Tingting GUO, Xiangning HAN, Xiting HUANG, Tingting ZHANG, Jian KONG
Received:
2024-09-11
Revised:
2024-11-14
Published:
2024-11-18
Contact:
Jian KONG
郭婷婷, 韩湘凝, 黄熙婷, 张婷婷, 孔健
通讯作者:
孔健
作者简介:
基金资助:
CLC Number:
Tingting GUO, Xiangning HAN, Xiting HUANG, Tingting ZHANG, Jian KONG. Advances in synthetic biology tools of lactic acid bacteria and their application in skin beneficial product development[J]. Synthetic Biology Journal, DOI: 10.12211/2096-8280.2024-071.
郭婷婷, 韩湘凝, 黄熙婷, 张婷婷, 孔健. 乳酸菌的合成生物学工具及在合成益肤因子中的应用[J]. 合成生物学, DOI: 10.12211/2096-8280.2024-071.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2024-071
Fig. 1 Working schematic diagram of commonly used gene expression systems of lactic acid bacteria(a) NICE system; (c) ZICE system; (b) Sakacin A or sakacin P induced expression system
Fig. 2 Schematic diagram of three methods for genome engineering in lactic acid bacteria(a) Conditional plasmid mediated crossover homologous recombination; (b) dsDNA recombineering; (c) ssDNA recombineering
Fig. 3 Strategies by engineered lactic acid bacteria for repair of cutaneous wounds in situ(a) Engineered Limosilactobacillus reuteri delivering cytokines CXCL12; (b) Engineered Lactococcuslactis delivering VEGF
1 | GRICE E A, SEGRE J A. The skin microbiome[J]. Nature reviews microbiology, 2011, 9: 244-253. |
2 | HARRIS-TRYON T A, GRICE E A. Microbiota and maintenance of skin barrier function[J]. Science, 2022, 376: 940-945. |
3 | GEOGHEGAN J A, IRVINE A D, FOSTER T J. Staphylococcus aureus and Atopic Dermatitis: A Complex and Evolving Relationship[J]. Trends in Microbiology, 2018, 26(6): 484-497. |
4 | BRANDWEIN M, FUKS G, ISRAEL Aet al. Skin Microbiome Compositional Changes in Atopic Dermatitis Accompany Dead Sea Climatotherapy[J]. Photochemistry and Photobiology, 2019, 95: 1446-1453. |
5 | CHEN Y H, SONG Y P, CHEN Z G, et al. Early-Life Skin Microbial Biomarkers for Eczema Phenotypes in Chinese Toddlers[J]. Pathogens, 2023, 12: 697. |
6 | WANG H L, CHAN W M M, CHAN H H, et al. Longitudinal Changes in Skin Microbiome Associated with Change in Skin Status in Patients with Psoriasis[J]. Acta Dermato-Venereologica, 2020, 100: 1-5 |
7 | PLAVEC T V, BERLEC A. Safety Aspects of Genetically Modified Lactic Acid Bacteria[J]. Microorganisms, 2020, 8: 297. |
8 | MASOOD M I, QADIR M I, SHIRAZI, J H, et al. Beneficial effects of lactic acid bacteria on human beings[J]. Critical Reviews in Microbiology, 2011, 37: 91-98. |
9 | DOU J X, FENG N, GUO F Y, et al. Applications of probiotics constituents in cosmetics[J]. Molecules, 2023, 28(19): 6765. |
10 | LEBEER S, OERLEMANS E F M, CLAES I, et al. Selective targeting of skin pathobionts and inflammation with topically applied lactobacilli[J]. Cell Reports Medicine, 2022, 3(2): 100521. |
11 | MOTTIN V H M, SUYENAGA ES. An approach on the potential use of probiotics in the treatment of skin conditions: acne and atopic dermatitis[J]. International Journal of Dermatology, 2018, 57: 1425-1432. |
12 | CHRISTENSEN I B, VEDEL C, CLAUSEN M L, et al. Targeted Screening of Lactic Acid Bacteria With Antibacterial Activity Toward Staphylococcus aureus Clonal Complex Type 1 Associated With Atopic Dermatitis[J]. Frontiers in Microbiology, 2021, 12: 733847. |
