Mengyao ZHANG1,2,3, Peng CAI1,2, Yongjin ZHOU1,2
Received:
2024-07-31
Revised:
2024-09-18
Published:
2024-09-20
Contact:
Yongjin ZHOU
张梦瑶1,2,3, 蔡鹏1,2, 周雍进1,2
通讯作者:
周雍进
作者简介:
基金资助:
CLC Number:
Mengyao ZHANG, Peng CAI, Yongjin ZHOU. Synthetic biology drives the sustainable production of terpenoid fragrances and flavors[J]. Synthetic Biology Journal, DOI: 10.12211/2096-8280.2024-057.
张梦瑶, 蔡鹏, 周雍进. 合成生物学助力萜类香精香料可持续生产[J]. 合成生物学, DOI: 10.12211/2096-8280.2024-057.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2024-057
Fig. 2 Classical terpene biosynthetic pathways and common alternative synthetic routes. Abbreviations: G3P, D-Glyceraldehyde 3-phosphate; PYR, pyruvate; DXP, 1-Deoxy-D-xylulose 5-phosphate; MEP, 2-C-Methyl-D-erythritol 4-phosphate; CDP-ME, 4-Diphophocytidyl-2-C-methyl-D-erythrito; CDP-MEP, 4-Diphophocytidyl-2-C-methyl-D-erythritol 2phosphate; MEcPP, 2-C-Methyl-D-erythritol 2,4-cyclodiphosphate; HMBPP, 4-Hydroxy-3-methyl-butenyl diphosphate; DMAPP, Dimethylallyl diphosphate; GPP, Geranyl diphosphate; FPP, Farnesyl diphosphate; GGPP, Geranylgeranyl diphosphate; MG-CoA, 3-Methylglutaconyl-CoA; MB-CoA, 3-Methyl-2-butenoyl-CoA; MB, 3-Methyl-2-butenal; DMAP, Dimethylallyl phosphate; M3P, Mevalonate 3-phosphate; M3P5P, Mevalonate 3,5-biphosphate; IP, Isopentenyl phosphate; AcCoA, Acetyl-CoA; AcAcCoA, Acetoacetyl-CoA; HMGCoA, 3-Hydroxy-3-methylglutaryl-CoA; MVA, Mevalonate; M5P, Mevalonate 5-phosphate; MVAPP, Mevalonate diphosphate; IPP, Isopentenyl diphosphate; NPP, Neryl diphosphate; Z,Z-FPP, Z,Z-Farnesyl diphosphate; NNPP, Nerylneryl diphosphate; DXS, DXP synthase; DXR, DXP reductoisomerase; MCT, MEP cytidylyltransferase; CMK, CDP-ME kinase; MDS, ME-CPP synthase; HDS, HMB-PP synthase; HDR, HMB-PP reductase; ERG10, ACCT acetyl-CoA C-acetyl transferase; ERG13, HMGS HMG-CoA synthase; HMGR, HMG-CoA reductase; ERG12, MK MVA kinase; ERG8, PMVK phosphomevalonate kinase; ERG19, MVD diphosphomevalonate decarboxylase; LiuC, enoyl-CoA hydratase; AibAB, glutaconyl-CoA decarboxylase; cbjALD, acyl-CoA reductase; YahK, alcohol dehydrogenase; ThiM, hydroxyethylthiazole kinase; IPK, isopentenyl phosphate kinase; IDI, isopentenyl-diphosphate isomerase; GPPS, geranyl pyrophosphate synthase; FPPS, farnesyl pyrophosphate synthase; GGPPS, geranylgeranyl diphosphate synthase; NPPS, nerol pyrophosphate synthase; zFPPS, Z,Z-Farnesyl diphosphate synthase; NNPPS, nerylneryl diphosphate synthase; M3K, mevalonate 3-kinase; M3P5K, mevalonate 3-phosphate 5-kinase; BMD, mevalonate biphosphate decarboxylase; IPK, isopentenyl phosphate kinase; PMD, mevalonate 5-phosphate decarboxylase.
结构 | 化合物 | 气味特征 | 底盘菌株 | 培养条件 | 产量(g/L) | 参考文献 |
---|---|---|---|---|---|---|
链状 单萜 | 香叶醇 Geraniol | 温和、甜香、花果香气 | 大肠杆菌 | 摇瓶发酵 | 2.1 | [ |
巴斯德毕赤酵母 | 24孔板发酵 | 1.2 | [ | |||
月桂烯 Myrcene | 甜香脂香气 | 大肠杆菌 | 摇瓶发酵 | 1.2 | [ | |
香茅醇 Citronellol | 甜润玫瑰花香 | 酿酒酵母 | 5 L生物反应器 | 8.3 | [ | |
芳樟醇 Linalool | 铃兰清香 | 菠萝潘托氏菌 | 5 mL试管 | S型5.6 R型3.7 | [ |
Tab. 1 Summary of classic cell factories for terpene fragrances
结构 | 化合物 | 气味特征 | 底盘菌株 | 培养条件 | 产量(g/L) | 参考文献 |
---|---|---|---|---|---|---|
链状 单萜 | 香叶醇 Geraniol | 温和、甜香、花果香气 | 大肠杆菌 | 摇瓶发酵 | 2.1 | [ |
巴斯德毕赤酵母 | 24孔板发酵 | 1.2 | [ | |||
月桂烯 Myrcene | 甜香脂香气 | 大肠杆菌 | 摇瓶发酵 | 1.2 | [ | |
香茅醇 Citronellol | 甜润玫瑰花香 | 酿酒酵母 | 5 L生物反应器 | 8.3 | [ | |
芳樟醇 Linalool | 铃兰清香 | 菠萝潘托氏菌 | 5 mL试管 | S型5.6 R型3.7 | [ |
Fig. 7 Global distribution of literature and patents related to terpene fragrance biosynthesis in the last decade. (the data is from Google Patents and Google Scholar using "terpene fragrances" and "synthetic biology" as the keywords, July 17th, 2024).
