 | ZHANG X, ZHUANG H, WU S, et al. Marine bioactive peptides: Anti-photoaging mechanisms and potential skin protective effects[J]. Current Issues in Molecular Biology, 2024, 46(2): 990-1009. |
11 | DOUNGAPAI C, SIRIWOHARN T, MALILA Y, et al. UV-B protective and antioxidant activities of protein hydrolysate from sea cucumber (Holothuria scabra) using enzymatic hydrolysis[J]. Frontiers in Marine Science, 2022, 9: 892255. |
12 | ZHANG Y, WANG C, ZHANG W, et al. Bioactive peptides for anticancer therapies[J]. Biomaterials Translational, 2023, 4(1): 5-17. |
13 | WANG L, DONG C, LI X, et al. Anticancer potential of bioactive peptides from animal sources[J]. Oncology Reports, 2017, 38(2): 637-651. |
14 | SOON T N, CHIA A Y Y, YAP W H, et al. Anticancer mechanisms of bioactive peptides[J]. Protein & Peptide Letters, 27(9): 823-830. |
15 | PAVLICEVIC M, MARMIROLI N, MAESTRI E. Immunomodulatory peptides-A promising source for novel functional food production and drug discovery[J]. Peptides, 2022, 148: 170696. |
16 | CLEMENTE A. Enzymatic protein hydrolysates in human nutrition[J]. Trends in Food Science & Technology, 2000, 11(7): 254-262. |
17 | KORHONEN H, PIHLANTO A. Bioactive peptides: Production and functionality[J]. International Dairy Journal, 2006, 16(9): 945-960. |
18 | UDENIGWE C C, ALUKO R E. Food protein-derived bioactive peptides: production, processing, and potential health benefits[J]. Journal of Food Science, 2012, 77(1): R11-24. |
19 | ALTMANN S E, JONES J C, SCHULTZ-CHERRY S, et al. Inhibition of Vaccinia virus entry by a broad spectrum antiviral peptide[J]. Virology, 2009, 388(2): 248-259. |
20 | WANG Y, WANG X, ZHANG Y, et al. RGD-modified polymeric micelles as potential carriers for targeted delivery to integrin-overexpressing tumor vasculature and tumor cells[J]. Journal of Drug Targeting, 2009, 17(6): 459-467. |
21 | NGOC L T N, MOON J Y, LEE Y C. Insights into bioactive peptides in cosmetics[J]. Cosmetics, 2023, 10(4): 111. |
22 | ZHAO W, YANG A, WANG J, et al. Potential application of natural bioactive compounds as skin-whitening agents: A review[J]. Journal of Cosmetic Dermatology, 2022, 21(12): 6669-6687. |
23 | SURYANINGTYAS I T, JE J Y. Bioactive peptides from food proteins as potential anti-obesity agents: Mechanisms of action and future perspectives[J]. Trends in Food Science & Technology, 2023, 138: 141-152. |
24 | KUMAR M S. Peptides and peptidomimetics as potential antiobesity agents: Overview of current status[J]. Frontiers in Nutrition, 2019, 6: 11. |
25 | MUTTENTHALER M, KING G F, ADAMS D J, et al. Trends in peptide drug discovery[J]. Nature Reviews Drug Discovery, 2021, 20(4): 309-325. |
26 | MERRIFIELD R B. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide[J]. Journal of the American Chemical Society, 1963, 85(14): 2149-2154. |
27 | ABDILDINOVA A, KURTH M J, GONG Y. Solid-phase synthesis of peptidomimetics with peptide backbone modifications[J]. Asian Journal of Organic Chemistry, 2021, 10(9): 2300-2317. |
28 | ZHANG R, YAN H, WANG X, et al. Screening of a short chain antimicrobial peptide-FWKFK and its application in wound healing[J]. Biomaterials Science, 2023, 11(5): 1867-1875. |
29 | SABANA I, NAUFAL M, WIANI I, et al. Synthesis of antioxidant peptide SCAP1 (Leu-Ala-Asn-Ala-Lys)[J]. Egyptian Journal of Chemistry, 2020, 63(3): 921-926. |
30 | BAHARLOUI M, MIRSHOKRAEE S A, MONFARED A, et al. Design and synthesis of novel triazole-based peptide analogues as anticancer agents[J]. Iranian Journal of Pharmaceutical Research, 2019, 18(3): 1299-1308. |