13 | ALSAHEB R A ABD, ALADDIN A, OTHMAN N Z, et al. Lactic acid applications in pharmaceutical and cosmeceutical industries[J]. Journal of Chemical and Pharmaceutical Research, 2015, 7(10): 729-735. |
14 | BOLOTIN A, WINCKER P, MAUGER S, et al. The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp lactis IL1403[J]. Genome Research, 2001, 11: 731-753. |
15 | KOK J, VAN GIJTENBEEK L A, DE JONG A, et al. The evolution of gene regulation research in Lactococcus lactis [J]. FEMS Microbiology Reviews, 2017, 41: S220-S243. |
16 | PEDERSEN M B, GARRIGUES, C, TUPHILE, K, et al. Impact of aeration and heme-activated respiration on Lactococcus lactis gene expression: identification of a heme-responsive operon[J]. Journal of Bacteriology, 2008, 190:4903-4911. |
17 | LIU J, WANG Z, KANDASAMY V, et al. Harnessing the respiration machinery for high-yield production of chemicals in metabolically engineered Lactococcus lactis [J]. Metabolic Engineering, 2017, 44:22-29. |
18 | NEEF J, KOEDIJK D, BOSMA T, et al. Efficient production of secreted staphylococcal antigens in a non-lysing and proteolytically reduced Lactococcus lactis strain[J]. Applied Microbiology and Biotechnology, 2014, 98: 10131-10141. |
19 | CAMPOS G M, AMERICO M F, FREITAS A D, et al. Lactococcus lactis as an Interleukin Delivery System for Prophylaxis and Treatment of Inflammatory and Autoimmune Diseases[J]. Probiotics and Antimicrobial proteins, 2024, 16: 352-366. |
20 | URIOT O, DENIS S, JUNJUA M, et al. Streptococcus thermophilus: From yogurt starter to a new promising probiotic candidate[J]? Journal of Functional Foods, 2017, 37: 74-89. |
21 | MARKAKIOU S, GASPAR P, JOHANSEN E, et al. Harnessing the metabolic potential of Streptococcus thermophilus for new biotechnology applications[J]. Current Opinion in Biotechnology, 2020, 61: 142-152. |
22 | SUN Z H, HARRIS H M B, MCCANN A, et al. Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera[J]. Nature Communications, 2015, 6: 8322. |
23 | XIN Y, MU Y, KONG J, et al. Targeted and Repetitive Chromosomal Integration Enables High-Level Heterologous Gene Expression in Lactobacillus casei [J]. Applied and Environmental Microbiology, 2019, 85(9): e00033-19. |
24 | ZHOU D, JIANG Z, PANG Q, et al. CRISPR/Cas9-Assisted Seamless Genome Editing in Lactobacillus plantarum and Its Application in N-Acetylglucosamine Production[J]. Applied and Environmental Microbiology, 2019, 85(21): e01367-19. |
25 | BRON P A, MARCELLI B, MULDER J, et al. Renaissance of traditional DNA transfer strategies for improvement of industrial lactic acid bacteria[J]. Current Opinion in Biotechnology, 2019, 56: 61-68. |
26 | Ammann A, Neve H, Geis A, et al. Plasmid transfer via transduction from Streptococcus thermophilus to Lactococcus lactis [J]. Journal of Bacteriology, 2008, 190: 3083-3087. |
27 | LAMPKOWSKA J, FELD L, MONAGHAN A, et al. A standardized conjugation protocol to asses antibiotic resistance transfer between lactococcal species[J]. International Journal of Food Microbiology, 2008, 127: 172-175. |
28 | DANDOY D, FREMAUX C, DE FRAHAN M H, et al. The fast milk acidifying phenotype of Streptococcus thermophilus can be acquired by natural transformation of the genomic island encoding the cell-envelope proteinase PrtS[J]. Microbial Cell Factories, 2011, 10: S21. |