1 | Bom S, Jorge J, Ribeiro H M, et al. A step forward on sustainability in the cosmetics industry: A review[J]. Journal of Cleaner Production, 2019, 225: 270-290. |
2 | El-Otmani N, Zeouk I, Hammani O, et al. analysis and quality control of bio-actives and herbal cosmetics: The case of traditional cooperatives from fes-meknes region[J]. Tropical Journal of Natural Product Research, 2024, 8(5). |
3 | Michailidou F. The scent of change: sustainable fragrances through industrial biotechnology[J]. ChemBioChem, 2023, 24(19): e202300309. |
4 | Weston-Green K, Clunas H, Jimenez Naranjo C. A review of the potential use of pinene and linalool as terpene-based medicines for brain health: discovering novel therapeutics in the flavours and fragrances of cannabis[J]. Frontiers in Psychiatry, 2021, 12: 583211. |
5 | Jiang H, Wang X. Biosynthesis of monoterpenoid and sesquiterpenoid as natural flavors and fragrances[J]. Biotechnology Advances, 2023, 65: 108151. |
6 | Zhang C, Li M, Zhao G R, et al. Harnessing yeast peroxisomes and cytosol acetyl-coA for sesquiterpene α-humulene production[J]. Journal of Agricultural and Food Chemistry, 2020, 68(5): 1382-1389. |
7 | Masyita A, Mustika Sari R, Dwi Astuti A, et al. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives[J]. Food Chemistry: X, 2022, 13: 100217. |
8 | Cao X, Yu W, Chen Y, et al. Engineering yeast for high-level production of diterpenoid sclareol[J]. Metabolic Engineering, 2022: S1096717622001379. |
9 | Linkedin, Terpenes Market Research Report: Company Snapshot 2031 [EB/OL]. LinkedIn Pulse, 2024 |
10 | Cao C, Cao X, Yu W, et al. Global Metabolic rewiring of yeast enables overproduction of sesquiterpene (+)-valencene[J]. Journal of Agricultural and Food Chemistry, 2022, 70(23): 7180-7187. |
11 | Voigt C A. Synthetic biology 2020–2030: six commercially-available products that are changing our world[J]. Nature Communications, 2020, 11(1): 6379. |
12 | Khalil A S, Collins J J. Synthetic biology: applications come of age[J]. Nature Reviews Genetics, 2010, 11(5): 367-379. |
13 | Volk M J, Tran V G, Tan S I, et al. Metabolic engineering: methodologies and applications[J]. Chemical Reviews, 2023, 123(9): 5521-5570. |
14 | Cimermancic P, Medema M H, Claesen J, et al. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters[J]. Cell, 2014, 158(2): 412-421. |
15 | Blin K, Shaw S, Augustijn H E, et al. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation[J]. Nucleic Acids Research, 2023, 51(W1): W46-W50. |
16 | Skinnider M A, Johnston C W, Gunabalasingam M, et al. Comprehensive prediction of secondary metabolite structure and biological activity from microbial genome sequences[J]. Nature Communications, 2020, 11(1): 6058. |
17 | Wang X, Chen N, Cruz-Morales P, et al. Elucidation of genes enhancing natural product biosynthesis through co-evolution analysis[J]. Nature Metabolism, 2024. |
18 | Arkin A P, Cottingham R W, Henry C S, et al. KBase: The united states department of energy systems biology knowledgebase[J]. Nature Biotechnology, 2018, 36(7): 566-569. |
19 | Seaver S M D, Liu F, Zhang Q, et al. The ModelSEED Biochemistry Database for the integration of metabolic annotations and the reconstruction, comparison and analysis of metabolic models for plants, fungi and microbes[J]. Nucleic Acids Research, 2021, 49(D1): D575-D588. |
20 | Agren R, Liu L, Shoaie S, et al. The RAVEN toolbox and its use for generating a genome-scale metabolic model for penicillium chrysogenum[J]. PLoS Computational Biology, 2013, 9(3): e1002980. |
21 | Burgard A P, Pharkya P, Maranas C D. Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization[J]. Biotechnology and Bioengineering, 2003, 84(6): 647-657. |
22 | Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021, 596(7873): 583-589. |
23 | Abramson J, Adler J, Dunger J, et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3[J]. Nature, 2024, 630(8016): 493-500. |
24 | Greening C, Cabotaje P R, Valentin Alvarado L E, et al. Minimal and hybrid hydrogenases are active from archaea[J]. Cell, 2024, 187(13): 3357-3372.e19. |
25 | Trivedi V, Ramesh A, Wheeldon I. Analyzing CRISPR screens in non-conventional microbes[J]. Journal of Industrial Microbiology and Biotechnology, 2023: kuad006. |