31 | WALEWSKA A, KOSIKOWSKA-ADAMUS P, TOMCZYKOWSKA M, et al. Improving fmoc solid phase synthesis of human beta defensin 3[J]. International Journal of Molecular Sciences, 2022, 23(20): 12562. |
32 | COLLINS J M, SINGH S K, WHITE T A, et al. Total wash elimination for solid phase peptide synthesis[J]. Nature Communications, 2023, 14(1): 8168. |
33 | BARREDO‐VACCHELLI G R, RODRÍGUEZ J A, ELOY J A, et al. A novel method for liraglutide synthesis and purification[J]. Peptide Science, 2024: e24351. |
34 | CHRISTOU G A, KATSIKI N, BLUNDELL J, et al. Semaglutide as a promising antiobesity drug[J]. Obesity Reviews, 2019, 20(6): 805-815. |
35 | PENG D, LI Y, SI L, et al. A two-step method preparation of semaglutide through solid-phase synthesis and inclusion body expression[J]. Protein Expression and Purification, 2024, 219: 106477. |
36 | ANDRAOS J, MUHAR H, SMITH S R. Beyond glycemia: Comparing tirzepatide to GLP-1 analoguess[J]. Reviews in Endocrine and Metabolic Disorders, 2023, 24(6): 1089-1101. |
37 | FREDERICK M O, BOYSE R A, BRADEN T M, et al. Kilogram-scale GMP manufacture of tirzepatide using a hybrid SPPS/LPPS approach with continuous manufacturing[J]. Organic Process Research & Development, 2021, 25(7): 1628-1636. |
38 | ROSENSTOCK J, FRIAS J, JASTREBOFF A M, et al. Retatrutide, a GIP, GLP-1 and glucagon receptor agonist, for people with type 2 diabetes: a randomised, double-blind, placebo and active-controlled, parallel-group, phase 2 trial conducted in the USA[J]. The Lancet, 2023, 402(10401): 529-544. |
39 | KENT S B H. Chemical synthesis of peptides and proteins[J]. Annual Review of Biochemistry, 1988, 57(1): 957-989. |
40 | DAWSON P E, MUIR T W, CLARK-LEWIS I, et al. Synthesis of proteins by native chemical ligation[J]. Science, 1994, 266(5186): 776-779. |
41 | TYMECKA D, MISICKA A. Solution Phase Peptide Synthesis: The Case of Biphalin[M/OL]//HUSSEIN W M, SKWARCZYNSKI M, TOTH I. Peptide Synthesis: Methods and Protocols. New York, NY: Springer US, 2020: 1-11 [2024-10-15]. . |
42 | GU X, CHEN W, GUO T, et al. A novel synthetic method for backbone-cyclized polypeptide POL7080 with the help of hydrophobic-support materials[J]. Organic & Biomolecular Chemistry, 2024, 22(1): 85-89. |
43 | LI H, WANG L, ZHANG L, et al. Scalable preparation of green C-terminal amidation peptide-synthesis TAGs and the optimized TAG-assisted liquid-phase synthesis of eptifibatide[J]. Sustainable Chemistry and Pharmacy, 2024, 41: 101684. |
44 | 蔡木易. 食源性低聚肽[M]. 北京: 中国轻工业出版社, 2021. |
CAI M Y. Food-derived oligopeptides [M]. Beijing: China Light Industry Press, 2021. | |
45 | GU Y, WU J. LC–MS/MS coupled with QSAR modeling in characterising of angiotensin I-converting enzyme inhibitory peptides from soybean proteins[J]. Food Chemistry, 2013, 141(3): 2682-2690. |
46 | SORNWATANA T, BANGPHOOMI K, ROYTRAKUL S, et al. Chebulin: Terminalia chebula Retz. fruit-derived peptide with angiotensin-I-converting enzyme inhibitory activity[J]. Biotechnology and Applied Biochemistry, 2015, 62(6): 746-753. |
47 | WANG X, CHEN H, FU X, et al. A novel antioxidant and ACE inhibitory peptide from rice bran protein: Biochemical characterization and molecular docking study[J]. LWT, 2017, 75: 93-99. |
48 | BABJI A S, DAUD N A, HUSAIN S G. Effect of molecular weight reduction of polypeptides on angiotensin converting enzyme (ACE) inhibitory activity in chicken skin hydrolysate (collagen)[J]. Journal of Nutritional Therapeutics, 2014, 3(2): 81-86. |