29 | MULDER J, WELS M, KUIPERS O P, et al. Unleashing natural competence in Lactococcus lactis by induction of the competence regulator ComX[J]. Applied and Environmental Microbiology, 2017, 83(20): e01320-17. |
30 | DAVID B, RADZIEJWOSKI A, TOUSSAINT F, et al. Natural DNA transformation is functional in Lactococcus lactis subsp. cremoris [J]. Applied and Environmental Microbiology, 2017, 83(16): e01074-17. |
31 | MORAWSKA L P, KUIPERS O P. Cell-to-cell non-conjugative plasmid transfer between Bacillus subtilis and lactic acid bacteria[J]. Microbial Biotechnology, 2023, 16: 784-798. |
32 | HOLO H, NES I F. High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media[J]. Applied and Environmental Microbiology, 1989, 55: 3119-3123. |
33 | NATORI Y, KANO Y, IMAMOTO F. Genetic-transformation of Lactobacillus casei by electroporation [J]. Biochimie, 1990, 72: 265-269. |
34 | KONG L H, XIONG Z Q, XIA Y J, et al. High-efficiency transformation of Streptococcus thermophilus using electroporation[J]. Journal of the Science of Food and Agriculture, 2021, 101(15): 6578-6585. |
35 | MENG Q, YUAN Y X, LI Y Y, et al. Optimization of Electrotransformation Parameters and Engineered Promoters for Lactobacillus plantarum from Wine[J]. ACS Synthetic Biology, 2021, 10(7): 1728-1738. |
36 | 陈韫慧, 夏永军, 宋馨, 等. 乳酸菌作为生物活性物质体内递送载体的研究进展[J]. 食品科学, 2023, 44(13): 193-202. |
37 | ZHU D L, LIU F L, XU H J, et al. Isolation of strong constitutive promoters from Lactococcus lactis subsp. lactis N8[J]. FEMS Microbiology Letters. 2015, 362(16): fnv107. |
38 | NARITA J, ISHIDA S, OKANO K, et al. Improvement of protein production in lactic acid bacteria using 5′-untranslated leader sequence of slpA from Lactobacillus acidophilus [J] Applied Microbiology and Biotechnology, 2006, 73: 366-373. |
39 | SUN W H, JIANG B, ZHANG Y, et al. Enabling the biosynthesis of malic acid in Lactococcus lactis by establishing the reductive TCA pathway and promoter engineering[J]. Biochemical Engineering Journal, 2020, 161: 107645. |
40 | PEIROTÉN Á, LANDETE J. Natural and engineered promoters for gene expression in Lactobacillus species[J]. Applied Microbiology and Biotechnology, 2020, 104: 3797-3805. |
41 | KUIPERS O P, BEERTHUYZEN M M, DE RUYTER P G G A, et al. Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction[J]. Journal of Biological Chemistry, 1995, 270: 27299-27304. |
42 | MIERAU I, KLEEREBEZEM M. 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis [J]. Applied Microbiology and Biotechnology, 2005, 68: 705-717. |
43 | RENYE J, SOMKUTI G. Nisin-induced expression of pediocin in dairy lactic acid bacteria[J]. Journal of applied microbiology, 2010, 108: 2142-2151. |
44 | YANG P, WANG J, QI Q S. Prophage recombinases-mediated genome engineering in Lactobacillus plantarum [J]. Microbial Cell Factories, 2015, 14: 154. |
45 | LLULL D, POQUET I. New expression system tightly controlled by zinc availability in Lactococcus lactis [J]. Applied and Environmental Microbiology, 2004, 70(9): 5398-5406. |
46 | MIYOSHI A, EMMANUEL J, COMMISSAIRE J, et al. A xylose-inducible expression system for Lactococcus lactis [J]. FEMS Microbiology Letters, 2004, 239(2): 205-212. |
47 | MADSEN S M, ARNAU J, VRANG A, et al. Molecular characterization of the pH-inducible and growth phase-dependent promoter P170 of Lactococcus lactis [J]. Molecular Microbiology, 1999, 32(1): 75-87. |