26 | Liu X, Cui Z, Su T, et al. Identification of genome integration sites for developing a CRISPR‐based gene expression toolkit in Yarrowia lipolytica [J]. Microbial Biotechnology, 2022, 15(8): 2223-2234. |
27 | Holkenbrink C, Dam M I, Kildegaard K R, et al. EasyCloneYALI: CRISPR/Cas9-Based synthetic toolbox for engineering of the yeast Yarrowia lipolytica [J]. Biotechnology Journal, 2018, 13(9): 1700543. |
28 | Cui Z, Jiang X, Zheng H, et al. Homology‐independent genome integration enables rapid library construction for enzyme expression and pathway optimization in Yarrowia lipolytica [J]. Biotechnology and Bioengineering, 2019, 116(2): 354-363. |
29 | Liu Q, Shi X, Song L, et al. CRISPR–Cas9-mediated genomic multiloci integration in Pichia pastoris [J]. Microbial Cell Factories, 2019, 18(1): 144. |
30 | Cai P, Duan X, Wu X, et al. Recombination machinery engineering facilitates metabolic engineering of the industrial yeast Pichia pastoris [J]. Nucleic Acids Research, 2021, 49(13): 7791-7805. |
31 | Gao J, Jiang L, Lian J. Development of synthetic biology tools to engineer Pichia pastoris as a chassis for the production of natural products[J]. Synthetic and Systems Biotechnology, 2021, 6(2): 110-119. |
32 | Gao J, Gao N, Zhai X, et al. Recombination machinery engineering for precise genome editing in methylotrophic yeast Ogataea polymorpha [J]. iScience, 2021, 24(3): 102168. |
33 | Yu W, Gao J, Zhai X, et al. Screening neutral sites for metabolic engineering of methylotrophic yeast Ogataea polymorpha [J]. Synthetic and Systems Biotechnology, 2021, 6(2): 63-68. |
34 | Fatma Z, Tan S I, Boob A G, et al. A landing pad system for multicopy gene integration in Issatchenkia orientalis [J]. Metabolic Engineering, 2023, 78: 200-208. |
35 | Kim S K, Han G H, Seong W, et al. CRISPR interference-guided balancing of a biosynthetic mevalonate pathway increases terpenoid production[J]. Metabolic Engineering, 2016, 38: 228-240. |
36 | Lian J, HamediRad M, Hu S, et al. Combinatorial metabolic engineering using an orthogonal tri-functional CRISPR system[J]. Nature Communications, 2017, 8(1): 1688. |
37 | De Munter S, Van Parys A, Bral L, et al. Rapid and effective generation of nanobody based CARs using PCR and Gibson Assembly[J]. International Journal of Molecular Sciences, 2020, 21(3): 883. |
38 | Sorida M, Bonasio R. An efficient cloning method to expand vector and restriction site compatibility of Golden Gate Assembly[J]. Cell Reports Methods, 2023, 3(8): 100564. |
39 | Ma Y, Su S, Fu Z, et al. Convenient synthesis and delivery of a megabase-scale designer accessory chromosome empower biosynthetic capacity[J]. Cell Research, 2024, 34(4): 309-322. |
40 | Carbonell P, Radivojevic T, García Martín H. Opportunities at the intersection of synthetic biology, machine learning, and automation[J]. ACS Synthetic Biology, 2019, 8(7): 1474-1477. |
41 | Ignea C, Raadam M H, Motawia M S, et al. Orthogonal monoterpenoid biosynthesis in yeast constructed on an isomeric substrate[J]. Nature Communications, 2019, 10(1): 3799. |
42 | Lipko A, Pączkowski C, Perez-Fons L, et al. Divergent contribution of the MVA and MEP pathways to the formation of polyprenols and dolichols in Arabidopsis[J]. Biochemical Journal, 2023, 480(8): 495-520. |
43 | Pan X, Du W, Zhang X, et al. Discovery, structure, and mechanism of a class II sesquiterpene cyclase[J]. Journal of the American Chemical Society, 2022: jacs.2c09412. |
44 | Zhou F, Pichersky E. More is better: the diversity of terpene metabolism in plants[J]. Current Opinion in Plant Biology, 2020, 55: 1-10. |
45 | Zeng L, Dehesh K. The eukaryotic MEP-pathway genes are evolutionarily conserved and originated from Chlaymidia and cyanobacteria [J]. BMC Genomics, 2021, 22(1): 137. |
46 | Allamand A, Piechowiak T, Lièvremont D, et al. The multifaceted MEP pathway: towards new therapeutic perspectives[J]. Molecules, 2023, 28(3): 1403. |
47 | Banerjee A, Wu Y, Banerjee R, et al. Feedback inhibition of deoxy-d-xylulose-5-phosphate synthase regulates the methylerythritol 4-phosphate pathway[J]. Journal of Biological Chemistry, 2013, 288(23): 16926-16936. |
48 | Diao J, Song X, Zhang L, et al. Tailoring cyanobacteria as a new platform for highly efficient synthesis of astaxanthin[J]. Metabolic Engineering, 2020, 61: 275-287. |