49 | RASLI H. I., SARBON N. M. Optimization of enzymatic hydrolysis conditions and characterization of Shortfin scad (Decapterus Macrosoma) skin gelatin hydrolysate sate using response surface methodology[J]. International Food Research Journal, 2018, 25(4): 1541-1549. |
50 | DE LA FUENTE B, PALLARÉS N, BERRADA H, et al. Salmon (Salmo salar) side streams as a bioresource to obtain potential antioxidant peptides after applying pressurized liquid extraction (PLE)[J]. Marine Drugs, 2021, 19(6): 323. |
51 | WANG B, LI L, CHI C F, et al. Purification and characterisation of a novel antioxidant peptide derived from blue mussel (Mytilus edulis) protein hydrolysate[J]. Food Chemistry, 2013, 138(2-3): 1713-1719. |
52 | KIM E K, KIM Y S, HWANG J W, et al. Purification of a novel nitric oxide inhibitory peptide derived from enzymatic hydrolysates of Mytilus coruscus [J]. Fish & Shellfish Immunology, 2013, 34(6): 1416-1420. |
53 | CHEN X L, PENG M, LI J, et al. Preparation and functional evaluation of collagen oligopeptide-rich hydrolysate from fish skin with the serine collagenolytic protease from Pseudoalteromonas sp. SM9913[J]. Scientific Reports, 2017, 7(1): 15716. |
54 | ZENG W C, ZHANG W H, HE Q, et al. Purification and characterization of a novel antioxidant peptide from bovine hair hydrolysates[J]. Process Biochemistry, 2015, 50(6): 948-954. |
55 | TAKAHASHI Y, KAMATA A, KONISHI T. Dipeptidyl peptidase-IV inhibitory peptides derived from salmon milt and their effects on postprandial blood glucose level[J]. Fisheries Science, 2021, 87(4): 619-626. |
56 | HENAUX L, PEREIRA K D, THIBODEAU J, et al. Glucoregulatory and anti-inflammatory activities of peptide fractions separated by electrodialysis with ultrafiltration membranes from salmon protein hydrolysate and identification of four novel glucoregulatory peptides[J]. Membranes, 2021, 11(7): 528. |
57 | CAI B, WAN P, CHEN H, et al. Purification and identification of novel myeloperoxidase inhibitory antioxidant peptides from tuna (Thunnas albacares) protein hydrolysates[J]. Molecules, 2022, 27(9): 2681. |
58 | SINGH A, UTOMO PUTRI G A, MITTAL A, et al. Protein hydrolysate from splendid squid (Loligo formosana) fins: Antioxidant, functional properties, and flavoring profile[J]. Turkish Journal of Fisheries and Aquatic Sciences, 2022, 22(6): TRJFAS21005. |
59 | KANNAN A, HETTIARACHCHY N S, MARSHALL M, et al. Shrimp shell peptide hydrolysates inhibit human cancer cell proliferation: Shrimp shell peptide hydrolysates inhibit cancer cell proliferation[J]. Journal of the Science of Food and Agriculture, 2011, 91(10): 1920-1924. |
60 | HERBEL V, SCHÄFER H, WINK M. Recombinant production of snakin-2 (an antimicrobial peptide from tomato) in E. coli and analysis of its bioactivity[J]. Molecules, 2015, 20(8): 14889-14901. |
61 | WU Y, MA Y, LI L, et al. Preparation and antioxidant activities in vitro of a designed antioxidant peptide from Pinctada fucata by recombinant Escherichia coli [J]. Journal of Microbiology and Biotechnology, 2018, 28(1): 1-11. |
62 | MOMEN A H, HARZANDI N, HADDADI A, et al. Implementation of a novel self-induced promoter for the expression of pharmaceutical peptides in Escherichia coli : YY(3-36) peptide[J]. Hormone Molecular Biology and Clinical Investigation, 2020, 41(1): 20180056. |