48 | XU X N, ZHANG L W, CUI Y, et al. Development of Zn2+-controlled expression system for lactic acid bacteria and its application in engineered probiotics[J]. Synthetic and Systems Biotechnology, 2024, 9(1): 152-158. |
49 | AXELSSON L, LINDSTAD G, NATERSTAD K. Development of an inducible gene expression system for Lactobacillus sakei [J]. Letters in Applied Microbiology, 2003, 37(2): 115-120. |
50 | JIMÉNEZ J J, DIEP D B, BORRERO J, et al. Cloning strategies for heterologous expression of the bacteriocin enterocin A by Lactobacillus sakei Lb790, Lb. plantarum NC8 and Lb. casei CECT475[J]. Microbial Cell Factories, 2015, 14: 166. |
51 | SØRVIG E, MATHIESEN G, NATERSTAD K, et al. High-level, inducible gene expression in Lactobacillus sakei and Lactobacillus plantarum using versatile expression vectors[J]. Microbiology, 2005, 151: 2439-2449. |
52 | FILSINGER G T, WANNIER T M, PEDERSEN F B, et al. Characterizing the portability of phage-encoded homologous recombination proteins[J]. Nature Chemical Biology, 2021, 17(4): 394-402. |
53 | MARKAKIOU S, NEVES A R, ZEIDAN A, et al. Development of a Tetracycline-Inducible System for Conditional Gene Expression in Lactococcus lactis and Streptococcus thermophilus [J]. Microbiology Spectrum, 2023, 11(3): e00668-23. |
54 | HEISS S, HÖRMANN A, TAUER C, et al. Evaluation of novel inducible promoter/repressor systems for recombinant protein expression in Lactobacillus plantarum [J]. Microbial Cell Factories, 2016, 15 (1): 50. |
55 | LEENHOUTS K, KOK J, VENEMA G. Lactococcal plasmid pWV01 as an integration vector for lactococci[J]. Applied and Environmental Microbiology, 1991, 57(9): 2562-2567. |
56 | MAGUIN E, DUWAT P, HEGE T, et al. New thermosensitive plasmid for gram-positive bacteria[J]. Journal of Bacteriology, 1992, 174(17): 5633-5638. |
57 | XIN Y P, GUO T T, MU Y L, et al. Development of a counterselectable seamless mutagenesis system in lactic acid bacteria[J]. Microbial Cell Factories, 2017, 16: 116. |
58 | SOLEM C, DEFOOR E, JENSEN P R, et al. Plasmid pCS1966, a new selection/counterselection tool for lactic acid bacterium strain construction based on the oroP gene, encoding an orotate transporter from Lactococcus lactis [J]. Applied and Environmental Microbiology, 2008, 74(15): 4772-4775. |
59 | GOH Y J, AZCÁRATE-PERIL M A, O'FLAHERTY S, et al. Development and application of a upp-based counterselective gene replacement system for the study of the S-layer protein SlpX of Lactobacillus acidophilus NCFM[J]. Applied and Environmental Microbiology, 2009, 75(10): 3093-3105. |
60 | PETERSEN K V, MARTINUSSEN J, JENSEN P R, et al. Repetitive, Marker-Free, Site-Specific Integration as a Novel Tool for Multiple Chromosomal Integration of DNA[J]. Applied and Environmental Microbiology, 2013, 79(12): 3563-3569. |
61 | RAWSTHORNE H, TURNER K N, MILLS D A. Multicopy integration of heterologous genes, using the lactococcal group II intron targeted to bacterial insertion sequences[J]. Applied and Environmental Microbiology, 2006, 72(9): 6088-6093. |
62 | ZHANG Y, BUCHHOLZ F, MUYRERS J P, et al. A new logic for DNA engineering using recombination in Escherichia coli [J]. Nature Genetics, 1998, 20: 123-128. |
63 | YU D G, ELLIS H M, LEE E-C, et al. An efficient recombination system for chromosome engineering in Escherichia coli [J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(11): 5978-5983. |