49 | Volke D C, Rohwer J, Fischer R, et al. Investigation of the methylerythritol 4-phosphate pathway for microbial terpenoid production through metabolic control analysis[J]. Microbial Cell Factories, 2019, 18(1): 192. |
50 | Du F L, Yu H L, Xu J H, et al. Enhanced limonene production by optimizing the expression of limonene biosynthesis and MEP pathway genes in E. coli[J]. Bioresources and Bioprocessing, 2014, 1(1): 10. |
51 | Ma Y, McClure D D, Somerville M V, et al. Metabolic engineering of the MEP pathway in Bacillus subtilis for increased biosynthesis of menaquinone-7[J]. ACS Synthetic Biology, 2019, 8(7): 1620-1630. |
52 | Bröker J N, Müller B, Van Deenen N, et al. Upregulating the mevalonate pathway and repressing sterol synthesis in Saccharomyces cerevisiae enhances the production of triterpenes[J]. Applied Microbiology and Biotechnology, 2018, 102(16): 6923-6934. |
53 | Liu F, Liu S C, Qi Y K, et al. Enhancing trans -nerolidol productivity in Yarrowia lipolytica by improving precursor supply and optimizing nerolidol synthase activity[J]. Journal of Agricultural and Food Chemistry, 2022, 70(48): 15157-15165. |
54 | Mukherjee M, Blair R H, Wang Z Q. Machine-learning guided elucidation of contribution of individual steps in the mevalonate pathway and construction of a yeast platform strain for terpenoid production[J]. Metabolic Engineering, 2022, 74: 139-149. |
55 | Rinaldi M A. Alternative metabolic pathways and strategies to high-titre terpenoid production in Escherichia coli [J]. Natural Product Reports, 2022: 29. |
56 | Chen H, Liu C, Li M, et al. Directed evolution of mevalonate kinase in Escherichia coli by random mutagenesis for improved lycopene[J]. RSC Advances, 2018, 8(27): 15021-15028. |
57 | Cao C, Zhang H, Cao X, et al. Construction and optimization of nonclassical isoprenoid biosynthetic pathways in yeast peroxisomes for (+)-valencene production[J]. Journal of Agricultural and Food Chemistry, 2023, 71(29): 11124-11130. |
58 | Clomburg J M, Qian S, Tan Z, et al. The isoprenoid alcohol pathway, a synthetic route for isoprenoid biosynthesis[J]. Proceedings of the National Academy of Sciences, 2019, 116(26): 12810-12815. |
59 | Ma Y, Zu Y, Huang S, et al. Engineering a universal and efficient platform for terpenoid synthesis in yeast[J]. Proceedings of the National Academy of Sciences, 2023, 120(1): e2207680120. |
60 | Liu S, Zhang M, Ren Y, et al. Engineering Rhodosporidium toruloides for limonene production[J]. Biotechnology for Biofuels, 2021, 14(1): 243. |
61 | Schilmiller A L, Schauvinhold I, Larson M, et al. Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate[J]. Proceedings of the National Academy of Sciences, 2009, 106(26): 10865-10870. |
62 | 程晓雷, 刘天罡, 陶慧. 萜类化合物的非常规生物合成研究进展[J]. 合成生物学, 2024, DOI: 10.12211/2096-8280.2024-006 . |
CHENG Xiaolei, LIU Tiangang, TAO Hui. Recent research progress in non-canonical biosynthesis of terpenoids[J]. Synthetic Biology Journal, DOI: | |
63 | 12211/2096-8280.2024-006. |
64 | Luo P, Huang J H, Lv J M, et al. Biosynthesis of fungal terpenoids[J]. Natural Product Reports, 2024, 41(5): 748-783. |
65 | Li Z, Zhang L, Xu K, et al. Molecular insights into the catalytic promiscuity of a bacterial diterpene synthase[J]. Nature Communications, 2023, 14(1): 4001. |
66 | Abe T, Shiratori H, Kashiwazaki K, et al. Structural-model-based genome mining can efficiently discover novel non-canonical terpene synthases hidden in genomes of diverse species[J]. Chemical Science, 2024, 15(27): 10402-10407. |
67 | Deng X, Ye Z, Duan J, et al. Complete pathway elucidation and heterologous reconstitution of (+)‐nootkatone biosynthesis from Alpinia oxyphylla [J]. New Phytologist, 2023: nph.19375. |
68 | Chen R, Jia Q, Mu X, et al. Systematic mining of fungal chimeric terpene synthases using an efficient precursor-providing yeast chassis[J]. Proceedings of the National Academy of Sciences, 2021, 118(29): e2023247118. |
69 | Yang Y, Zhang S, Ma K, et al. Discovery and characterization of a new family of diterpene cyclases in bacteria and fungi[J]. Angewandte Chemie, 2017, 129(17): 4827-4830. |
70 | Daletos G, Stephanopoulos G. Protein engineering strategies for microbial production of isoprenoids[J]. Metabolic Engineering Communications, 2020, 11: e00129. |