63 | RAUNIYAR K, AKHONDZADEH S, GĄCIARZ A, et al. Bioactive VEGF-C from E. coli [J]. Scientific Reports, 2022, 12(1): 18157. |
64 | XIE H, LI J, LI L, et al. Enhanced proliferation and differentiation of neural stem cells grown on PHA films coated with recombinant fusion proteins[J]. Acta Biomaterialia, 2013, 9(8): 7845-7854. |
65 | 曹艳萍, 单安山, 马清泉, 等. 多拷贝策略在小肽表达中的应用[J]. 生物工程学报, 2011, 27(5): 684-689. |
CAO Y P, SHAN A S, MA Q Q, et al. Application of multi-copies in expression of smaller peptides: a review[J]. Chinese Journal of Biotechnology, 2011, 27(5): 684-689. | |
66 | 黄欣媛, 邹礼平, 范红波. 豆类活性肽PA1b在大肠杆菌中的多拷贝串联表达[J]. 江苏农业科学, 2022, 50(15): 57-62. |
HUANG X Y, ZOU L P, FAN H B. Multicopy tandem expression of legume peptide PA1b in Escherichia coli [J]. Jiangsu Agricultural Sciences, 2022, 50(15): 57-62. | |
67 | ZHANG J, MOVAHEDI A, WEI Z, et al. High-level SUMO-mediated fusion expression of ABP-dHC-cecropin A from multiple joined genes in Escherichia coli [J]. Analytical Biochemistry, 2016, 509: 15-23. |
68 | 陈清, 曾鑫, 彭永亮, 等. 重组串联融合蛋白制备目标多肽的方法: ZL201910563692.3[P]. 2022-05-13 |
CHEN Q, ZENG X, PENG Y L,et al. Method for preparing target polypeptide by recombinant tandem fusion protein ZL201910563692.3 [P].2022-05-13 | |
69 | ZHANG L, WEI D, ZHAN N, et al. Heterologous expression of the novel α-helical hybrid peptide PR-FO in Bacillus subtilis[J]. Bioprocess and Biosystems Engineering, 2020, 43(9): 1619-1627. |
70 | CHEN M, LIN N, LIU X, et al. A novel antimicrobial peptide screened by a Bacillus subtilis expression system, derived from Larimichthys crocea Ferritin H, exerting bactericidal and parasiticidal activities[J]. Frontiers in Immunology, 2023, 14: 1168517. |
71 | SUN W, WU Y, DING W, et al. An auto-inducible expression and high cell density fermentation of Beefy Meaty Peptide with Bacillus subtilis [J]. Bioprocess and Biosystems Engineering, 2020, 43(4): 701-710. |
72 | FU G, YUE J, LI D, et al. An operator-based expression toolkit for Bacillus subtilis enables fine-tuning of gene expression and biosynthetic pathway regulation[J]. Proceedings of the National Academy of Sciences, 2022, 119(11): e2119980119. |
73 | LU Z, YANG S, YUAN X, et al. CRISPR-assisted multi-dimensional regulation for fine-tuning gene expression in Bacillus subtilis[J]. Nucleic Acids Research, 2019, 47(7): e40-e40. |
74 | ZHU X, LUO H, YU X, et al. Genome‐Wide CRISPRi Screening of Key Genes for Recombinant Protein Expression in Bacillus Subtilis [J]. Advanced Science, 2024: 2404313. |
75 | ILGEN C, LIN‐CEREGHINO J, CREGG J M. Pichia pastoris[M/OL]//GELLISSEN G. Production of Recombinant Proteins. 1st ed. Wiley, 2004: 143-162 [2024-08-08]. . |
76 | KARBALAEI M, REZAEE S A, FARSIANI H. Pichia pastoris : A highly successful expression system for optimal synthesis of heterologous proteins[J]. Journal of Cellular Physiology, 2020, 235(9): 5867-5881. |
77 | CAO X, ZHANG Y, MAO R, et al. Design and recombination expression of a novel plectasin-derived peptide MP1106 and its properties against Staphylococcus aureus [J]. Applied Microbiology and Biotechnology, 2015, 99(6): 2649-2662. |
78 | ZHANG K, YANG N, TENG D, et al. Expression and characterization of the new antimicrobial peptide AP138L-arg26 anti Staphylococcus aureus [J]. Applied Microbiology and Biotechnology, 2024, 108(1): 111. |
79 | CAO J, DE LA FUENTE-NUNEZ C, OU R W, et al. Yeast-based synthetic biology platform for antimicrobial peptide production[J]. ACS Synthetic Biology, 2018, 7(3): 896-902. |