64 | CHAI Y, SHAN S P, WEISSMAN K J, et al. Heterologous Expression and Genetic Engineering of the Tubulysin Biosynthetic Gene Cluster Using Red/ET Recombineering and Inactivation Mutagenesis[J]. Chemistry and Biology, 2012, 19: 361-371. |
65 | STRINGER A M, SINGH N, YERMAKOVA A, et al. FRUIT, a scar-free system for targeted chromosomal mutagenesis, epitope tagging, and promoter replacement in Escherichia coli and Salmonella enterica [J]. 2012, PLoS One, 7: e44841. |
66 | XIN Y P, GUO T T, MU Y L, et al. Identification and functional analysis of potential prophage-derived recombinases for genome editing in Lactobacillus casei [J]. FEMS Microbiology Letters, 2017, 364(24): fnx243. |
67 | HUANG H, SONG X, YANG S. Development of a RecE/T-Assisted CRISPR-Cas9 toolbox for Lactobacillus [J]. Biotechnology Journal, 2019, 14: 1800690. |
68 | BÖRNER R A, KANDASAMY V, AXELSEN A M, et al. Genome editing of lactic acid bacteria: opportunities for food, feed, pharma and biotech[J]. FEMS Microbiology Letters, 2019, 366: fny291. |
69 | VAN PIJKEREN J, BRITTON R A. High efficiency recombineering in lactic acid bacteria[J]. Nucleic Acids Research, 2012, 40: e76. |
70 | HAO M Y, CUI Y H, QU X J. Analysis of CRISPR-Cas System in Streptococcus thermophilus and Its Application [J]. Frontiers in Microbiology, 2018, 9: 257. |
71 | YANG L, LI W X, UJIROGHENE O J, et al. Occurrence and Diversity of CRISPR Loci in Lactobacillus casei Group[J]. Frontiers in Microbiology, 2020, 11: 624. |
72 | SCHUSTER J A, VOGEL R F, EHRMANN M A. Characterization and distribution of CRISPR-Cas systems in Lactobacillus sakei [J]. Archives of Microbiology, 2019, 201: 337-347. |
73 | MA S, WANG F Y, ZHANG X J, et al. Repurposing endogenous type II CRISPR-Cas9 system for genome editing in Streptococcus thermophilus [J]. Biotechnology and Bioengineering, 2024, 121(2): 749-756. |
74 | MARTEL B, MOINEAU S. CRISPR-Cas: an efficient tool for genome engineering of virulent bacteriophages[J]. Nucleic Acids Research, 2014, 42(14): 9504-9513. |
75 | Song X, Huang H, Xiong Z Q, et al. CRISPR-Cas9D10A Nickase-Assisted Genome Editing in Lactobacillus casei [J]. Applied and Environmental Microbiology, 2017, 83: e01259-17. |
76 | J-H OH, VAN PIJKEREN J-P. CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri [J]. Nucleic Acids Research, 2014, 42(17): e131. |
77 | GUO T T, XIN Y P, ZHANG Y, et al. A rapid and versatile tool for genomic engineering in Lactococcus lactis [J]. Microbial Cell Factories, 2019, 18: 22. |
78 | KONG L H, SONG X, XIA Y J, et al. Construction of a CRISPR/nCas9-assisted genome editing system for exopolysaccharide biosynthesis in Streptococcus thermophilus [J]. Food Research International, 2022, 158: 111550. |
79 | TIAN K R, HONG X, GUO M M, et al. Development of Base Editors for Simultaneously Editing Multiple Loci in Lactococcus lactis [J]. ACS Synthetic Biology, 2022, 11(11): 3644-3656. |
80 | VAN TILBURG A Y, CAO H J, VAN DER MEULEN S B, et al. Metabolic engineering and synthetic biology employing Lactococcus lactis and Bacillus subtilis cell factories[J]. Current opinion in biotechnology, 2019, 59: 1-7. |