71 | Ye Z, Huang Y, Shi B, et al. Coupling cell growth and biochemical pathway induction in Saccharomyces cerevisiae for production of (+)-valencene and its chemical conversion to (+)-nootkatone[J]. Metabolic Engineering, 2022, 72: 107-115. |
72 | 祁延萍, 朱晋, 张凯, 等. 定向进化在蛋白质工程中的应用研究进展[J]. 合成生物学, 2022, 3(6): 1081-1108. |
QI Yanping, ZHU Jin, ZHANG Kai, et al. Recent development of directed evolution in protein engineering[J]. Synthetic Biology Journal, 2022, 3(6): 1081-1108. | |
73 | Lauchli R, Rabe K S, Kalbarczyk K Z, et al. High‐throughput screening for terpene‐synthase‐cyclization activity and directed evolution of a terpene synthase[J]. Angewandte Chemie International Edition, 2013, 52(21): 5571-5574. |
74 | Wang X, Chen J, Zhang J, et al. Engineering Escherichia coli for production of geraniol by systematic synthetic biology approaches and laboratory-evolved fusion tags[J]. Metabolic Engineering, 2021, 66: 60-67. |
75 | Ye C, Li M, Gao J, et al. Metabolic engineering of Pichia pastoris for overproduction of cis-trans nepetalactol[J]. Metabolic Engineering, 2024, 84: 83-94. |
76 | Wang X, Wang J, Zhang X, et al. Efficient myrcene production using linalool dehydratase isomerase and rational biochemical process in Escherichia coli [J]. Journal of Biotechnology, 2023, 371-372: 33-40. |
77 | Jiang G, Yao M, Wang Y, et al. A "push-pull-restrain" strategy to improve citronellol production in Saccharomyces cerevisiae [J]. Metabolic Engineering, 2021, 66: 51-59. |
78 | Hoshino Y, Moriya M, Matsudaira A, et al. Stereospecific linalool production utilizing two-phase cultivation system in Pantoea ananatis [J]. Journal of Biotechnology, 2020, 324: 21-27. |
79 | Rolf J, Julsing M, Rosenthal K, et al. A gram-scale limonene production process with engineered Escherichia coli [J]. Molecules, 2020, 25(8), 1881. |
80 | Zhang C, Li M, Zhao G R, et al. Alpha-terpineol production from an engineered Saccharomyces cerevisiae cell factory[J]. Microbial Cell Factories, 2019, 18(1): 160. |
81 | Yoshida E, Kojima M, Suzuki M, et al. Increased carvone production in Escherichia coli by balancing limonene conversion enzyme expression via targeted quantification concatamer proteome analysis[J]. Scientific Reports, 2021, 11(1): 22126. |
82 | Zhang Haiyan, Cai Peng, Guo Juan, et. al. Engineering cellular dephosphorylation boosts (+)-borneol production in yeast. Acta Pharmaceutica Sinica B. Unpublished. |
83 | Niu F X, He X, Wu Y Q, et al. Enhancing production of pinene in Escherichia coli by using a combination of tolerance, evolution, and modular co-culture engineering[J]. Frontiers in Microbiology, 2018, 9: 1623. |
84 | Jia H, Chen T, Qu J, et al. Collaborative subcellular compartmentalization to improve GPP utilization and boost sabinene accumulation in Saccharomyces cerevisiae [J]. Biochemical Engineering Journal, 2020, 164: 107768. |
85 | Lu Z, Peng B, Ebert B E, et al. Auxin-mediated protein depletion for metabolic engineering in terpene-producing yeast[J]. Nature Communications, 2021, 12(1): 1051. |
86 | Meadows A L, Hawkins K M, Tsegaye Y, et al. Rewriting yeast central carbon metabolism for industrial isoprenoid production[J]. Nature, 2016, 537(7622): 694-697. |
87 | Wang C, Park J, Choi E, et al. Farnesol production in Escherichia coli through the construction of a farnesol biosynthesis pathway – application of PgpB and YbjG phosphatases[J]. Biotechnology Journal, 2016, 11(10): 1291-1297. |
88 | Zhang W, Guo J, Wang Z, et al. Improved production of germacrene A, a direct precursor of ß-elemene, in engineered Saccharomyces cerevisiae by expressing a cyanobacterial germacrene A synthase[J]. Microbial Cell Factories, 2021, 20(1): 7. |
89 | Zhang L, Yang H, Xia Y, et al. Engineering the oleaginous yeast Candida tropicalis for α-humulene overproduction[J]. Biotechnology for Biofuels and Bioproducts, 2022, 15(1): 59. |
90 | Liu J, Chen C, Wan X, et al. Identification of the sesquiterpene synthase AcTPS1 and high production of (–)-germacrene D in metabolically engineered Saccharomyces cerevisiae[J]. Microbial Cell Factories, 2022, 21(1): 89. |