80 | LI X, FAN Y, LIN Q, et al. Expression of chromogranin A-derived antifungal peptide CGA-N12 in Pichia pastoris [J]. Bioengineered, 2020, 11(1): 318-327. |
81 | RENYE J A, SOMKUTI G A. Nisin-induced expression of a recombinant antihypertensive peptide in dairy lactic acid bacteria[J]. Biotechnology Letters, 2015, 37(7): 1447-1454. |
82 | HUYNH E, LI J. Generation of Lactococcus lactis capable of coexpressing epidermal growth factor and trefoil factor to enhance in vitro wound healing[J]. Applied Microbiology and Biotechnology, 2015, 99(11): 4667-4677. |
83 | NONGONIERMA A B, O'KEEFFE M B, FITZGERALD R J. Milk protein hydrolysates and bioactive peptides[M/OL]//MCSWEENEY P L H, O'MAHONY J A. Advanced Dairy Chemistry: Volume 1B: Proteins: Applied Aspects. New York, NY: Springer, 2016: 417-482 [2024-08-10]. . |
84 | LIAO W, JAHANDIDEH F, FAN H, et al. Egg protein-derived bioactive peptides: Preparation, efficacy, and absorption[M/OL]//Advances in Food and Nutrition Research: Vol. 85. Elsevier, 2018: 1-58 [2024-08-10]. . |
85 | SMITH G P. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface[J]. Science, 1985, 228(4705): 1315-1317. |
86 | FLING M, HOROWITZ N H, HEINEMANN S F. The isolation and properties of crystalline tyrosinase from Neurospora[J]. Journal of Biological Chemistry, 1963, 238(6): 2045-2053. |
87 | SUN Y, SHUKLA G S, WEAVER D, et al. Phage-display selection on tumor histological specimens with laser capture microdissection[J]. Journal of Immunological Methods, 2009, 347(1-2): 46-53. |
88 | YANG M, LIU C, NIU M, et al. Phage-display library biopanning and bioinformatic analysis yielded a high-affinity peptide to inflamed vascular endothelium both in vitro and in vivo[J]. Journal of Controlled Release, 2014, 174: 72-80. |
89 | GUAN M, WANG J, YANG L, et al. Targeting osteosarcoma vasculature with peptide obtained by phage display[J]. Współczesna Onkologia, 2014, 3: 165-170. |
90 | ZHOU C, KANG J, WANG X, et al. Phage display screening identifies a novel peptide to suppress ovarian cancer cells in vitro and in vivo in mouse models[J]. BMC Cancer, 2015, 15(1): 889. |
91 | WENG X, LIAO Q, LI K, et al. Screening serum biomarker of knee osteoarthritis using a phage display technique[J]. Clinical Biochemistry, 2012, 45(4-5): 303-308. |
92 | YIN L, LUO Y, LIANG B, et al. Specific ligands for classical swine fever virus screened from landscape phage display library[J]. Antiviral Research, 2014, 109: 68-71. |
93 | LIU Z, LIU J, WANG K, et al. Selection of phage-displayed peptides for the detection of imidacloprid in water and soil[J]. Analytical Biochemistry, 2015, 485: 28-33. |
94 | CHEN Y, SHEN Y, GUO X, et al. Transdermal protein delivery by a coadministered peptide identified via phage display[J]. Nature Biotechnology, 2006, 24(4): 455-460. |
95 | DUERR D M, WHITE S J, SCHLUESENER H J. Identification of peptide sequences that induce the transport of phage across the gastrointestinal mucosal barrier[J]. Journal of Virological Methods, 2004, 116(2): 177-180. |
96 | PASQUALINI R, RUOSLAHTI E. Organ targeting in vivo using phage display peptide libraries[J]. Nature, 1996, 380(6572): 364-366. |
97 | ZHANG X, ZHANG X, GAO H, et al. Phage display derived peptides for Alzheimer's disease therapy and diagnosis[J]. Theranostics, 2022, 12(5): 2041-2062. |
98 | MANAVALAN B, BASITH S, SHIN T H, et al. MLACP: machine-learning-based prediction of anticancer peptides[J]. Oncotarget, 2017, 8(44): 77121-77136. |