81 | SHENG J, LING P, ZHU X, et al. Use of induction promoters to regulate hyaluronan synthase and UDP-glucose-6-dehydrogenase of Streptococcus zooepidemicus expression in Lactococcus lactis: a case study of the regulation mechanism of hyaluronic acid polymer[J]. Journal of Applied Microbiology, 2009, 107: 136-144. |
82 | ZHONG Q, MA Y, XU D, et al. Heterologous Biosynthesis of Hyaluronic Acid Using a New Hyaluronic Acid Synthase Derived from the Probiotic Streptococcus thermophilus [J]. Fermentation, 2023, 9(6): 510. |
83 | Mohammed A A, Niamah A K. Identification and antioxidant activity of hyaluronic acid extracted from local isolates of Streptococcus thermophilus [J]. Materials Today: Proceedings, 2022, 60: 1523-1529. |
84 | Lew L C, Gan C Y, Liong M T. Dermal bioactives from lactobacilli and bifidobacteria[J]. Annals of Microbiology, 2013, 63: 1047-1055. |
85 | SUNGUROGLU C, SEZGIN D E, CELIK P A, et al. Higher titer hyaluronic acid production in recombinant Lactococcus lactis [J]. Preparative Biochemistry and Biotechnology, 2018, 48(8): 734-742. |
86 | PRASAD S B, JAYARAMAN G, RAMACHANDRAN K B. Hyaluronic acid production is enhanced by the additional co-expression of UDP-glucose pyrophosphorylase in Lactococcus lactis [J]. Applied Microbiology and Biotechnology, 2010, 86: 273-283. |
87 | HMAR R V, PRASAD S B, JAYARAMAN G, et al. Chromosomal integration of hyaluronic acid synthesis (has) genes enhances the molecular weight of hyaluronan produced in Lactococcus lactis [J]. Biotechnology Journal, 2013, 9(12): 1554-1564. |
88 | JEEVA P, DOSS S S, SUNDARAM V, et al. Production of controlled molecular weight hyaluronic acid by glucostat strategy using recombinant Lactococcus lactis cultures[J]. Applied Microbiology and Biotechnology, 2019, 103(11): 4363-4375. |
89 | 张少伦, 高聪, 李晓敏, 等. 代谢工程改造克雷伯氏菌生产 1,3-丙二醇[J]. 生物工程学报, 2024, 40(8): 2386-2402. |
90 | 刘建明, 张炽坚, 张冰, 等. 巴氏梭菌作为工业底盘细胞高效生产 1,3-丙二醇-从代谢工程和菌种进化到过程工程和产品分离[J]. 合成生物学, 2024, 5: 1-17. |
91 | 蒋欢, 马江山, 曾柏全, 等. 粗甘油发酵生产 1, 3- 丙二醇的研究进展[J]. 生物技术通报, 2022, 38(10): 45-53. |
92 | WU Y, LIN Y. Fermentation redox potential control on the 1,3-propanediol production by Lactobacillus panis PM1 [J]. Process Biochemistry, 2022, 114, 139-146. |
93 | JU J, WANG D, HEO S, et al. Enhancement of 1,3-propanediol production from industrial by-product by Lactobacillus reuteri CH53[J]. Microbial Cell Factories, 2020, 19: 6. |
94 | JU J, HEO S, CHOI S, et al. Effective bioconversion of 1,3-propanediol from biodiesel-derived crude glycerol using organic acid resistance–enhanced Lactobacillus reuteri JH83[J]. Bioresource Technology, 2021, 337: 125361. |
95 | SINGH K, AINALA S, PARK S. Metabolic engineering of Lactobacillus reuteri DSM 20,016 for improved 1,3-propanediol production from glycerol[J]. Bioresource Technology, 2021, 338: 125590. |
96 | SINGH K, PARK S. Construction of prophage‐free and highly‐transformable Limosilactobacillus reuteri strains and their use for production of 1,3‐propanediol[J]. Biotechnology and Bioengineering, 2024, 121: 317-328. |
97 | HAWKINS C L, Detection DAVIES M., identification, and quantification of oxidative protein modifications[J]. Journal of Biological Chemistry, 2019, 294: 19683-19708. |
98 | KONG L H, XIONG Z Q, SONG X, et al. Characterization of a Panel of Strong Constitutive Promoters from Streptococcus thermophilus for Fine-Tuning Gene Expression[J]. ACS Synthetic Biology, 2019, 8(6): 1469-1472. |