91 | Guo J, Zhou W, Li Y, et al. Combination of protein engineering and metabolic engineering to enhance (+)‐nootkatone production in Saccharomyces cerevisiae [J]. Food Bioengineering, 2022, 1(2): 192-202. |
92 | Zha W, An T, Li T, et al. Reconstruction of the biosynthetic pathway of Santalols under control of the gal regulatory system in yeast[J]. ACS Synthetic Biology, 2020, 9(2): 449-456. |
93 | Zuo Y, Xiao F, Gao J, et al. Establishing Komagataella phaffii as a cell factory for efficient production of sesquiterpenoid α-Santalene[J]. Journal of Agricultural and Food Chemistry, 2022, 70(26): 8024-8031. |
94 | Cao Y, Zhang R, Liu W, et al. Manipulation of the precursor supply for high-level production of longifolene by metabolically engineered Escherichia coli [J]. Scientific Reports, 2019, 9(1): 95. |
95 | Liu M, Lin Y C, Guo J J, et al. High-level production of sesquiterpene patchoulol in Saccharomyces cerevisiae [J]. ACS Synthetic Biology, 2021, 10(1): 158-172. |
96 | Zhang C, Chen X, Lindley N D, et al. A "plug‐n‐play" modular metabolic system for the production of apocarotenoids[J]. Biotechnology and Bioengineering, 2018, 115(1): 174-183. |
97 | Lu Y, Yang Q, Lin Z, et al. A modular pathway engineering strategy for the high-level production of β-ionone in Yarrowia lipolytica [J]. Microbial Cell Factories, 2020, 19(1): 49. |
98 | Magnard J L, Roccia A, Caissard J C, et al. Biosynthesis of monoterpene scent compounds in roses[J]. Science, 2015, 349(6243): 81-83. |
99 | Zhu K, Kong J, Zhao B, et al. Metabolic engineering of microbes for monoterpenoid production[J]. Biotechnology Advances, 2021, 53: 107837. |
100 | Jiang G Z, Yao M D, Wang Y, et al. Manipulation of GES and ERG20 for geraniol overproduction in Saccharomyces cerevisiae [J]. Metabolic Engineering, 2017, 41: 57-66. |
101 | Cao X, Lv Y B, Chen J, et al. Metabolic engineering of oleaginous yeast Yarrowia lipolytica for limonene overproduction[J]. Biotechnology for Biofuels, 2016, 9(1): 214. |
102 | Jongedijk E, Cankar K, Ranzijn J, et al. Capturing of the monoterpene olefin limonene produced in Saccharomyces cerevisiae: Limonene from yeast headspace[J]. Yeast, 2014: n/a-n/a. |
103 | Zhao Y, Liang F, Xie Y, et al. Oxetane ring formation in taxol biosynthesis is catalyzed by a bifunctional cytochrome P450 enzyme[J]. Journal of the American Chemical Society, 2024, 146(1): 801-810. |
104 | Yuan W, Lv S, Chen L, et al. Production of sesterterpene ophiobolin by a bifunctional terpene synthase in Escherichia coli [J]. Applied Microbiology and Biotechnology, 2019, 103(21-22): 8785-8797. |
105 | Tang N C, Su J C, Shmidov Y, et al. Synthetic intrinsically disordered protein fusion tags that enhance protein solubility[J]. Nature Communications, 2024, 15(1): 3727. |
106 | Cheah L C, Liu L, Stark T, et al. Metabolic flux enhancement from the translational fusion of terpene synthases is linked to terpene synthase accumulation[J]. Metabolic Engineering, 2023, 77: 143-151. |
107 | Guo Q, Shi T Q, Peng Q Q, et al. Harnessing Yarrowia lipolytica peroxisomes as a subcellular factory for α-humulene overproduction[J]. Journal of Agricultural and Food Chemistry, 2021, 69(46): 13831-13837. |
108 | Miller B R, Kung Y. Structural features and domain movements controlling substrate binding and cofactor specificity in class II HMG-CoA reductase[J]. Biochemistry, 2018, 57(5): 654-662. |
109 | Kwak S, Kim S R, Xu H, et al. Enhanced isoprenoid production from xylose by engineered Saccharomyces cerevisiae [J]. Biotechnology and Bioengineering, 2017, 114(11): 2581-2591. |
110 | Kim T Y, Park H, Kim S K, et al. Production of (-)-α-bisabolol in metabolically engineered Saccharomyces cerevisiae [J]. Journal of Biotechnology, 2021, 340: 13-21. |
111 | Yuzbasheva E Y, Agrimi G, Yuzbashev T V, et al. The mitochondrial citrate carrier in Yarrowia lipolytica: Its identification, characterization and functional significance for the production of citric acid[J]. Metabolic Engineering, 2019, 54: 264-274. |
112 | Rodriguez S, Denby C M, Van Vu T, et al. ATP citrate lyase mediated cytosolic acetyl-CoA biosynthesis increases mevalonate production in Saccharomyces cerevisiae [J]. Microbial Cell Factories, 2016, 15(1): 48. |
113 | Hellgren J, Godina A, Nielsen J, et al. Promiscuous phosphoketolase and metabolic rewiring enables novel non-oxidative glycolysis in yeast for high-yield production of acetyl-CoA derived products[J]. Metabolic Engineering, 2020, 62: 150-160. |