99 | GUPTA S, SHARMA A K, SHASTRI V, et al. Prediction of anti-inflammatory proteins/peptides: an insilico approach[J]. Journal of Translational Medicine, 2017, 15(1): 7. |
100 | ILYAS S, LEE J, HWANG Y, et al. Deciphering Cathepsin K inhibitors: a combined QSAR, docking and MD simulation based machine learning approaches for drug design[J]. SAR and QSAR in Environmental Research, 2024: 1-23. |
101 | GULL S, SHAMIM N, MINHAS F. AMAP: Hierarchical multi-label prediction of biologically active and antimicrobial peptides[J]. Computers in Biology and Medicine, 2019, 107: 172-181. |
102 | CHO C, LEE S, BANG D, et al. ChemAP: predicting drug approval with chemical structures before clinical trial phase by leveraging multi-modal embedding space and knowledge distillation[J]. Scientific Reports, 2024, 14(1): 23010. |
103 | GIGUÈRE S, LAVIOLETTE F, MARCHAND M, et al. Machine learning assisted design of highly active peptides for drug discovery[J]. PLOS Computational Biology, 2015, 11(4): e1004074. |
104 | JOO S H, PEI D. Synthesis and screening of support-bound combinatorial peptide libraries with free C-termini: Determination of the sequence specificity of PDZ domains[J]. Biochemistry, 2008, 47(9): 3061-3072. |
105 | FANG C, MORIWAKI Y, LI C, et al. Prediction of antifungal peptides by deep learning with character embedding[J]. IPSJ Transactions on Bioinformatics, 2019, 12(0): 21-29. |
106 | AGRAWAL P, BHALLA S, CHAUDHARY K, et al. In silico approach for prediction of antifungal peptides[J]. Frontiers in Microbiology, 2018, 9: 323. |
107 | BJERRUM E J, SATTAROV B. Improving chemical autoencoder latent space and molecular de novo generation diversity with heteroencoders[J]. Biomolecules, 2018, 8(4): 131. |
108 | CAO D S, LIU S, XU Q S, et al. Large-scale prediction of drug-target interactions using protein sequences and drug topological structures[J]. Analytica Chimica Acta, 2012, 752: 1-10. |
109 | KAO P Y, YANG Y C, CHIANG W Y, et al. Exploring the advantages of quantum generative adversarial networks in generative chemistry[J]. Journal of Chemical Information and Modeling, 2023, 63(11): 3307-3318. |
110 | MÜLLER A T, HISS J A, SCHNEIDER G. Recurrent neural network model for constructive peptide design[J]. Journal of Chemical Information and Modeling, 2018, 58(2): 472-479. |
111 | MA Y, GUO Z, XIA B, et al. Identification of antimicrobial peptides from the human gut microbiome using deep learning[J]. Nature Biotechnology, 2022, 40(6): 921-931. |
112 | KHABBAZ H, KARIMI-JAFARI M H, SABOURY A A, et al. Prediction of antimicrobial peptides toxicity based on their physico-chemical properties using machine learning techniques[J]. BMC Bioinformatics, 2021, 22(1): 549. |
113 | XIAO X, WANG P, LIN W Z, et al. iAMP-2L: A two-level multi-label classifier for identifying antimicrobial peptides and their functional types[J]. Analytical Biochemistry, 2013, 436(2): 168-177. |
114 | WEI L, ZHOU C, CHEN H, et al. ACPred-FL: a sequence-based predictor using effective feature representation to improve the prediction of anti-cancer peptides[J]. Bioinformatics, 2018, 34(23): 4007-4016. |
115 | 丁明珠, 李炳志, 王颖, et al. 合成生物学重要研究方向进展[J]. 合成生物学, 2020, 1(1): 7-28. |
DING M Z, LI B Z, WANG Y, et al. Significant research progress in synthetic biology[J]. Synthetic Biology Journal, 2020, 1(1): 7-28. | |
116 | KOWALCZYK R, HARRIS P W R, WILLIAMS G M, et al. Peptide Lipidation-A Synthetic Strategy to Afford Peptide Based Therapeutics[J]. Peptides and Peptide-based Biomaterials and their Biomedical Applications, 2017, 1030: 185-227. |