99 | LIN J Z, ZOU Y X, CAO K L, et al. The impact of heterologous catalase expression and superoxide dismutase overexpression on enhancing the oxidative resistance in Lactobacillus casei [J]. Journal of Industrial Microbiology and Biotechnology, 2016, 43(5): 703-711. |
100 | AN H R, ZHAI Z Y, YIN S, et al. Coexpression of the superoxide dismutase and the catalase provides remarkable oxidative stress resistance in Lactobacillus rhamnosus [J]. Journal of Agricultural and Food Chemistry, 2011, 59(8): 3851-3856. |
101 | LI Y, HUGENHOLTZ J, SYBESMA W, et al. Using Lactococcus lactis for glutathione overproduction[J]. Applied Microbiology and Biotechnology, 2005, 67: 83-90. |
102 | XU C, SHI Z, SHAO J, et al. Metabolic engineering of Lactococcus lactis for high level accumulation of glutathione and S-adenosyl-L-methionine[J]. World Journal of Microbiology and Biotechnology, 2019, 35: 185. |
103 | WU J, TIAN X, XU X, et al. Engineered Probiotic Lactococcus lactis for Lycopene Production against ROS Stress in Intestinal Epithelial Cells[J]. ACS Synthetic Biology, 2022, 11: 1568-1576. |
104 | MA J, LI C Y, WANG J R, et al. Genetically engineered Escherichia coli nissle 1917 secreting GLP-1 analog exhibits potential antiobesity effect in high-fat diet-induced obesity mice[J]. Obesity, 2020, 28(2): 315-322. |
105 | CUBILLOS-RUIZ A, ALCANTAR M A, DONGHIA N M, et al. An engineered live biotherapeutic for the prevention of antibiotic-induced dysbiosis [J]. Nature Biomedical Engineering, 2022, 6: 910-921. |
106 | SCOTT B M, GUTIÉRREZ-VÁZQUEZ C, SANMARCO L M, et al. Self-tunable engineered yeast probiotics for the treatment of inflammatory bowel disease[J]. Nature Medicine, 2021, 27(7): 1212-1222. |
107 | VÅGESJÖ E, ÖHNSTEDT E, MORTIER A, et al. Accelerated wound healing in mice by on-site production and delivery of CXCL12 by transformed lactic acid bacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(8): 1895-1900. |
108 | ÖHNSTEDT E, TOMENIUS H L, FRANK P, et al. Accelerated Wound Healing in Minipigs by On-Site Production and Delivery of CXCL12 by Transformed Lactic Acid Bacteria[J]. Pharmaceutics, 2022, 14(2): 229. |
109 | ÖHNSTEDT E, VÅGESJÖ E, FASTH A, et al. Engineered bacteria to accelerate wound healing: an adaptive, randomised, double-blind, placebo-controlled, first-in-human phase 1 trial[J]. EClinicalMedicine, 2023, 60: 102014. |
110 | ZHAO X X, LI S J, DING J N, et al. Combination of an engineered Lactococcus lactis expressing CXCL12 with light‐emitting diode yellow light as a treatment for scalded skin in mice[J]. Microbial Biotechnology, 2021, 14(5): 2090-2100. |
111 | LI L Y, YANG C, MA B L, et al. Hydrogel-Encapsulated Engineered Microbial Consortium as a Photoautotrophic "Living Material" for Promoting Skin Wound Healing[J]. ACS Applied Materials and Interfaces, 2023, 15(5): 6536-6547. |
112 | LU Y, LI H, WANG J, et al. Engineering Bacteria‐Activated Multifunctionalized Hydrogel for Promoting Diabetic Wound Healing[J]. Advanced Functional Materials, 2021, 31(48): 2105749. |
113 | MING Z, HAN L, BAO M, et al. Living Bacterial Hydrogels for Accelerated Infected Wound Healing[J]. Advanced Science, 2021, 8(24): 2102545. |