114 | Ye M, Gao J, Li J, et al. Promoter engineering enables precise metabolic regulation towards efficient β-elemene production in Ogataea polymorpha [J]. Synthetic and Systems Biotechnology, 2024, 9(2): 234-241. |
115 | Chen Y, Daviet L, Schalk M, et al. Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism[J]. Metabolic Engineering, 2013, 15: 48-54. |
116 | Li Q, Fan F, Gao X, et al. Balanced activation of IspG and IspH to eliminate MEP intermediate accumulation and improve isoprenoids production in Escherichia coli [J]. Metabolic Engineering, 2017, 44: 13-21. |
117 | Wang F, Lv X, Xie W, et al. Combining Gal4p-mediated expression enhancement and directed evolution of isoprene synthase to improve isoprene production in Saccharomyces cerevisiae [J]. Metabolic Engineering, 2017, 39: 257-266. |
118 | Wu T, Li S, Zhang B, et al. Engineering Saccharomyces cerevisiae for the production of the valuable monoterpene ester geranyl acetate[J]. Microbial Cell Factories, 2018, 17(1): 85. |
119 | Zhao J, Li C, Zhang Y, et al. Dynamic control of ERG20 expression combined with minimized endogenous downstream metabolism contributes to the improvement of geraniol production in Saccharomyces cerevisiae [J]. Microbial Cell Factories, 2017, 16(1): 17. |
120 | Dusséaux S, Wajn W T, Liu Y, et al. Transforming yeast peroxisomes into microfactories for the efficient production of high-value isoprenoids[J]. Proceedings of the National Academy of Sciences, 2020, 117(50): 31789-31799. |
121 | Son S H, Kim J E, Park G, et al. Metabolite trafficking enables membrane-impermeable-terpene secretion by yeast[J]. Nature Communications, 2022, 13(1): 2605. |
122 | Qin L, Ma D, Lin G, et al. Low temperature promotes the production and efflux of terpenoids in yeast[J]. Bioresource Technology, 2024, 395: 130376. |
123 | Cheng T, Zhang K, Guo J, et al. Highly efficient biosynthesis of β-caryophyllene with a new sesquiterpene synthase from tobacco[J]. Biotechnology for Biofuels and Bioproducts, 2022, 15(1): 39. |
124 | Scandiffio R, Geddo F, Cottone E, et al. Protective effects of (E)-β-Caryophyllene (BCP) in Chronic Inflammation [J]. Nutrients, 2020, 12(11): 3273. |
125 | Tang Q, Xu F, Wei X, et al. Investigation of β-caryophyllene as terpene penetration enhancer: Role of stratum corneum retention[J]. European Journal of Pharmaceutical Sciences, 2023, 183: 106401. |
126 | Lim H S, Kim S K, Woo S G, et al. (-)-α-Bisabolol production in engineered Escherichia coli expressing a novel (-)-α-Bisabolol synthase from the globe artichoke Cynara cardunculus var. Scolymus [J]. Journal of Agricultural and Food Chemistry, 2021, 69(30): 8492-8503. |
127 | Eddin L B, Jha N K, Goyal S N, et al. Health benefits, pharmacological effects, molecular mechanisms, and therapeutic potential of α-Bisabolol[J]. Nutrients, 2022, 14(7): 1370. |
128 | Jiang Y, Xia L, Gao S, et al. Engineering Saccharomyces cerevisiae for enhanced (–)-α-bisabolol production[J]. Synthetic and Systems Biotechnology, 2023, 8(2): 187-195. |
129 | Liu S C, Liu Z, Wei L J, et al. Pathway engineering and medium optimization for α-farnesene biosynthesis in oleaginous yeast Yarrowia lipolytica [J]. Journal of Biotechnology, 2020, 319: 74-81. |
130 | Li S, Luo S, Yin X, et al. Screening of ent-copalyl diphosphate synthase and metabolic engineering to achieve de novo biosynthesis of ent-copalol in Saccharomyces cerevisiae [J]. Synthetic and Systems Biotechnology, 2024, 9(4): 784-792. |
131 | Zhang X, Chen S, Lin Y, et al. Metabolic engineering of Pichia pastoris for high-level production of lycopene[J]. ACS Synthetic Biology, 2023: acssynbio.3c00294. |
132 | Ye M, Gao J, Zhou Y J. Global metabolic rewiring of the nonconventional yeast Ogataea polymorpha for biosynthesis of the sesquiterpenoid β-elemene[J]. Metabolic Engineering, 2023, 76: 225-231. |
133 | Luo G, Lin Y, Chen S, et al. Overproduction of patchoulol in metabolically engineered Komagataella phaffii [J]. Journal of Agricultural and Food Chemistry, 2023, 71(4): 2049-2058. |
134 | Wei Y, Meng N, Wang Y, et al. Transcription factor VvWRKY70 inhibits both norisoprenoid and flavonol biosynthesis in grape[J]. Plant Physiology, 2023, 193(3): 2055-2070. |