117 | GU S. Applying machine learning algorithms for the analysis of biological sequences and medical records[J]. Electronic Theses and Dissertations, 2019, 3666. |
118 | TRIPATHI N M, BANDYOPADHYAY A. High throughput virtual screening (HTVS) of peptide library: Technological advancement in ligand discovery[J]. European Journal of Medicinal Chemistry, 2022, 243: 114766. |
119 | DANG Y, GUAN J. Nanoparticle-based drug delivery systems for cancer therapy[J]. Smart Materials in Medicine, 2020, 1: 10-19. |
[1] | Ziling CHEN, Yangfei XIANG. Integrated development of organoid technology and synthetic biology [J]. Synthetic Biology Journal, 2024, 5(4): 795-812. |
[2] | Bingyu CAI, Xiangtian TAN, Wei LI. Advances in synthetic biology for engineering stem cell [J]. Synthetic Biology Journal, 2024, 5(4): 782-794. |
[3] | Zhijun TANG, Youcai HU, Wen LIU. Enzymatic (4+2)- and (2+2)-cycloaddition reactions: fundamentals and applications of regio- and stereoselectivity [J]. Synthetic Biology Journal, 2024, 5(3): 401-407. |
[4] | Jun ZHANG, Shixue JIN, Qian YUN, Xudong QU. Biosynthesis of the unnatural extender units with polyketides and their structural modifications for applications in medicines [J]. Synthetic Biology Journal, 2024, 5(3): 561-570. |
[5] | Xiwei CHEN, Huaran ZHANG, Yi ZOU. Biosynthesis and metabolic engineering of fungal non-ribosomal peptides [J]. Synthetic Biology Journal, 2024, 5(3): 571-592. |
[6] | Huang XIE, Yilei ZHENG, Yiting SU, Jingyi RUAN, Yongquan LI. An overview on reconstructing the biosynthetic system of actinomycetes for polyketides production [J]. Synthetic Biology Journal, 2024, 5(3): 612-630. |
[7] | Jin FENG, Haixue PAN, Gongli TANG. Research advances in biosynthesis of natural product drugs within the past decade [J]. Synthetic Biology Journal, 2024, 5(3): 408-446. |
[8] | Mengyu XI, Yiling HU, Yucheng GU, Huiming GE. Genome mining-directed discovery for natural medicinal products [J]. Synthetic Biology Journal, 2024, 5(3): 447-473. |
[9] | Xinjie SHI, Yiling DU. Research advances in the biosynthesis of nonribosomal peptides within the bisintercalator family as anticancer drugs [J]. Synthetic Biology Journal, 2024, 5(3): 593-611. |
[10] | Yongxiang SONG, Xiufeng ZHANG, Yanqin LI, Hua XIAO, Yan YAN. Resistance-gene directed discovery of bioactive natural products [J]. Synthetic Biology Journal, 2024, 5(3): 474-491. |
[11] | Wenlong ZHA, Lan BU, Jiachen ZI. Advances in synthetic biology for producing potent pharmaceutical ingredients of traditional Chinese medicine [J]. Synthetic Biology Journal, 2024, 5(3): 631-657. |
[12] | Zhen HUI, Xiaoyu TANG. Applications of the CRISPR/Cas9 editing system in the study of microbial natural products [J]. Synthetic Biology Journal, 2024, 5(3): 658-671. |
[13] | Xiaonan LIU, Jing LI, Xiaoxi ZHU, Zishuo XU, Jian QI, Huifeng JIANG. Research advances on paclitaxel biosynthesis [J]. Synthetic Biology Journal, 2024, 5(3): 527-547. |
[14] | Xuejing MA, Chang GUO, Zhaolin HUA, Baidong HOU. Dawn of the rational design of nanoparticle vaccines aided by the advance of synthetic biology techniques [J]. Synthetic Biology Journal, 2024, 5(2): 353-368. |
[15] | Huiyang TU, Weidong HAN, Bin ZHANG. Strategies for the design and optimization of tumor neoantigen vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 254-266. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||