114 | MIERAU I, LEIJ P, VAN SWAM I, et al. Industrial-scale production and purification of a heterologous protein in Lactococcus lactis using the nisin-controlled gene expression system NICE: The case of lysostaphin[J]. Microbial Cell Factories, 2005, 4: 15. |
115 | LUBKOWICZ D, HO C L, HWANG I Y, et al. Reprogramming Probiotic Lactobacillus reuteri as a Biosensor for Staphylococcus aureus Derived AIP-I Detection[J]. ACS Synthetic Biology, 2018, 7(5): 1229-1237. |
[1] | Ziling CHEN, Yangfei XIANG. Integrated development of organoid technology and synthetic biology [J]. Synthetic Biology Journal, 2024, 5(4): 795-812. |
[2] | Bingyu CAI, Xiangtian TAN, Wei LI. Advances in synthetic biology for engineering stem cell [J]. Synthetic Biology Journal, 2024, 5(4): 782-794. |
[3] | Huang XIE, Yilei ZHENG, Yiting SU, Jingyi RUAN, Yongquan LI. An overview on reconstructing the biosynthetic system of actinomycetes for polyketides production [J]. Synthetic Biology Journal, 2024, 5(3): 612-630. |
[4] | Wenlong ZHA, Lan BU, Jiachen ZI. Advances in synthetic biology for producing potent pharmaceutical ingredients of traditional Chinese medicine [J]. Synthetic Biology Journal, 2024, 5(3): 631-657. |
[5] | Zhen HUI, Xiaoyu TANG. Applications of the CRISPR/Cas9 editing system in the study of microbial natural products [J]. Synthetic Biology Journal, 2024, 5(3): 658-671. |
[6] | Xiaonan LIU, Jing LI, Xiaoxi ZHU, Zishuo XU, Jian QI, Huifeng JIANG. Research advances on paclitaxel biosynthesis [J]. Synthetic Biology Journal, 2024, 5(3): 527-547. |
[7] | Xuejing MA, Chang GUO, Zhaolin HUA, Baidong HOU. Dawn of the rational design of nanoparticle vaccines aided by the advance of synthetic biology techniques [J]. Synthetic Biology Journal, 2024, 5(2): 353-368. |
[8] | Busen WANG, Jinghan XU, Zhiqiang GAO, Lihua HOU. Advances in virus-vectored vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 281-293. |
[9] | Jinyong ZHANG, Jiang GU, Shan GUAN, Haibo LI, Hao ZENG, Quanming ZOU. Synthetic biology promotes the development of bacterial vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 321-337. |
[10] | Weifeng YUAN, Yongliang ZHAO, Zhixuan WU, Ke XU. Applications of synthetic biology in the development of SARS-CoV-2 broad-spectrum vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 369-384. |
[11] | Yanyan YUAN, Huifang CHEN, Sihui YANG, Honghui WANG, Zhou NIE. Engineering artificial receptor cluster: chemical synthetic biology strategies and emerging applications [J]. Synthetic Biology Journal, 2024, 5(1): 53-76. |
[12] | Jingyu ZHAO, Jian ZHANG, Qingsheng QI, Qian WANG. Research progress in biosensors based on bacterial two-component systems [J]. Synthetic Biology Journal, 2024, 5(1): 38-52. |
[13] | Qian MENG, Cong YIN, Weiren HUANG. Tumor organoids and their research progress in synthetic biology [J]. Synthetic Biology Journal, 2024, 5(1): 191-201. |
[14] | Xiaojie GUO, Xingjin JIAN, Liyan WANG, Chong ZHANG, Xinhui XING. Progress in bioreactors and instruments for phenotype testing with synthetic biology research [J]. Synthetic Biology Journal, 2024, 5(1): 16-37. |
[15] | Duo LIU, Peiyuan LIU, Lianyue LI, Yaxin WANG, Yuhui CUI, Huimin XUE, Hanjie WANG. Design and synthesis of engineered extracellular vesicles and their biomedical applications [J]. Synthetic Biology Journal, 2024, 5(1): 154-173. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||