135 | Mosaferi S, Jelley R E, Fedrizzi B, et al. Synthesis of d6-deuterated analogues of aroma molecules-β-damascenone, β-damascone and safranal[J]. Results in Chemistry, 2022, 4: 100264. |
136 | Tomasino E, Bolman S. The potential effect of β-Ionone and β-Damascenone on sensory perception of pinot noir wine aroma[J]. Molecules, 2021, 26(5): 1288. |
137 | Chudasama D. Importance of intellectual property rights[J]. Journal of Intellectual Property Rights Law, 4(2): 2582-9742. |
138 | 陈大明, 周光明, 刘晓, 等. 从全球专利分析看合成生物学技术发展趋势[J]. 合成生物学, 2020, 1(3): 372-384. |
CHEN Daming, ZHOU Guangming, LIU Xiao, et al. Analysis of global patents for the trend of synthetic biology inventions. Synthetic Biology Journal[J], 2020, 1(3): 372-384 doi:10.12211/2096-8280.2020-035 | |
139 | Wang S, Sun X, Han Y, et al. Sustainable biosynthesis of squalene from waste cooking oil by the yeast Yarrowia lipolytica [J]. Metabolic Engineering Communications, 2024, 18: e00240. |
140 | Pang Y, Zhao Y, Li S, et al. Engineering the oleaginous yeast Yarrowia lipolytica to produce limonene from waste cooking oil[J]. Biotechnology for Biofuels, 2019, 12(1): 241. |
141 | Zhao Y, Zhu K, Li J, et al. High‐efficiency production of bisabolene from waste cooking oil by metabolically engineered Yarrowia lipolytica [J]. Microbial Biotechnology, 2021, 14(6): 2497-2513. |
[1] | Ziling CHEN, Yangfei XIANG. Integrated development of organoid technology and synthetic biology [J]. Synthetic Biology Journal, 2024, 5(4): 795-812. |
[2] | Bingyu CAI, Xiangtian TAN, Wei LI. Advances in synthetic biology for engineering stem cell [J]. Synthetic Biology Journal, 2024, 5(4): 782-794. |
[3] | Huang XIE, Yilei ZHENG, Yiting SU, Jingyi RUAN, Yongquan LI. An overview on reconstructing the biosynthetic system of actinomycetes for polyketides production [J]. Synthetic Biology Journal, 2024, 5(3): 612-630. |
[4] | Ru LEI, Hui TAO, Tiangang LIU. Deep genome mining boosts the discovery of microbial terpenoids [J]. Synthetic Biology Journal, 2024, 5(3): 507-526. |
[5] | Wenlong ZHA, Lan BU, Jiachen ZI. Advances in synthetic biology for producing potent pharmaceutical ingredients of traditional Chinese medicine [J]. Synthetic Biology Journal, 2024, 5(3): 631-657. |
[6] | Zhen HUI, Xiaoyu TANG. Applications of the CRISPR/Cas9 editing system in the study of microbial natural products [J]. Synthetic Biology Journal, 2024, 5(3): 658-671. |
[7] | Xiaonan LIU, Jing LI, Xiaoxi ZHU, Zishuo XU, Jian QI, Huifeng JIANG. Research advances on paclitaxel biosynthesis [J]. Synthetic Biology Journal, 2024, 5(3): 527-547. |
[8] | Xuejing MA, Chang GUO, Zhaolin HUA, Baidong HOU. Dawn of the rational design of nanoparticle vaccines aided by the advance of synthetic biology techniques [J]. Synthetic Biology Journal, 2024, 5(2): 353-368. |
[9] | Busen WANG, Jinghan XU, Zhiqiang GAO, Lihua HOU. Advances in virus-vectored vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 281-293. |
[10] | Jinyong ZHANG, Jiang GU, Shan GUAN, Haibo LI, Hao ZENG, Quanming ZOU. Synthetic biology promotes the development of bacterial vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 321-337. |
[11] | Weifeng YUAN, Yongliang ZHAO, Zhixuan WU, Ke XU. Applications of synthetic biology in the development of SARS-CoV-2 broad-spectrum vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 369-384. |
[12] | Yanyan YUAN, Huifang CHEN, Sihui YANG, Honghui WANG, Zhou NIE. Engineering artificial receptor cluster: chemical synthetic biology strategies and emerging applications [J]. Synthetic Biology Journal, 2024, 5(1): 53-76. |
[13] | Jingyu ZHAO, Jian ZHANG, Qingsheng QI, Qian WANG. Research progress in biosensors based on bacterial two-component systems [J]. Synthetic Biology Journal, 2024, 5(1): 38-52. |
[14] | Qian MENG, Cong YIN, Weiren HUANG. Tumor organoids and their research progress in synthetic biology [J]. Synthetic Biology Journal, 2024, 5(1): 191-201. |
[15] | Xiaojie GUO, Xingjin JIAN, Liyan WANG, Chong ZHANG, Xinhui XING. Progress in bioreactors and instruments for phenotype testing with synthetic biology research [J]. Synthetic Biology Journal, 2024, 5(1): 16-37. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||